# Compositio Mathematica 

## ERIK ELLENTUCK

On the form of functions which preserve regressive isols
Compositio Mathematica, tome 26, $\mathrm{n}^{\circ} 3$ (1973), p. 283-302
[http://www.numdam.org/item?id=CM_1973_26_3_283_0](http://www.numdam.org/item?id=CM_1973_26_3_283_0)
© Foundation Compositio Mathematica, 1973, tous droits réservés.
L'accès aux archives de la revue «Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

## Numdam

# ON THE FORM OF FUNCTIONS WHICH PRESERVE REGRESSIVE ISOLS ${ }^{1}$ 

by

Erik Ellentuck ${ }^{2}$

## 0. Introduction

In [1] J. Barback gives a characterization of those unary recursive functions which map the regressive isols into the regressive isols. In [6] M. Hassett does the same for the binary recursive functions. Following their lead we characterize the $n$-ary functions which map the cosimple regressive isols into the cosimple regressive isols. Thus our work extends that of [1] and [6] in that (i) the function may have any number of arguments, (ii) the function is not necessarily recursive, and (iii) the arguments of the function are cosimple. Our results however do include the non-cosimple case. The reader may find a precise statement of our results in the last paragraph of this paper.

## 1. Closure properties

Let $\omega$ be the non-negative integers. We refer to elements of $\omega$ as numbers. If $\alpha \subseteq \omega$ is a set and $n \in \omega$ let $\times{ }^{n} \alpha$ be the $n$-fold direct power of $\alpha$, and if $f$ is a function let $\delta f, \rho f$ denote its domain, range respectively. If $n \in \omega$ and $f: \times{ }^{n} \omega \rightarrow \omega$ we define a function $\hat{f}: \times{ }^{n} \omega \rightarrow \omega$. If $x=$ $\left(x_{0}, \cdots, x_{n-1}\right)$ let

$$
\begin{align*}
& \hat{f}(x)=0 \text { if } x_{i}=0 \text { for some } i<n \\
& \hat{f}(x)=f(y) \text { if } x_{i}=y_{i}+1 \text { for } i<n \tag{1}
\end{align*}
$$

Note that if $x \in \times{ }^{n} \omega$ then we write $x_{i}$ for the $i$-th component of $x$. For $j<n$ we define $n$-ary functions $E_{j} f, \Delta_{j} f$ by

$$
\begin{align*}
& E_{j} f(x)=f(y) \text { if } y_{j}=x_{j}+1 \text { and } y_{i}=x_{i} \text { for } i \neq j,  \tag{2}\\
& \Delta_{j} f(x)=\left(E_{j} f(x)\right)-f(x)
\end{align*}
$$

[^0]Finally let $\Delta=\Delta_{0} \cdots \Delta_{n-1}$ be the composition of the $\Delta_{j}$ 's. $\lambda$ is Church's functional operator, i.e., $f=\lambda x f(x)$, and if $x, y \in \times^{n} \omega$ write $x \leqq y$ if $x_{i} \leqq y_{i}$ for $i<n$. In general when notions usually reserved for the one variable case are applied to $n$-tuples then we are to understand these notions as holding for each component separately.

A function $f: \times{ }^{n} \omega \rightarrow \omega$ is called recursive increasing if $f$ is recursive and $\Delta \hat{f}(x) \geqq 0$ for every $x \in \times{ }^{n} \omega, f$ is eventually recursive increasing if $\lambda x f(x+m)$ is recursive increasing for some $m \in \times^{n} \omega$ (here + is componentwise addition). If $\alpha$ is a finite set let $|\alpha|$ denote the number of elements in $\alpha$, and if $n \in \omega$ let $v(n)=\{x \in \omega \mid x<n\}$. Consider $h, \sigma, d$, and $j$ which together satisfy

$$
\begin{align*}
& \sigma \varsubsetneqq v(n), h: \sigma \rightarrow \omega,|v(n)-\sigma|=d>0, \text { and }  \tag{3}\\
& j: v(d) \rightarrow v(n)-\sigma \text { is strictly increasing. }
\end{align*}
$$

With $h$ we associate a function $h_{n}^{*}: \times{ }^{d} \omega \rightarrow \times{ }^{n} \omega$ as follows. If $x \in \times{ }^{d} \omega$ let $h_{n}^{*}(x)=y \in \times{ }^{n} \omega$ where

$$
\begin{equation*}
y_{i}=h(i) \text { for } i \in \sigma \text { and } y_{j(i)}=x_{i} \text { for } i<d \tag{4}
\end{equation*}
$$

$f$ is called almost recursive increasing if $f \circ h_{n}^{*}$ is eventually recursive increasing for every $h$ that satisfies (3) (o denotes composition of functions). Note that every almost recursive increasing function is necessarily recursive.

Let $\Lambda$ be the isols, $\Lambda_{R}$ the regressive isols, $\Lambda^{\infty}=\Lambda-\omega$ and $\Lambda_{R}^{\infty}=$ $\Lambda_{R}-\omega$.

Theorem 1: Let $n>0$ and $R \subseteq \times{ }^{n+1} \omega$ the graph of a function $r$.
(i) If $r$ is eventually recursive increasing then for each $x \in \times{ }^{n} \Lambda_{R}^{\infty}$ there is exactly one $y \in \Lambda$ such that $(x, y) \in R_{\Lambda}$.
(ii) If $r$ is almost recursive increasing then for each $x \in \times{ }^{n} \Lambda_{R}$ there is exactly one $y \in \Lambda$ such that $(x, y) \in R_{\Lambda}$.

We start with a lemma and then discuss the notions that are necessary to complete a proof of Theorem 1 .

Lemma 1. Let $n>0$ and $f: \times{ }^{n} \omega \rightarrow \omega$.
(i) $f$ can be represented as $f(x)=\sum_{i \leqq x} \Delta \hat{f}(i)$ where $i$ is understood as ranging over $\times{ }^{n} \omega$.
(ii) If $f(x)=\sum_{i \leqq x} b(i)$ is any other representation of $f$ as a sum then $b(i)=\Delta \hat{f}(i)$ for all $i \in \times{ }^{n} \omega$.

Proof. For $n=1$ the result is due to Barback [1] and for $n=2$ it is due to Hassett [6]. For $n=1$

$$
\begin{gathered}
f(0)=\hat{f}(1)-\hat{f}(0)=\Delta \hat{f}(0)=\sum_{i \leqq 0} \Delta \hat{f}(i), \\
f(x+1)=f(x)+\Delta f(x)=f(x)+\Delta \hat{f}(x+1)
\end{gathered}
$$

because $\hat{f}(x+1)=f(x)$. (i) for $n=1$ will then follow by induction. Now assume as hypothesis A that (i) holds in the $n$-ary case and that $f: \times^{n+1}$ $\omega \rightarrow \omega$. Let $x$, $i$ range over $\omega$ and $y, j$ over $\times{ }^{n} \omega$. If $g(y)=f(0, y)$ then by hypothesis A

$$
f(0, y)=g(y)=\sum_{j \leqq y} \Delta_{1} \cdots \Delta_{n} \hat{g}(j)
$$

But $\hat{g}(j)=\hat{f}(1, j)=\Delta_{0} \hat{f}(0, j)$ since $\hat{f}(0, j)=0$ and hence

$$
f(0, y)=\sum_{i \leqq 0, j \leqq y} \Delta_{0} \cdots \Delta_{n} \hat{f}(i, j)
$$

since the various $\Delta_{i}$ operators commute. Now assume as hypothesis B that (i) holds for a given $x \in \omega$ and all $y \in \times^{n} \omega$.

$$
f(x+1, y)=f(x, y)+\Delta_{0} f(x, y)
$$

Now by hypothesis B

$$
f(x, y)=\sum_{i \leqq x, j \leqq y} \Delta_{0} \cdots \Delta_{n} \hat{f}(i, j)
$$

and by hypothesis A if $g(y)=f(x, y)$ then

$$
f(x, y)=g(y)=\sum_{j \leq y} \Delta_{1} \cdots \Delta_{n} \hat{g}(j)
$$

But $\hat{g}(j)=\hat{f}(x+1, j)$ and hence

$$
\Delta_{0} f(x, y)=\sum_{j \leq y} \Delta_{0} \cdots \Delta_{n} \hat{f}(x+1, j)
$$

Summing now shows that (i) holds for $x+1$ and all $y \in \times^{n} \omega$. Thus by induction (i) holds in the $n+1$-ary case and hence by another induction, for all $n$.

Uniqueness in the one variable case is trivial because if

$$
f(x)=\sum_{i \leqq x} b(i)=\sum_{i \leqq x} c(i)
$$

then

$$
b(0)=f(0)=c(0), b(i+1)=\Delta f(i)=c(i+1)
$$

Now assume as hypothesis C hat (ii) holds in the $n$-ary case and that $f: \times^{n+1} \omega \rightarrow \omega$ is represented as

$$
f(x)=\sum_{i \leqq x} b(i)=\sum_{i \leqq x} c(i)
$$

Let $x, i$ range over $\omega$ and $y, j$ over $\times{ }^{n} \omega$. If $g(y)=f(0, y)$ then

$$
g(y)=f(0, y)=\sum_{j \leq y} b(0, y)=\sum_{j \leq y} c(0, j)
$$

and hence by hypothesis C we have $b(0, j)=c(0, j)$ for all $j \in \times{ }^{n} \omega$. If $x+1 \in \omega$ then

$$
\begin{aligned}
f(x+1, y) & =f(x, y)+\sum_{j \leqq y} b(x+1, j) \\
& =f(x, y)+\sum_{j \leqq y} c(x+1, j) .
\end{aligned}
$$

Thus if $g(y)=\Delta_{0} f(x, y)$ then

$$
g(y)=\sum_{j \leqq y} b(x+1, j)=\sum_{j \leqq y} c(x+1, j)
$$

and hence by applying hypothesis C to $g(y)$ we have $b(x+1, j)=c(x+1$, $j$ ) for all $j \in \times^{n} \omega$. Thus (ii) holds in the $n+1$-ary case and hence by induction for all $n$.
q.e.d.

Next we introduce the various concepts that will appear in the proof of Theorem 1 . We start with the notion of a frame. Let $P$ be the set of all subsets of $\omega$ and let $Q$ be the set of all finite subsets of $\omega . F$ is a frame if $F \subseteq \times{ }^{n} Q$ and $F$ is closed under componentwise intersection (also denoted by $\cap$; in general when discussing frames we extend set theoretic operations and relations componentwise and use the usual symbols to denote these extensions). Let $F^{*}=\left\{\alpha \in \times{ }^{n} Q \mid(\exists \beta)(\alpha \subseteq \beta \in F)\right\}$ and let $C_{F}(\alpha)$ be the minimal with respect to $\subseteq$ element $\beta \in F$ such that $\alpha \subseteq \beta$, provided $\alpha \in F^{*}$ (such an element exists because $F$ is closed under intersections). $C_{F}(\alpha)$ is undefined for $\alpha \notin F^{*} . F$ is a recursive frame if $C_{F}$ is a partial recursive function. If $R \subseteq \times{ }^{n} \omega$ then $F$ is called an $R$-frame if $|\alpha| \in R$ for every $\alpha \in F$. An element $\xi \in \times{ }^{n} P$ is attainable from $F$ (in symbols $\xi \in A(F))$ if for every $\alpha \in \times{ }^{n} Q, \alpha \subseteq \xi$ there is a $\beta \in F$ such that $\alpha \subseteq \beta \subseteq \xi$. For any $\alpha \in \times{ }^{n} P$ let $\langle\alpha\rangle$ be the recursive equivalence type of $\alpha$ (the componentwise convention is also used here). Then if $R \subseteq \times^{n} \omega$, the extension $R_{A}$ used in Theorem 1, i.e., the Nerode extension (cf. [7]) is

$$
\begin{align*}
& R_{A}=\left\{x \in \times^{n} \Lambda \mid(\exists \xi, F)(F \text { is a recursive }\right.  \tag{5}\\
& R \text {-frame for which } \xi \in A(F) \text { and } x=\langle\xi\rangle)\} .
\end{align*}
$$

The next set of notions that enter into Theorem 1 center on the definition of a regressive function. A function $t$ is called regressive if it is a oneone mapping of $\omega$ into $\omega$ for which there exists a partial recursive function $p$ such that

$$
\begin{equation*}
\rho t \subseteq \delta p, p t(0)=t(0), \text { and } p t(n+1)=t(n) \tag{6}
\end{equation*}
$$

for all $n \in \omega$. If $t$ is a regressive function then we can find a partial recursive $p$ which satisfies (6) as well as

$$
\begin{equation*}
\rho p \cong \delta p \text { and }(\exists n)\left(p^{n}(x)=p^{n+1}(x)\right) \text { for } x \in \delta p \tag{7}
\end{equation*}
$$

where $p^{n}$ is the $n$-th iterate of $p$. A function $p$ satisfying (6) and (7) is called a regressing function of $t$. Then we define a function $p^{*}$ by

$$
\begin{equation*}
\delta p^{*}=\delta p \text { and } p^{*}(x)=(\mu n)\left(p^{n}(x)=p^{n+1}(x)\right) \text { for } x \in \delta p \tag{8}
\end{equation*}
$$

The function $p^{*}$ is also partial recursive, $\rho t \subseteq \delta p^{*}$ and $p^{*} t(n)=n$ for all $n \in \omega$. We also define a set valued function $\bar{p}$ by

$$
\begin{equation*}
\delta \bar{p}=\delta p \text { and } \bar{p}(x)=\left\{p^{n}(x) \mid n<p^{*}(x)\right\} \text { for } x \in \delta p \tag{9}
\end{equation*}
$$

$\bar{p}$ is also partial recursive and in particular $\bar{p} t(0)=\emptyset(=$ the empty set $)$. A function $t$ is called retraceable if it is regressive and strictly increasing, and any regressing function $p$ of $t$ which also satisfies

$$
\begin{equation*}
p(x) \leqq x \text { for all } x \in \delta p \tag{10}
\end{equation*}
$$

is called a retracing function of $t$. A set is called regressive if it is finite or the range of a regressive function and is called retraceable if it is finite or the range of a retraceable function. An isol is called regressive if it contains a regressive set. By [2] every regressive isol contains a retraceable set so there is no need to define retraceable isol. Let $\Lambda_{R}$ be the set of all regressive isols.

Let $j: \times{ }^{2} \omega \rightarrow \omega$ be the usual recursive one-one mapping of $\times{ }^{2} \omega$ onto $\omega$ defined by

$$
\begin{equation*}
j(x, y)=x+\frac{1}{2}(x+y)(x+y+1) \tag{11}
\end{equation*}
$$

and let $k, l$ be its first, second inverse respectively. If $\alpha, \beta \subseteq \omega$ let $j(\alpha \times \beta)$ $=\{j(x, y) \mid x \in \alpha$ and $y \in \beta\}$. Identify $j_{2}$ with $j$ and inductively define $j_{n}: \times{ }^{n} \omega \rightarrow \omega$, a one-one onto map, by

$$
\begin{equation*}
j_{n+1}\left(x_{0}, \cdots, x_{n}\right)=j\left(j_{n}\left(x_{0}, \cdots, x_{n-1}\right), x_{n}\right) \tag{12}
\end{equation*}
$$

For $i<n$ let $k_{i}$ be the $i$-th inverse to $j_{n}$. We shall also use variations of the obvious notation $j_{n}\left(\alpha_{0} \times \cdots \times \alpha_{n-1}\right)$, etc.

Proof of Theorem 1: First assume that $r$ is a recursive increasing function so that by Lemma 1 we can represent $r$ as

$$
\begin{equation*}
r(x)=\sum_{i \leqq x} \Delta \hat{r}(i), \Delta \hat{r}(i) \geqq 0 \text { for } i \in \times^{n} \omega \tag{13}
\end{equation*}
$$

Let $T=\left(T_{0}, \cdots, T_{n-1}\right) \in \times^{n} \Lambda_{R}^{\infty}$ and choose retraceable functions $t_{i}$ and retracing functions $p_{i}$ such that $p_{i}$ is a retracing function of $t_{i}$ and $\rho t_{i}-$ $\left\{t_{i}(0)\right\}=\tau_{i} \in T_{i}$ for $i<n$. We use componentwise conventions throughout; in particular we define functions $p, p^{*}$, and $\bar{p}$ by $\delta p=\delta p^{*}=\delta \bar{p}=$ $\delta p_{0} \times \cdots \times \delta p_{n-1}$ and if $x \in \delta p$ then

$$
\begin{equation*}
\bar{p}(x)=\left(\bar{p}_{0}\left(x_{0}\right), \cdots, \bar{p}_{n-1}\left(x_{n-1}\right)\right) \tag{14}
\end{equation*}
$$

and similarly for $p$ and $p^{*}$. Also if $a, x \in \times{ }^{n} \omega$ then define

$$
\begin{equation*}
p^{a}(x)=\left(p_{0}^{a_{0}}\left(x_{0}\right), \cdots, p_{n-1}^{a_{n-1}}\left(x_{n-1}\right)\right) . \tag{15}
\end{equation*}
$$

Lastly if $x \in \times^{n} A$ and $y \in A$ write $(x, y)$ for the concatenation of $x$ and $y$, an element of $\times^{n+1} A$. If $x \in \delta p$ let

$$
\begin{equation*}
\xi(x)=\cup\left\{j\left(\left\{j_{n}\left(p^{a}(x)\right)\right\} \times v(\Delta \hat{r}(b))\right) \mid a+b=p^{*}(x)\right\} \tag{16}
\end{equation*}
$$

where $a, b \in \times^{n} \omega$ and + is componentwise addition. $\xi(x)$ makes sense because $\Delta \hat{r}(b) \geqq 0$ for every $b \in \times{ }^{n} \omega$. Let

$$
\begin{equation*}
F=\left\{(\bar{p}(x), \xi(x)) \mid x \in \delta p \wedge(\exists a)(\forall i<n) p^{a}(x)_{i}=t_{i}(0)\right\} \tag{17}
\end{equation*}
$$

We claim that $F$ is a recursive $R$-frame. If $x, y \in \delta p$ then there exists $a, b, z \in \times{ }^{n} \omega$ such that $z=p^{a}(x)=p^{b}(y)$. Choose such a $z$ so as to be componentwise maximal. First we show that

$$
\begin{align*}
\bar{p}(x) \cap \bar{p}(y) & =\bar{p}(z),  \tag{18}\\
\xi(x) \cap \xi(y) & =\xi(z) \tag{19}
\end{align*}
$$

Re. (18). If $u \in \bar{p}(z)_{i}$ then $u=p^{c}(z)_{i}$ for some $c<p^{*}(z)$. But $p^{*}(x)=$ $a+p^{*}(z)$,

$$
p^{*}(y)=b+p^{*}(z) \text { so } u=p^{c}(z)_{i}=p^{c+a}(x)_{i}=p^{c+b}(y)_{i}
$$

and $c+a<p^{*}(x), c+b<p^{*}(y)$. Consequently $u \in \bar{p}(x)_{i} \cap \bar{p}(y)_{i}$ i.e., $\bar{p}(z) \subseteq \bar{p}(x) \cap \bar{p}(y)$. Conversely if $u \in \bar{p}(x)_{i} \cap \bar{p}(y)_{i}$ then by the maximality of $z$ we have $u=p^{c}(x)_{i}$ for some $a \leqq c<p^{*}(x)$. But then

$$
u=p^{(c-a)+a}(x)_{i}=p^{c-a}(z)_{i}
$$

and $c-a<p^{*}(z)$ because $p^{*}(x)-a=p^{*}(z)$. Thus $u \in \bar{p}(z)_{i}$, i.e., $\bar{p}(x) \cap$ $\bar{p}(y) \subseteq \bar{p}(z)$.

Re. (19). If $u \in \xi(z)$ then $u=j\left(j_{n}\left(p^{c}(z)\right), v\right)$ for some $c \leqq p^{*}(z)$ and $v<\Delta \hat{r}\left(p^{*}(z)-c\right)$. Then

$$
p^{c}(z)=p^{c+a}(x)=p^{c+b}(y)
$$

and $v<\Delta \hat{r}\left(p^{*}(x)-(c+a)\right), v<\Delta \hat{r}\left(p^{*}(y)-(c+b)\right)$ because $p^{*}(z)-c=$ $p^{*}(x)-(c+a)=p^{*}(y)-(c+b)$. Thus $u \in \xi(x) \cap \xi(y)$, i.e., $\xi(z) \subseteq \xi(x) \cap$ $\xi(y)$. Conversely if $u \in \xi(x) \cap \xi(y)$ then $u=j\left(j_{n}\left(p^{c}(x)\right)\right.$, $v$ ) for some $c \leqq p^{*}(x)$ and $v<\Delta \hat{r}\left(p^{*}(x)-c\right)$. But $u \in \xi(y)$ and hence by the maximality of $z$ we have $a \leqq c$. Then $p^{c}(x)=p^{c-a}(z)$ and $v<\Delta \hat{r}\left(p^{*}(z)-\right.$ $(c-a)$ ) because $p^{*}(x)-c=p^{*}(z)-(c-a)$. Thus $u \in \xi(z)$, i.e., $\xi(x) \cap \xi(y) \subseteq \xi(z)$.

By (18) and (19) $F$ is closed under intersection and hence is a frame. Since $r$ is a recursive function, so is $\Delta \hat{r}$, and since $p$ is partial recursive, $F$
and consequently $F^{*}$ are r.e. (recursively enumerable). Given $\alpha \in F^{*}$ there is a unique $x \in \delta p$ which is the componentwise minimal element satisfying $\alpha \subseteq(\bar{p}(x), \xi(x))$. By using (9), (14), and (16) we can effectively analyze the elements of $\alpha$ and find this $x$. Then the partial recursiveness of $\Delta \hat{r}$ and $p$ allows us to compute $(\bar{p}(x), \xi(x))$. Thus $C_{F}$ is partial recursive and $F$ is a recursive frame. If $x \in \delta p$ and $p^{*}(x)=a$ then by (9) and (14) $|\bar{p}(x)|=a$ componentwise, and by computing the cardinality of (16)

$$
|\xi(x)|=\sum_{i \leqq a} \Delta \hat{r}(i) .
$$

Thus by (13) and (17) $F$ is a recursive $R$-frame.
Recall $\tau_{i}=\rho t_{i}-\left\{t_{i}(0)\right\}$ for $i<n$, and let $\tau=\left(\tau_{0}, \cdots, \tau_{n-1}\right)$,

$$
\begin{gather*}
t(i)=\left(t_{0}\left(i_{0}\right), \cdots, t_{n-1}\left(i_{n-1}\right)\right) \text { for } i \in \times{ }^{n} \omega  \tag{20}\\
\xi=\cup\left\{j\left(\left\{j_{n}(t(i))\right\} \times v(\Delta \hat{r}(i))\right) \mid i \in \times{ }_{n} \omega\right\} \tag{21}
\end{gather*}
$$

Now observe by a standard argument that if $\xi$ contained an infinite r.e. subset then so would $j_{n}\left(\tau_{0} \times \cdots \times \tau_{n-1}\right)$ which we know is impossible. Thus $\xi$ is an isolated set. If we evaluate $\xi(x)$ for $x=t(a), a \in \times{ }^{n} \omega$, we obtain

$$
\begin{equation*}
\xi(t(a))=\cup\left\{j\left(\left\{j_{n}(t(i))\right\} \times v(\Delta \hat{r}(i))\right) \mid i \leqq a\right\} \tag{22}
\end{equation*}
$$

since $\rho t \subseteq \delta p$ and $p^{i}(t(a))=t(a-i)$. By computing $\bar{p}(t(a))$ and using (17) we easily get $(\tau, \xi) \in A(F)$. But $\langle\tau\rangle=T$ so by (5), $(T,\langle\xi\rangle) \in R_{\Lambda}$. The uniqueness of $\langle\xi\rangle$ follows because $R(x, y) \wedge R\left(x, y^{\prime}\right) \rightarrow y=y^{\prime}$ is a Horn formula valid in $\omega$ and hence by [7] is valid in $\Lambda$. Now we proceed to consider the case where $r$ is only eventually recursive increasing. Then there is a function $s=\lambda x r(x+m)$ which is recursive increasing for some $m \in \times{ }^{n} \omega$. Let $S \subseteq \times{ }^{n+1} \omega$ be the graph of $s$ and note that the Horn formula

$$
R\left(v_{0}+m_{0}, \cdots, v_{n-1}+m_{n-1}, v_{n}\right) \text { iff } S\left(v_{0}, \cdots, v_{n}\right)
$$

is valid in $\omega$ and hence in $\Lambda$. Then if $T \in \times{ }^{n} \Lambda_{R}^{\infty}$ and $T-m=\left(T_{0}-m_{0}\right.$, $\left.\cdots, T_{n-1}-m_{n-1}\right)$ then $T-m \in \times{ }^{n} \Lambda_{R}^{\infty}$ and we may apply what we have already proved to $S$. Uniqueness follows as above. This completes our proof of (i). Finally if $r$ is almost recursive increasing and $T \in \times{ }^{n} \Lambda_{R}$ let $\sigma=\left\{i<n \mid T_{i}\right.$ is finite $\}$ and define $h$ on $\sigma$ by $h(i)=T_{i}$. If $\sigma=v(n)$ there is nothing to prove because $r$ is a function. Otherwise let $d$ be as in (3) and note that $r \circ h_{n}^{*}$ (cf. (4)) is a $d$-ary eventually recursive increasing function whose graph is

By [7]

$$
S_{h} R=\left\{x \in x^{d+1} \omega \mid h_{n+1}^{*}(x) \in R\right\}
$$

$$
S_{h}\left(R_{\Lambda}\right)=\left(S_{h} R\right)_{\Lambda}
$$

and hence (ii) follows by applying (i) to $S_{h} R$ and that $x \in \times{ }^{d} \Lambda_{R}^{\infty}$ for which $h_{n}^{*}(x)=T$. Uniqueness follows as above. This completes our proof of (ii).
q.e.d.

Let $\Lambda_{Z}$ be the cosimple isols, i.e., those isols which contain at least one set with r.e. complement,

$$
\Lambda_{R Z}=\Lambda_{R} \cap \Lambda_{\mathrm{Z}}, \Lambda_{\mathrm{Z}}^{\infty}=\Lambda_{\mathrm{Z}}-\omega,
$$

and

$$
\Lambda_{R Z}^{\infty}=\Lambda_{R Z}-\omega
$$

Corollary 1. Let $n>0$ and $R \subseteq \times^{n+1} \omega$ the graph of a function $r$.
(i) If $r$ is eventually recursive increasing then for each $x \in \times^{n} \Lambda_{R Z}^{\infty}$ there is exactly one $y \in \Lambda$ such that $(x, y) \in R_{\Lambda}$ and moreover this $y \in \Lambda_{\mathrm{Z}}$.
(ii) If $r$ is almost recursive increasing then for each $x \in \times{ }^{n} \Lambda_{R Z}$ there is exactly one $y \in \Lambda$ such that $(x, y) \in R_{\Lambda}$ and moreover this $y \in \Lambda_{Z}$.

Proof. We show that if $r$ is recursive increasing and $T \in \times{ }^{n} \Lambda_{R Z}^{\infty}$ then there is a $y \in \Lambda_{\mathrm{Z}}$ such that $(T, y) \in R_{A}$. (i) and (ii) then follow by metatheorems just as in the proof of Theorem 1. By a result of [2] we can find retraceable functions $t_{i}$ such that $\rho t_{i}$ is cosimple and $\rho t_{i}-\left\{t_{i}(0)\right\}=$ $\tau_{i} \in T_{i}$ for $i<n$. To complete our proof it will suffice to show that $\xi$ as defined in (21) has a r.e. complement. Let $k_{i}$ for $i<n$ be defined as in (12). Then

$$
\begin{gather*}
j(x, y) \in \omega-\xi \text { iff }(\exists i<n) k_{i}(x) \in \omega-\rho t_{i}  \tag{23}\\
\text { or } y \geqq \Delta \hat{r}\left(p^{*}(x)\right) .
\end{gather*}
$$

Since each $\omega-\rho t_{i}$ is r.e. (23) defines an r.e. condition and hence $\omega-\xi$ is r.e.
q.e.d.

Next we introduce the $n$-ary minimum function. If $x \in \times{ }^{n} \omega$ then min $(x)$ is simply the least number in the set $\left\{x_{0}, \cdots, x_{n-1}\right\}$. A function $f: \times^{n}$ $\omega \rightarrow \omega$ is called recursive regular if there exist unary recursive increasing functions $g_{0}, \cdots, g_{n-1}$ such that

$$
\begin{equation*}
f\left(x_{0}, \cdots, x_{n-1}\right)=\min \left(g_{0}\left(x_{0}\right), \cdots, g_{n-1}\left(x_{n-1}\right)\right) \tag{24}
\end{equation*}
$$

We use the convention $g(x)=\left(g_{0}\left(x_{0}\right), \cdots, g_{n-1}\left(x_{n-1}\right)\right)$ so (24) may be written in the shorter form $f(x)=\min g(x) . f$ is called an eventually recursive regular function if $\lambda x f(x+m)$ is recursive regular for some $m \in \times^{n} \omega$. The essential domain of a recursive regular function as given in (24) is $\left\{i<n \mid \rho g_{i}\right.$ is infinite $\}$, and it is said to be of essentially $n$ variables if its essential domain is $v(n)$. It is easy to see that the notion of essential domain can be unambiguously extended to eventually recursive regular functions. Finally $f$ is called almost recursive regular if $f \circ h_{n}^{*}$ is eventually recursive regular for every $h$ that satisfies (3).

Theorem 2. Let $n>0$ and $R \subseteq \times^{n+1} \omega$ the graph of a function $r$.
(i) If $r$ is eventually recursive regular then for each $x \in \times{ }^{n} \Lambda_{R}^{\infty}$ there is exactly one $y \in \Lambda$ such that $(x, y) \in R_{\Lambda}$ and moreover this $y \in \Lambda_{R}$.
(ii) If $r$ is almost recursive regular then for each $x \in \times{ }^{n} \Lambda_{R}$ there is exactly one $y \in \Lambda$ such that $(x, y) \in R_{\Lambda}$ and moreover this $y \in \Lambda_{R}$.

Proof. We start with a detailed analysis of the $n$-ary min function. First we show that min is recursive increasing. Since the computation is rather nasty we proceed in a roundabout way. Let $b: \times{ }^{n} \omega \rightarrow \omega$ be defined by $b(i)=1$ if all the components of $i \in \times^{n} \omega$ are equal to one another but different from 0 , and $b(i)=0$ in all other cases. Let

$$
\begin{equation*}
r(x)=\sum_{i \leqq x} b(i) \text { for } i \in \times^{n} \omega \tag{25}
\end{equation*}
$$

and observe that

$$
r(x)=\sum_{0<i \leqq \min (x)} 1=\min (x)
$$

Lemma 1 and (25) then give $\Delta \hat{r}(i)=b(i)$ for all $i \in \times{ }^{n} \omega$, i.e., that min is a recursive increasing function. Let $R \subseteq \times^{n+1} \omega$ be the graph of $r$. By Theorem 1 for all $x \in \times{ }^{n} \Lambda_{R}$ there is exactly one $y \in \Lambda$ such that $(x, y) \in$ $R_{\boldsymbol{A}}$. In particular we can apply this result to the $T$ used in the proof of Theorem 1 (we use the same notation as in that proof). We claim that the $y$ such that $(T, y) \in R_{A}$ belongs to $\Lambda_{R}$. It suffices to show that $\xi$ as computed in (21) is regressive. For $i \in \omega$ let

$$
\begin{equation*}
t(i)=\left(t_{0}(i), \cdots, t_{n-1}(i)\right) \tag{26}
\end{equation*}
$$

and observe that $\xi$ is recursively equivalent to

$$
\begin{equation*}
\xi^{\prime}=\cup\left\{j_{n}(t(i)) \mid 0<i \in \omega\right\} . \tag{27}
\end{equation*}
$$

Then

$$
q(x)=j_{n}\left(p_{0} k_{0}(x), \cdots, p_{n-1} k_{n-1}(x)\right)
$$

if $x \in \delta p$ and $x \neq j_{n}(t(1))$ and $q j_{n}(t(1))=j_{n}(t(1))$ is a partial recursive function that retraces $\xi^{\prime}$. This takes care of the case when all components of $T$ are infinite. Now assume that at least one component of $T$ is finite and that $T_{0}=m$ is the smallest such component. Then the Horn formula

$$
R\left(m, m+v_{1}, \cdots, m+v_{n-1}, v_{n}\right) \rightarrow m=v_{n}
$$

is valid in $\omega$ and hence in $\Lambda$ so that the value of $y$ is $m \in \omega \subseteq \Lambda_{R}$. This proves that Theorem 2 holds for the min function. Now let $f$ be recursive regular as given in (24). Let $F$ be the graph of $f, G_{i}$ the graph of $g_{i}$ and $R$ the graph of $r=\mathrm{min}$. By [1] for all $x \in \Lambda_{R}$ there is exactly one $y \in \Lambda$ such that $(x, y) \in G_{i \Lambda}$ and moreover this $y \in \Lambda_{R}$. Then the Horn formula

$$
\begin{aligned}
G_{0}\left(u_{0}, v_{0}\right) \wedge \cdots \wedge G_{n-1}\left(u_{n-1}, v_{n-1}\right) \wedge R\left(v_{0}, \cdots,\right. & \left.v_{n-1}, v_{n}\right) \\
& \rightarrow F\left(u_{0}, \cdots, u_{n-1}, v_{n}\right)
\end{aligned}
$$

is valid in $\omega$ and hence in $\Lambda$. This, the same result for $r$ and the $g_{i}$, and the fact that $f$ is a function guarantee that for all $x \in \times{ }^{n} \Lambda_{R}$ there is a $y \in \Lambda_{R}$ such that $(x, y) \in F_{\Lambda}$. (i) and (ii) follow from this result by using metatheorems just as the corresponding parts of Theorem 1 follow from the result for recursive increasing functions. We do not stop to prove this here.
q.e.d.

Corollary 1 and Theorem 2 can be combined to give
Corollary 2. Let $n>0$ and $R \subseteq \times^{n+1} \omega$ the graph of a function $r$.
(i) If $r$ is eventually recursive regular then for each $x \in \times^{n} \Lambda_{R Z}^{\infty}$ there is exactly one $y \in \Lambda$ such that $(x, y) \in R_{\Lambda}$ and moreover this $y \in \Lambda_{R Z}$.
(ii) If $r$ is almost recursive regular then for each $x \in \times{ }^{n} \Lambda_{R Z}$ there is exactly one $y \in \Lambda$ such that $(x, y) \in R_{\Lambda}$ and moreover this $y \in \Lambda_{R Z}$.

## 2. Converse properties

Theorem 3. Let $n>0$ and $R \subseteq \times^{n+1} \omega$ the graph of a function $r$.
(i) If for each $x \in \times{ }^{n} \Lambda_{R Z}^{\infty}$ there is a $y \in \Lambda$ such that $(x, y) \in R_{\Lambda}$ then $r$ is an eventually recursive increasing function.
(ii) If for each $x \in \times{ }^{n} \Lambda_{R Z}$ there is a $y \in \Lambda$ such that $(x, y) \in R_{A}$ then $r$ is an almost recursive increasing function.

The following machinery is necessary in order to complete a proof of Theorem 3.

Lemma 2. For any $d>0$ there exist retraceable functions $t_{0}, \cdots, t_{d-1}$ such that $\tau_{i}=\rho t_{i}$ is cosimple for each $i<d$, and if $\theta=\tau_{0} \times \cdots \times \tau_{d-1}$ and $p$ is any partial recursive function whose domain is a subset of $\times{ }^{d} \omega$ and which assumes values in $\times{ }^{d} \omega$ such that $\theta \subseteq \delta p$ and $p(\theta) \subseteq \theta$ then there is an $m \in \times{ }^{d} \omega$ such that $p t(n) \leqq t(n)$ for every $n \in \times{ }^{d} \omega$ with $m \leqq n$ (cf. (20) for a definition of $t(n)$, $\leqq$ is used componentwise).

Proof. Our proof consists of a priority argument involving finite injuries. Let $q_{n}(x), n \in \omega, x \in \times^{d} \omega$ be a partial recursive function of $d+1$ variables which with index $n$ enumerates the partial recursive functions of $d$ variables $x$, which assume values in $\times{ }^{d} \omega$. Let $q_{n}^{s}(x)=y$ if $q_{n}(x)=y$ is computed in $s$ or fewer steps; otherwise we say that $q_{n}^{s}(x)$ is undefined. Throughout this proof the variable $i$ will be restricted to $v(d)$ and whenever we assert a statement $S_{i}$ we shall understand it to mean the assertion of $S_{0}$ and $\cdots$ and $S_{d-1}$. For each $n \in \omega$ let $\mu_{i}(n)$ be a movable marker. Our proof will consist of a stage by stage construction of the functions $t_{i}^{s}(n)$.

Stage 0: Let $t_{i}^{0}(0)=1$ and at the end of this stage no markers are attached to numbers. Then go on to stage 1.

Stage $s+1$ : We first state our inductive hypothesis in (28)-(31) below. Assume at the end of stage $s$ that we have defined numbers $t_{i}^{s}(n)$ for $n \leqq s$ such that

$$
\begin{equation*}
t_{i}^{s}(0)=1, k t_{i}^{s}(n+1)=t_{i}^{s}(n) \text { for all } n<s \tag{28}
\end{equation*}
$$

(cf. (11) for a definition of $k$ ) and that $\mu_{i}(n)$ is attached to $t_{i}^{s}\left(m_{i}\right), m \in \times^{d}$ $v(s)$ only if (29) and (30) are true. We also assume (31).

$$
\begin{equation*}
n \leqq m_{i} \tag{29}
\end{equation*}
$$

$$
\begin{gather*}
q_{n}^{s} t^{s}(m)=y \text { is defined and } t_{j}^{s}\left(m_{j}\right)<y_{j}<t_{j}^{s}\left(m_{j}+1\right)  \tag{30}\\
\text { for at least one } j<d, \\
\text { no other markers are attached to numbers. } \tag{31}
\end{gather*}
$$

Construction: If there is an $n \in \omega$ such that the $\mu_{i}(n)$ are not attached to numbers at the end of stage $s$ and there is an $m \in \times^{d} v(s)$ such that

$$
\begin{equation*}
n \leqq m_{i} \tag{32}
\end{equation*}
$$

$$
\begin{align*}
& q_{n}^{s+1}\left(t^{s}(m)\right)=y \text { is defined and } t_{j}^{s}\left(m_{j}+1\right) \leqq y_{j}  \tag{33}\\
& \quad \text { for at least one } j<d, \\
& \text { for no } n^{\prime}<n \text { and } m_{i}^{\prime} \geqq m_{i} \text { is there a } \mu_{i}\left(n^{\prime}\right)  \tag{34}\\
& \text { attached to a } t_{i}^{s}\left(m_{i}^{\prime}\right)
\end{align*}
$$

then go to step B below; otherwise go to step A.
Step A: Let

$$
\begin{gather*}
t_{i}^{s+1}(x)=t_{i}^{s}(x) \text { for } x \leqq s, \text { and } \\
t_{i}^{s+1}(s+1)=j\left(t_{i}^{s+1}(s), 0\right) \tag{35}
\end{gather*}
$$

Then go on to stage $s+1$.
Step B: Find the least $n$ and the lexicographically least $m$ which together satisfy (32)-(34). For each $n^{\prime}>n$ detach the $\mu_{i}\left(n^{\prime}\right)$ from numbers. Attach $\mu_{i}(n)$ to $t_{i}^{S}\left(m_{i}\right)$. Find the least number $z_{i}$ such that

$$
\begin{equation*}
\max \left(y_{i}, t_{i}^{s}(s)\right)<j\left(t_{i}^{s}\left(m_{i}\right), z_{i}\right) \tag{36}
\end{equation*}
$$

Let

$$
\begin{gather*}
t_{i}^{s+1}(x)=t_{i}^{s}(x) \text { for } x \leqq m_{i} \\
t_{i}^{s+1}\left(m_{i}+1\right)=j\left(t_{i}^{s+1}\left(m_{i}\right), z_{i}\right), \text { and }  \tag{37}\\
t_{i}^{s+1}(x+1)=j\left(t_{i}^{s+1}(x), 0\right) \text { for } m_{i}<x \leqq s . \tag{38}
\end{gather*}
$$

Then go on to stage $s+1$.
This completes the construction. Our first claim is that each marker
moves finitely often. Assume that for some stage $u$ each $\mu_{i}\left(n^{\prime}\right)$ is never moved after stage $u$ for each $n^{\prime}<n$ (after stage $u$ the $\mu_{i}\left(n^{\prime}\right)$ may or may not be attached to any numbers). If at any stage $s>u$ the $\mu_{i}(n)$ are attached to the $t_{i}^{s}\left(m_{i}\right)$ then by (34) $\mu_{i}(n)$ will never move again. This proves our claim. Our second claim is that $\lim _{s} t_{i}^{s}(n)$ exists for every $n$. If there is a stage $u$ such that markers are not attached to numbers at or after stage $u$ then $t_{i}^{r}(n)=t_{i}^{s}(n)$ for every $n \leqq r, n \leqq s, u \leqq r, u \leqq s$ by (35). If there is no such $u$ then for infinitely many $n$ the $\mu_{i}(n)$ reach final positions attached to numbers and if $n$ is such a number and $\mu_{i}(n)$ is never moved at or after stage $u$ then $t_{i}^{r}(x)=t_{i}^{s}(x)$ for every $x \leqq n, n \leqq r$, $n \leqq s, u \leqq r, u \leqq s$ by (32). This completes the argument. Now define

$$
\begin{equation*}
t_{i}(n)=\lim _{s} t_{i}^{s}(n), \tau_{i}=\rho t_{i}, \theta=\tau_{0} \times \cdots \times \tau_{d-1} \tag{39}
\end{equation*}
$$

We must show that
if $p$ is partial recursive and $\theta \subseteq \delta p, p(\theta) \subseteq \theta$ then there is an $m \in \times{ }^{d} \omega$ such that $p t(n) \leqq t(n)$ for every $n \in \times{ }^{d} \omega$ with $m \leqq n$.

$$
\begin{align*}
& t_{i} \text { as a retraceable function, }  \tag{40}\\
& \tau_{i} \text { has a r.e. complement, } \tag{41}
\end{align*}
$$ $\tau_{i}$ is immune.

Re. (40). We can show by using our inductive hypothesis and (35), (37) and (38) that there are functions $z_{i}: \omega \rightarrow \omega$ such that

$$
\begin{equation*}
t_{i}(0)=1, t_{i}(n+1)=j\left(t_{i}(n), z_{i}(n)\right) \tag{44}
\end{equation*}
$$

By the basic properties of the $j$ function $t_{i}$ is a strictly increasing function which is retraced by $p(x)=k(x), x \neq 1, p(1)=1$.

Re. (41). $u \in \omega-\tau_{i}$ if and only if

$$
\begin{equation*}
(\exists s>u) u \notin \rho t_{i}^{s} \tag{45}
\end{equation*}
$$

by (37). But (45) is clearly a r.e. predicate.
Re. (42). If $p$ is a partial recursive function mapping a subset of $\times{ }^{d} \omega$ into $\times{ }^{d} \omega$ then $p=q_{n}$ for some $n$. Assume that $\theta \subseteq \delta p$ and $p(\theta) \subseteq \theta$. Say that a set $R \subseteq \times{ }^{d} \omega$ is totally unbounded if for every $x \in \times{ }^{d} \omega$ there is a $y \in R$ with $x \leqq y$. We will show that $R=\left\{x \in \times{ }^{d} \omega \mid\right.$ not $\left.p t(x) \leqq t(x)\right\}$ is not totally unbounded. Suppose that it is. Choose $u \in \omega$ such that $\mu_{i}\left(n^{\prime}\right), n^{\prime} \leqq n$ do not move at or after stage $u$. Say that $\mu_{i}\left(n^{\prime}\right)$ is attached to numbers by stage $s$ if $\mu_{i}\left(n^{\prime}\right)$ was attached to numbers at some stage prior to $s$ and subsequently was not moved. The $\mu_{i}(n)$ are not attached to numbers by any stage $s \geqq u$ for otherwise (30) would imply that $p(\theta)$ $\notin \theta$. Choose $m \in \times{ }^{d} \omega$ such that if $n^{\prime}<n$ and $\mu_{i}\left(n^{\prime}\right)$ are attached to
$t_{i}^{s}\left(m_{i}^{\prime}\right)$ by any stage $s \geqq u$ then $m^{\prime} \leqq m$. Since $R$ is totally unbounded there is an $m^{\prime} \in R$ such that $m \leqq m^{\prime}$ and $n \leqq m_{i}^{\prime}$. Choose the lexicographically least such $m^{\prime}$. Finally there is a $u^{\prime} \geqq u$ such that $q_{n}^{s} t^{s}\left(m^{\prime}\right)=y$ is defined and $t_{i}^{s}(x)=t_{i}(x)$ for $s \geqq u^{\prime}, x \leqq m_{i}^{\prime}+1$. Now the $\mu_{i}(n)$ are not attached to numbers by stage $u^{\prime}$ and not $q_{n}^{s} t^{s}\left(m^{\prime}\right) \leqq t^{s}\left(m^{\prime}\right)$ for $s \geqq u^{\prime}$ by our choice of $m^{\prime}$ and $u^{\prime}$. But $p(\theta) \subseteq \theta$ so that $t_{j}^{s}\left(m_{j}^{\prime}+1\right) \leqq y_{j}$ for $s \geqq u^{\prime}$ and some $j<d$. Then the $\mu_{i}(n)$ are attached to numbers at stage $u^{\prime}+1$ by (32)-(34) which contradicts our choice of $u$. So $R$ is not totally unbounded which proves (42).

Re. (43). Suppose some $\tau_{j}$ were not immune. Take $j=0$ for notational convenience. Then by [4] $t_{0}$ is a strictly increasing recursive function. Define a partial recursive function $p$ by $p\left(t_{0}(n), y\right)=\left(t_{0}(n+1), y\right)$ for $y \in \times^{d-1} \omega$. But then $p$ violates (42) so $\tau_{0}$ must be immune. q.e.d.

We need one more bit of notation. Let $F$ be a frame and let $\alpha=$ $\left(\alpha_{0}, \cdots, \alpha_{n-1}\right) \in F^{*}$ where the $\alpha_{i}$ need not be the individual components of $\alpha$ (we allow the $\alpha_{i}$ to be blocks). We define

$$
C_{F}^{\sqrt{ }}\left(a_{0}, \cdots, a_{i}^{\vee}, \cdots, a_{n-1}\right)
$$

(where $\sqrt{ }$ occurs as a superscript to exactly one $\alpha_{i}$ ) to be that value $\beta_{i}$ such that for some $\beta_{j}, j \neq i$ we have $C_{F}(\alpha)=\left(\beta_{0}, \cdots, \beta_{n-1}\right)$ and $\alpha_{j} \subseteq \beta_{j}$ for $j<n$. We say that $\left(\alpha_{0}, \cdots, \alpha_{n-1}\right)$ is unenlarged by $F$ at $\alpha_{i}$ if and only if

$$
C_{F}^{\sqrt{2}}\left(a_{0}, \cdots, a_{i}^{\vee}, \cdots, a_{n-1}\right)=a_{i}
$$

Since the $\alpha_{i}$ generally are blocks this notation allows us to make statements about $\alpha$ without spelling out its individual components.

Proof of Theorem 3: (i) Assume that $R \subseteq \times^{n+1} \omega$ is the graph of a function $r$ and that for all $x \in \times{ }^{n} \Lambda_{R Z}^{\infty}$ there is a $y \in \Lambda$ such that $(x, y) \in R_{\Lambda}$. Let $t_{0}, \cdots, t_{n-1}$ be the functions that were constructed in Lemma 2, $\rho t_{i}-\left\{t_{i}(0)\right\}=\tau_{i} \in T_{i}$, and $T=\left(T_{0}, \cdots, T_{n-1}\right)$. In particular there must be a $y \in \Lambda$ such that $(T, y) \in R_{A}$. Let $\tau=\left(\tau_{0}, \cdots, \tau_{n-1}\right)$ and choose a $\eta \subseteq \omega$ and recursive $R$-frame $F$ such that $(\tau, \eta) \in A(F)$. We also let $p_{i}$ be a retracing function of $t_{i}$ and adhere to the componentwise conventions used for the proof of Theorem 1, in particular to (9), (14), (15), and (20). Let

$$
\begin{equation*}
\delta=\left\{x \in \times^{n} \omega \mid x \in \delta p \text { and }(\bar{p}(x), \emptyset) \in F^{*}\right\} \tag{46}
\end{equation*}
$$

$\delta$ is r.e. and hence we may define a partial recursive function $q$ whose domain is $\delta$ and which assumes values in $\times^{n} \omega$ by

$$
\begin{equation*}
q(x)=\max C_{F}^{\downarrow}\left(\bar{p}(x)^{\vee}, \emptyset\right) \tag{47}
\end{equation*}
$$

where the max is taken in the componentwise sense. Also let

$$
\begin{equation*}
\theta=\rho t_{0} \times \cdots \times \rho t_{n-1} \tag{48}
\end{equation*}
$$

Then $\theta \subseteq \delta q$ and $q(\theta) \subseteq \theta$ because $(\tau, \eta) \in A(F)$. Hence by Lemma 2 there is an $m \in \times{ }^{n} \omega$ such that $q(t(i)) \leqq t(i)$ for all $i \geqq m$. This implies that

$$
C_{F}^{\sqrt{\prime}}\left((\bar{p} t(i))^{\vee}, \emptyset\right)=\bar{p} t(i)
$$

i.e., $(\bar{p} t(i), \emptyset)$ is unenlarged by $F$ at $\bar{p} t(i)$ for all $i \geqq m$. Now let

$$
\begin{equation*}
A=\left\{a \mid(a, \emptyset) \in F^{*} \text { and } C_{F}^{\sqrt{\prime}}\left(a^{\sqrt{ }}, \emptyset\right)=a\right\} \tag{49}
\end{equation*}
$$

and define a function $\varphi$ with domain $A$ and range $\subseteq Q$ by

$$
\begin{equation*}
\varphi(a)=C_{F}^{\sqrt{ }}\left(a, \emptyset^{\vee}\right) \tag{50}
\end{equation*}
$$

Notice that $\bar{p} t(i) \in A$ for $i \geqq m$, that $A$ is a r.e. family of finite sets and that $\varphi$ is a partial recursive function. For the moment let $\alpha, \beta \in A$. We claim that

$$
\begin{gather*}
\alpha \cap \beta \in A  \tag{51}\\
|\alpha|=|\beta| \text { implies }|\varphi(\alpha)|=|\varphi(\beta)|,  \tag{52}\\
\varphi(\alpha \cap \beta)=\varphi(\alpha) \cap \varphi(\beta) \tag{53}
\end{gather*}
$$

$\operatorname{Re} .(51)(\alpha, \emptyset) \in F^{*},(\beta, \emptyset) \in F^{*}$ and hence $(\alpha \cap \beta, \emptyset) \in F^{*}$.

$$
a \cap \beta \subseteq C_{F}^{\sqrt{\prime}}\left((a \cap \beta)^{\vee}, \emptyset\right) \subseteq C_{F}^{\sqrt{ }}\left(a^{\sqrt{ }}, \emptyset\right) \cap C_{F}^{\sqrt{ }}\left(\beta^{\vee}, \emptyset\right)=a \cap \beta
$$

$\operatorname{Re} .(52) .(\alpha, \varphi(\alpha)) \in F,(\beta, \varphi(\beta)) \in F$ and since $|\alpha|=|\beta|$ and $R$ is the graph of a function we have $|\varphi(\alpha)|=|\varphi(\beta)|$.

Re. (53).

$$
\varphi(a \cap \beta)=C_{F}^{\sqrt{ }}\left(a \cap \beta, \emptyset^{\vee}\right) \subseteq C_{F}^{\sqrt{ }}\left(a, \emptyset^{\sqrt{ }}\right) \cap C_{F}^{\sqrt{ }}\left(\beta, \emptyset^{\vee}\right)=\varphi(a) \cap \varphi(\beta)
$$

so $\varphi(\alpha \cap \beta) \subseteq \varphi(\alpha) \cap \varphi(\beta)$. Now $(\alpha, \varphi(\alpha)) \in F$ and $(\beta, \varphi(\beta)) \in F$ so $(\alpha \cap \beta, \varphi(\alpha) \cap \varphi(\beta)) \in F$. But $R$ is the graph of a function and consequently $\varphi(\alpha \cap \beta)=\varphi(\alpha) \cap \varphi(\beta)$.

Consider any $a, b \in \times{ }^{n} \omega$ with $a \geqq m$ and $a_{i}+1=b_{i}$ for $i<n$. Let $\alpha=\bar{p} t(a), \beta=\bar{p} t(b)$ and note that $\alpha \subseteq \beta,|\alpha|=a,|\beta|=b$, and $\alpha, \beta \in A$. Define $G$ and $\psi$ on $G$ by

$$
\begin{equation*}
G=\{\gamma-\alpha \mid \alpha \subseteq \gamma \subseteq \beta\}, \psi(\gamma)=\varphi(\alpha \cup \gamma) \tag{54}
\end{equation*}
$$

It follows immediately from (51)-(54) that

$$
\begin{align*}
& G \text { is closed under intersection, } \psi\left(\gamma \cap \gamma^{\prime}\right)=\psi(\gamma) \cap \psi\left(\gamma^{\prime}\right) \text {, and }  \tag{55}\\
& \text { if }|\gamma|=\left|\gamma^{\prime}\right| \text { then }|\psi(\gamma)|=\left|\psi\left(\gamma^{\prime}\right)\right| \text {. }
\end{align*}
$$

Thus $G$ is a frame and $\psi$ is a frame map which induces a numerical function. Next define the essential $\psi^{*}$ on $G$ by

$$
\begin{equation*}
\psi^{*}(\gamma)=\psi(\gamma)-\cup\left\{\psi\left(\gamma^{\prime}\right) \mid \gamma^{\prime} \in G \text { and } \gamma^{\prime} \subseteq \gamma, \gamma^{\prime} \neq \gamma\right\} \tag{56}
\end{equation*}
$$

By well-known methods (cf. 5.8 of [7]) (55) implies that

$$
\begin{align*}
& \text { if } \gamma \neq \gamma^{\prime} \text { then } \psi^{*}(\gamma) \cap \psi^{*}\left(\gamma^{\prime}\right)=\emptyset  \tag{57}\\
& \text { if }|\gamma|=\left|\gamma^{\prime}\right| \text { then }\left|\psi^{*}(\gamma)\right|=\left|\psi^{*}\left(\gamma^{\prime}\right)\right|  \tag{58}\\
& \psi(\gamma)=\cup\left\{\psi^{*}\left(\gamma^{\prime}\right) \mid \gamma^{\prime} \in G \text { and } \gamma^{\prime} \subseteq \gamma\right\} . \tag{59}
\end{align*}
$$

Now define $c: \times{ }^{n} \omega \rightarrow \omega$ by $c(x)=\left|\psi^{*}(\gamma)\right|$ if $x=|\gamma|$ for some $\gamma \in G$ and $c(x)=0$ otherwise. $c(x)$ is well defined by (58). Let

$$
f(x)=\sum_{i \leq x} c(i)\binom{x}{i}
$$

for $x \in \times{ }^{n} \omega$ and summation on a variable $i \in \times^{n} \omega$. Since $(\alpha \cup \gamma, \psi(\gamma)) \in F$ for $\gamma \in G$, (57) and (59) give $r(a+x)=f(x)$ for $x \in \times^{n}\{0,1\}$. If $\sigma \subseteq v(n)$ let $\Delta_{i \in \sigma}$ be the composition of the $\Delta_{i}$ for $i \in \sigma$. Then by well-known properties of combinatorial functions (cf. [7])

$$
\begin{align*}
& \Delta_{i \in \sigma} r(a)=\Delta_{i \in \sigma} f(0)=c(x) \text { where } x \in \times^{n} \omega  \tag{60}\\
& \quad \text { and } x_{i}=1 \text { for } i \in \sigma, x_{i}=0 \text { for } i \notin \sigma .
\end{align*}
$$

Thus $\Delta_{i \in \sigma} r(m+x) \geqq 0$ for every $x \in \times^{n} \omega$. Let $s=\lambda x r(x+m)$. We show that $s$ is recursive increasing. Consider any $x \in \times{ }^{n} \omega$. Let $\sigma=\left\{i \mid x_{i} \neq 0\right\}$ and $y \in \times{ }^{n} \omega, y_{i}=x_{i}$ for $i \in \sigma$ and $y_{i}=1$ for $i \notin \sigma$. Thus

$$
\Delta_{i \notin \sigma} \hat{s}(x)=\hat{s}(y)
$$

by (1). Let $z \in \times{ }^{n} \omega, y_{i}=z_{i}+1$ for $i<n$. Then

$$
\Delta \hat{s}(x)=\Delta_{i \epsilon \sigma} \hat{s}(y)=\Delta_{i \epsilon \sigma} s(z)=\Delta_{i \in \sigma} r(m+z) \geqq 0
$$

and $s$ is increasing. Let $B=\left\{(a, b) \mid a \in \times{ }^{n} \omega, b \in \omega\right.$ and $(\exists \alpha, \beta)(a=$ $|\alpha|, b=|\beta|$ and $(\alpha, \beta) \in F)\}$. Then $B$ is a r.e. set which makes $s$ a recursive function. Thus $r$ is eventually recursive increasing which proves (i). In order to prove (ii) let $h, \sigma, d$ and $j$ satisfy (3). Then

$$
S_{h} R=\left\{x \in \times^{d+1} \omega \mid h_{n+1}^{*}(x) \in R\right\}
$$

is the graph of a $d$-ary function $s=r \circ h_{n}^{*}$ and since $S_{h}\left(R_{A}\right)=\left(S_{h} R\right)_{A}$ we easily see that $S_{h} R$ satisfies the hypothesis of (i). Then $s$ is eventually recursive increasing by (i) and $r$ is almost recursive increasing. q.e.d.

There is an easy consequence of this material which should be stated. First we need some definitions. A set $S$ of regressive isols is strongly recursively independent if for any $n>0$, any distinct elements $x_{0}, \cdots$, $x_{n-1} \in S$, and for any $R \subseteq \times^{n+1} \omega$ the graph of a function $r$, if there is a $y \in \Lambda$ such that $\left(x_{0}, \cdots, x_{n-1}, y\right) \in R_{A}$ then $r$ is eventually recursive increasing. A set $S$ of cosimple isols is $r . e$. if it can be arranged in a sequence $x_{0}, x_{1}, \cdots$ such that for some recursive functions $f$, for each $n$,
$f(n)$ is the r.e. index of an r.e. set whose complement is in $x_{n}$. We state without proof the following

Corollary 3. There exists an infinite r.e. set $S \subseteq \Lambda_{R Z}$ which is strongly recursively independent

Theorem 4. Let $n>0$ and $R \subseteq \times{ }^{n+1} \omega$ the graph of a function $r$.
(i) If for each $x \in \times{ }^{n} \Lambda_{R Z}^{\infty}$ there is a $y \in \Lambda_{R}$ such that $(x, y) \in R_{A}$ then $r$, is an eventually recursive regular function.
(ii) If for each $x \in \times{ }^{n} \Lambda_{R Z}$ there is a $y \in \Lambda_{R}$ such that $(x, y) \in R_{\Lambda}$ then $r$ is an almost recursive regular function.

Several notions and lemmas are necessary in order to complete a proof of Theorem 4. In [3] a Turing degree $D(x)$ is associated with every $x \in \Lambda_{R}$. It is the (unique) degree $D(\xi)$ of any retraceable set $\xi \in x$. In case $x \in \Lambda_{R Z}$ we know from [4] that $x$ contains a retraceable set with r.e. complement. Thus in this case $D(x)$ is r.e. degree. For us the most important property of this association is that (cf. [3])

$$
\begin{equation*}
\text { if } x, y \in \Lambda_{R}^{\infty} \text { and } x \leqq y \text { then } D(x)=D(y) \tag{61}
\end{equation*}
$$

Let $g_{0}, \cdots, g_{n-1}$ be a sequence of unary functions. We say that $g=$ ( $g_{0}, \cdots, g_{n-1}$ ) is jointly stricly increasing if each $g_{i}$ is increasing, has an infinite range, and $g(x) \neq g(x+1)$ for each $x \in \omega$. We state without proof the obvious

Lemma 3. Let $t_{0}, \cdots, t_{n-1}$ be retraceable functions and let $g_{0}, \cdots$, $g_{n-1}$ be jointly strictly increasing recursive functions. Then $\xi=\left\{j_{n}(\operatorname{tg}(i)) \mid\right.$ $i \in \omega\}$ is retraceable and the degree of $\xi$ is the least upper bound of $\left\{D\left(\rho t_{i}\right) \mid i<n\right\}$.

Lemma 4. Let $n>0$ and $R \subseteq \times{ }^{n+1} \omega$ the graph of a function $r$. If $r$ is recursive increasing, for all $x \in \times{ }^{n} \Lambda_{R Z}^{\infty}$ there is a $y \in \Lambda_{R}$ such that $(x, y) \in R_{A}$, and $B=\left\{i \in \times{ }^{n} \omega \mid \Delta \hat{r}(i)>0\right\}$ is totally unbounded then (i) there is a finite set $B_{0} \subseteq B$ and jointly strictly increasing recursive functions $g_{0}$, $\cdots, g_{n-1}$ such that $B-B_{0}=\{g(i) \mid i \in \omega\}$, and (ii) $r$ is an eventually recursive regular function of essentially $n$ variables.

Proof. Let $T \in \times{ }^{n} \Lambda_{R Z}^{\infty}$ and $t_{0}, \cdots, t_{n-1}$ retraceable functions with $\rho t_{i}-\left\{t_{i}(0)\right\}=\tau_{i} \in T_{i}$. Since $r$ is recursive increasing we know from Theorem 1 that there is a $y \in \Lambda$ such that $(T, y) \in R_{\Lambda}$ and moreover that $\xi \in y$ where $\xi$ is given by (21). We also know that $\xi$ is regressive because $y \in \Lambda_{R}$. Now consider the set

$$
\begin{equation*}
\xi_{1}=\left\{j\left(j_{n}(t(i)), 0\right) \mid i \in B\right\} . \tag{62}
\end{equation*}
$$

We see that $\xi_{1} \subseteq \xi$, $\xi_{1}$ is infinite, and $\xi_{1}$ is recursively separable from $\xi-\xi_{1}$ by the recursive set $\{x \mid l(x)=0\}$. Recall that $l$ is the second inverse
of $j$. Hence $\left\langle\xi_{1}\right\rangle \leqq\langle\xi\rangle$ and since $\Lambda_{R}$ is closed under predecessors, $\xi_{1}$ is an infinite regressive set, regressed say by a partial recursive function $q$. With $q$ we can associate a partial recursive function $q^{\prime}$ mapping a subset of $\times{ }^{n} \omega$ into $\times{ }^{n} \omega$ by

$$
\begin{equation*}
q^{\prime}(x)=y \operatorname{iff} q\left(j\left(j_{n}(x), 0\right)\right)=j\left(j_{n}(y), 0\right) \tag{63}
\end{equation*}
$$

Let $p_{i}$ retrace $t_{i}$ and adhere to the componentwise conventions given in (14). Since B is a recursive set we can extend $q^{\prime}$ to a partial recursive function $q_{1}$ by

$$
\begin{array}{ll}
q_{1}(x)=q^{\prime}(x) & \text { if } \mathrm{x} \in \delta p \cap \delta q^{\prime} \text { and } p^{*}(x) \in B \\
q_{1}(x)=x & \text { if } x \in \delta p \text { and } p^{*}(x) \notin B . \tag{64}
\end{array}
$$

Let $\theta$ be as in (48). We readily see that $q_{1}$ agrees with $q^{\prime}$ on $\{t(i) \mid i \in B\}$, $\theta \subseteq \delta q_{1}$ and $q_{1}(\theta) \subseteq \theta$. We are now in a position to use Lemma 2 for the $t_{i}$ constructed in that lemma and conclude that there is an $m \in \times{ }^{n} \omega$ such that $q_{1}(t(i)) \leqq t(i)$ for all $i \geqq m$. In particular this implies that $q^{\prime}(t(i)) \leqq t(i)$ for all $i \in B_{1}=\{i \in B \mid i \geqq m\}$. But then there exist jointly strictly increasing functions $g_{0}, \cdots, g_{n-1}$ such that $B_{1}=\{g(i) \mid i \in \omega\}$ (it is best to see this by ones self). Since $B_{1}$ is recursive so are the $g_{i}$. Let $B_{0}=B-B_{1}$. We claim that $B_{0}$ is a finite set. Let

$$
\begin{equation*}
\xi_{1}^{\prime}=\left\{j\left(j_{n}(t(i)), 0\right) \mid i \in B_{1}\right\} . \tag{65}
\end{equation*}
$$

Now $\xi_{1}^{\prime} \subseteq \xi_{1}, \xi_{1}^{\prime}$ is infinite, and $\xi_{1}^{\prime}$ is readily seen to be recursively separable from $\xi_{1}-\xi_{1}^{\prime}$. Hence $\left\langle\xi_{1}^{\prime}\right\rangle \leqq\left\langle\xi_{1}\right\rangle$, so $\xi_{1}^{\prime}$ is regressive, and by (61) has the same degree as $\xi_{1}$. By using Lemma 3 and the form of $B_{1}$ above, we compute the degree of $\xi_{1}^{\prime}$ (and hence of $\xi_{1}$ ) as the least upper bound of $\left\{D\left(\tau_{i}\right) \mid i<n\right\}$. Now assume that $B_{0}$ is infinite. Since $B_{0}$ is not totally unbounded, by a simple numerical argument (used for example in [7]) there must be a non-empty $\sigma \subsetneq v(n),|v(n)-\sigma|=d$ and $h: \sigma \rightarrow \omega$ such that $S_{h} B_{0}$ is a totally unbounded subset of $\times{ }^{d} \omega$. For notational ease assume that $h$ specifies the last $n-d$ arguments of $B_{0}$. Then we can find an $a \in \times{ }^{n-d} \omega$ such that

$$
\begin{equation*}
B_{0}^{\prime}=\left\{i \in \times^{d} \omega \mid(i, a) \in B_{0}\right\} \tag{66}
\end{equation*}
$$

is totally unbounded. Define

$$
\begin{equation*}
\xi_{0}^{\prime}=\left\{j\left(j_{n}(t(i, a)), 0\right) \mid i \in B_{0}^{\prime}\right\} . \tag{67}
\end{equation*}
$$

Now $\xi_{0}^{\prime} \subseteq \xi_{1}, \xi_{0}^{\prime}$ is infinite, and we readily see that $\xi_{0}^{\prime}$ is recursively separable from $\xi_{1}-\xi_{0}^{\prime}$. Hence $\xi_{0}^{\prime}$ is regressive and has the same degree as $\xi_{1}$. Now apply the same line of reasoning that was used to compute the degree of $\xi_{1}$ to $\xi_{0}^{\prime}$. Since the situations are essentially the same we can compute the degree of $\xi_{0}^{\prime}$ (and hence of $\xi_{1}$ ) as the least upper bound of
$\left\{D\left(\tau_{i}\right) \mid i<d\right\}$. Also by [4] we know that for each non-recursive r.e. degree there is a cosimple retraceable set of that degree. Choose cosimple retraceable $\tau_{i}$ such that $\left\{D\left(\tau_{i}\right) \mid i<d\right\}$ and $\left\{D\left(\tau_{i}\right) \mid i<n\right\}$ have distinct least upper bounds and evaluate $\xi_{1}$ for this choice of $\tau_{i}$. Then we obtain two contradictory values for the degree of $\xi_{1}$ which proves that $B_{0}$ must be finite. This completes our proof of (i). For (ii) we may assume without loss of generality that the $m \in \times{ }^{n} \omega$ and the jointly strictly increasing functions $g_{0}, \cdots, g_{n-1}$ of (i) have been chosen so that

$$
\begin{equation*}
B_{0} \subseteq\left\{i \in \times{ }^{n} \omega \mid i \leqq m\right\}, B_{1} \subseteq\left\{i \in \times{ }^{n} \omega \mid m \leqq i, m \neq i\right\} \tag{68}
\end{equation*}
$$

Next we define a number $c \in \omega$ and for each $d<n$ unary functions $r_{d}$ by

$$
\begin{array}{r}
c=\sum_{i \leqq m} \Delta \hat{r}(i), \text { and for } x \in \omega,  \tag{69}\\
r_{d}(x)=c+\sum_{g_{d}(i) \leqq x+m_{d}} \Delta \hat{r}(g(i)) .
\end{array}
$$

Then if $x \in \times^{n} \omega$ we use Lemma 1 , (68) and (69) to get

$$
r(x+m)=c+\sum_{g(i) \leq x+m} \Delta \hat{r}(g(i))=\min \left(r_{0}\left(x_{0}\right), \cdots, r_{n-1}\left(x_{n-1}\right)\right)
$$

Since $g_{d}$ is recursive so is $r_{d}$ and since $g_{d}$ has an infinite range so does $r_{d}$. Clearly $r_{d}$ is an increasing function which implies that $s=\lambda x r(x+m)$ is recursive regular, i.e., $r$ is an eventually recursive regular function. q.e.d.

The purpose of Lemma 4 was as much to exposit the method of degrees as it was to obtain a specific result. In the following proof certain degree computations will be omitted when it is obvious from the proof of Lemma 4 how to obtain them.

Proof of Theorem 4. We start with the case where $r$ is a recursive increasing function. Let $B=\left\{i \in \times{ }^{n} \omega \mid \Delta \hat{r}(i)>0\right\}$. If $B$ is totally unbounded then $r$ is eventually recursive regular by Lemma 4 so there is nothing to do, and if $B$ is finite the result is trivial. From now on assume that $B$ is infinite but not totally unbounded. Then by induction we can show that there is a number $m \in \omega$ and $B_{i}, B_{i}^{\prime}, h_{i}, \sigma_{i}, d_{i}$ for $i<m$ such that $\left\{B_{i} \mid i<m\right\}$ is a partition ${ }^{1}$ of $B$ into disjoint subsets, $h_{i}, \sigma_{i}, d_{i}$ satisfy (3), $B_{i}^{\prime} \subseteq \times^{d_{i}} \omega$ is totally unbounded, and $B_{i}=\left\{\left(h_{i}\right)_{n}^{*}(x) \mid x \in B_{i}^{\prime}\right\}$. Let $t_{i}$, $\tau_{i}, T_{i}$ and $\xi$ be as in the proof of Lemma 4 . We shall use most of the notation of Lemma 4 except for the new name

$$
\begin{equation*}
\bar{\xi}=\left\{j\left(j_{n}(t(i)), 0\right) \mid i \in B\right\} . \tag{70}
\end{equation*}
$$

Then just as before $\bar{\xi}$ is an infinite regressive subset of $\xi$. For each $x<m$ let

$$
\begin{equation*}
\xi_{x}=\left\{j\left(j_{n}(t(i)), 0\right) \mid i \in B_{x}\right\} \tag{71}
\end{equation*}
$$

${ }^{1}$ Except for an unimportant finite set.

Using methods of Lemma 4 we can show that $\xi_{x}$ is an infinite subset of $\bar{\xi}$ and that $\xi_{x}, \xi-\xi_{x}$ are recursively separable. Thus $\xi_{x}$ is regressive and has the same degree as $\bar{\xi}$. Reproduce enough of the proof of Lemma 4 to compute the degree of $\xi_{x}$ as the least upper bound of $\left\{D\left(\tau_{i}\right) \mid i \in v(n)-\sigma_{x}\right\}$ and conclude that the $\sigma_{x}$ for $x<m$ are the same. Assume now for notational ease that there is a number $d$ such that $h_{x}$ specifies the last $n-d$ components of $B_{x}$. We can then find $a_{x} \in \times^{n-d} \omega$ such that for each $x<m$

$$
\begin{gather*}
B_{x}=\left\{\left(i, a_{x}\right) \mid i \in B_{x}^{\prime}\right\} \\
\xi_{x}=\left\{j\left(j_{n}\left(t\left(i, a_{x}\right)\right), 0\right) \mid i \in B_{x}^{\prime}\right\} . \tag{72}
\end{gather*}
$$

Now define

$$
\begin{array}{r}
c: \times^{d} \omega \rightarrow \omega \text { by } c(i)=\sum_{x<m} \Delta \hat{r}\left(i, a_{x}\right), \\
s(x)=\sum_{i \leqq x} c(i) \text { for } x \in \times^{d} \omega, \text { and }  \tag{73}\\
\eta=\cup\left\{j\left(\left\{j_{d}(t(i))\right\} \times v(c(i))\right) \mid i \in \times^{d} \omega\right\},
\end{array}
$$

where

$$
t(i)=\left(t_{0}\left(i_{0}\right), \cdots, t_{d-1}\left(i_{d-1}\right)\right) \text { for } i \in \times^{d} \omega
$$

Now $B$ is recursive, hence the $B_{x}$ are recursive, hence the $B_{x}^{\prime}$ are recursive, hence $c$ is recursive, hence $s$ is recursive, and $s$ is also increasing since $\Delta \hat{s}(i)=c(i) \geqq 0$ for $i \in \times{ }^{d} \omega$. Let $S$ be the graph of $s$. Then as in the proof of Theorem 1 we know $(\tau, \eta) \in A(G)$ for some recursive $S$-frame $G$. Now $C=\left\{i \in \times{ }^{d} \omega \mid \Delta \hat{s}(i)>0\right\}=\left\{i \in \times{ }^{d} \omega \mid(\exists x<m) i \in B_{x}^{\prime}\right\}$ is clearly totally unbounded so we may apply Lemma 4 to $s$ once we know that

$$
\left(\forall x \in \times^{d} \Lambda_{R Z}^{\infty}\right)\left(\exists y \in \Lambda_{R}\right)(x, y) \in S_{A} .
$$

But $c$ is a recursive function and consequently $\xi$ and $\eta$ are recursively equivalent (again it is best to see this by ones self). Hence $s$ is an eventually recursive regular function of essentially $d$ variables. Choose $a \in \times^{n-d} \omega$ so as to satisfy $a \geqq a_{x}$ for each $x<m$. Then $r(x, y+a)=s(x)$ for $x \in \times{ }^{d} \omega, y \in \times{ }^{n-d} \omega$ which proves that $r$ is an eventually recursive regular function whose essential domain is $v(d)$. To obtain (i) of Theorem 4 we note that if $r$ meets the hypothesis of $(i)$ then $s=\lambda x r(x+m)$ for some $m \in \times{ }^{n} \omega$ also meets these hypotheses and moreover is a recursive increasing function. Apply what we have just proved so as to conclude that $s$ is eventually recursive regular and hence so is $r$. (ii) is proved in the same way.
q.e.d.

We summarize our results below. For each function $r: \times^{n} \omega \rightarrow \omega$ we let the Nerode extension $r_{\Lambda}$ be defined by $r_{\Lambda}(x)=y$ iff $x \in \times{ }^{n} \Lambda, y \in \Lambda$ and $(x, y) \in R_{A}$ where $R$ is the graph of $r$. Thus $r_{A}$ may or may not be
defined on all of $\times{ }^{n} \Lambda$. By Theorems 1 and $3 r_{A}$ maps $\times{ }^{n} \Lambda_{R}$ into $\Lambda$ iff $r_{A}$ maps $\times{ }^{n} \Lambda_{R Z}$ into $\Lambda_{Z}$ iff $r$ is almost recursive increasing, and by Theorems 2 and $4 r_{A}$ maps $\times{ }^{n} \Lambda_{R}$ into $\Lambda_{R}$ iff $r_{A}$ maps $\times{ }^{n} \Lambda_{R Z}$ into $\Lambda_{R Z}$ iff $r$ is almost recursive regular. To complete the picture we quote some results of [5] and [7]. $r_{\Lambda}$ maps $\times{ }^{n} \Lambda$ into $\Lambda$ iff $r_{\Lambda}$ maps $\times{ }^{n} \Lambda_{Z}$ into $\Lambda_{Z}$ iff $r$ is almost recursive combinatorial.

## REFERENCES

J. Barback
[1] Recursive functions and regressive isols, Math. Scand. 15 (1964), 29-42.
J. C. E. Dekker
[2] Infinite series of isols, Amer. Math. Soc. Proc. Symposia Pure Math. 5 (1962), 77-96.
J. C. E. Dekker
[3] The minimum of two regressive isols, Math. Zeit. 83 (1964), 345-366.
J. C. E. Dekker and J. Myhill
[4] Retraceable sets, Canad. J. Math. 10 (1958), 357-373.
E. Ellentuck
[5] Universal cosimple isols, 42 (1972), 629-638 Pacif. J. Math.
M. J. Hassett
[6] A closure property of regressive isols, Rocky Mt. J. Math. 2 (1972), 1-24.
A. Nerode
[7] Extensions of isols, Ann. of Math. 73 (1961), 362-403.
(Oblatum 14-VII-1972)
Rutgers, The State University New Brunswick, New Jersey, U.S.A. and The Institute for Advanced Study Princeton, New Jersey, U.S.A.


[^0]:    ${ }^{1}$ Subject classification, Primary 02F40. Key words and phrases: regressive isol, almost recursive increasing function.
    ${ }^{2}$ This paper was partially supported by a New Jersey Research Council Faculty Fellowship, and partially by a grant from The Institute for Advanced Study.

