Compositio Mathematica

C. H. Houghton
 Ends of groups and baseless subgroups of wreath products

Compositio Mathematica, tome 27, no 2 (1973), p. 205-211
http://www.numdam.org/item?id=CM_1973__27_2_205_0
© Foundation Compositio Mathematica, 1973, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numbam

ENDS OF GROUPS AND BASELESS SUBGROUPS OF WREATH PRODUCTS

C. H. Houghton

Introduction

In this paper we investigate the relationship between Specker's theory [4] of ends of groups and Hartley's results [2] on baseless subgroups of wreath products. The wreath product $W=A W r B$ of groups A and B is the split extension of the group $K=A^{B}$ of functions from B to A, by B, with $f^{b}(x)=f\left(x b^{-1}\right)$, for $f \in A^{B}, b, x \in B$. We shall assume throughout that A and B are non-trivial. Let α be an infinite cardinal and, for $f \in K$, let supp (f) denote the support of f. We define K_{α} to consist of those $f \in K$ with $|\operatorname{supp}(f)|<\alpha$ and let $W_{\alpha}=B K_{\alpha} \leqq W$. We note that in the case $\alpha=\boldsymbol{N}_{0}, K_{\alpha}$ consists of those functions with finite support and W_{α} is the restricted wreath product $A w r B$ of A and B.

Hartley [2] investigates baseless subgroups of W_{α}, that is, subgroups which have trivial intersection with the base group K_{α}. He gives conditions for baseless subgroups of W_{α} to be conjugate to subgroups of B and conditions for the existence of baseless subgroups which are maximal in some class of subgroups of W_{α}. He applies these results to construct locally finite groups with certain given sets of locally finite p-groups as Sylow p-subgroups. Our aim is to establish a connection between Hartley's results and the theory of ends, which we now consider.

For a group G, we define $Q_{\alpha}(G)$ to consist of those $S \subseteq G$ such that $\left|S g \cap S^{\prime}\right|<\alpha$, for all $g \in G$, where $S^{\prime}=G \backslash S$. The set of α-ends of G consists of the ultrafilters of sets S in $Q_{\alpha}(G)$ with $|S| \geqq \alpha$. We denote the number of α-ends of G by $e_{\alpha}(G)$; in the case $\alpha=\aleph_{0}$, we omit mention of the cardinal. From now on we assume $|G| \geqq \alpha$, which is equivalent to the condition $e_{\alpha}(G)>0$. Specker [4] shows that $e_{\alpha}(G)=1,2$, or is infinite and that $e_{\alpha}(G)=2$ if and only if $\alpha=\boldsymbol{\kappa}_{0}$ and G is infinite cyclic by finite. We note that $e_{\alpha}(G)=1$ if and only if, for $S \subseteq G$, the condition $\left|S g \cap S^{\prime}\right|<\alpha$, for all $g \in G$, implies $|S|<\alpha$ or $\left|S^{\prime}\right|<\alpha$.

The theory of ends of groups, with $\alpha=\aleph_{0}$, has been studied extensively (see Cohen [1], Stallings [5]); in particular, finitely generated groups with more than one end have been characterised. Various sufficient con-
ditions for G to have 1 end are known and some may be extended to the case of a general cardinal α. We do not pursue this point, as the results in the case $\alpha=\boldsymbol{\aleph}_{0}$ are far from complete. We require the following result.

Theorem (1): (Specker [4, p. 173 (a)]). If either $|G|=\alpha>\aleph_{0}$ or $|G|=\alpha=\aleph_{0}$ and G is locally finite, then $e_{\alpha}(G)$ is infinite.

Baseless subgroups and ends

Let L be a baseless subgroup of $W=A W r B$. Then, for a unique $C \leqq B, L A^{B}=C A^{B}$. Hartley shows [2, Lemma 3.2. (i)] that there is an element $g \in A^{B}$ such that $L=C^{g}$. It follows that the baseless subgroups of W_{α} are all the subgroups of W of the form C^{g} with $C \leqq B, g \in A^{B}$ and $C^{g} \leqq W_{\alpha}$. Throughout this section, let $S^{\prime}=B \backslash S$, for $S \subseteq B$.

Lemma (2): Suppose $C \leqq B$ and $g \in A^{B}$. Let $g(B)=\left\{a_{i}: i \in I\right\}$ and $B_{i}=\left\{b \in B: g(b)=a_{i}\right\}$. Then
(i) $C^{g} \leqq W_{\alpha}$ if and only if

$$
\left|\bigcup_{i \in I} B_{i} c \cap B_{i}^{\prime}\right|<\alpha
$$

for all $c \in C$,
(ii) if $|C| \geqq \alpha, C^{g}$ is conjugate to C in W_{α} if and only if there is a subset J of I and a partition $\left\{D_{j}: j \in J\right\}$ of B with $D_{j} C=D_{j}$ such that

$$
\left|\bigcup_{j \in J} D_{j} \cap B_{j}^{\prime}\right|<\alpha
$$

Proof: (i) If $c \in C, c^{g}=g^{-1} c g=c\left(g^{-1}\right)^{c} g$ and so $c^{g} \in W_{\alpha}$ if and only if $\mid \operatorname{supp}\left(\left(g^{-1}\right)^{c} g \mid<\alpha\right.$. Now $\left(\left(g^{-1}\right)^{c} g\right)(x)=\left(g\left(x c^{-1}\right)\right)^{-1} g(x)$, so

$$
\operatorname{supp}\left(\left(g^{-1}\right)^{c} g\right)=\bigcup_{i \in I} B_{i} c \cap B_{i}^{\prime}
$$

Thus $C^{g} \leqq W_{\alpha}$ if and only if

$$
\left|\bigcup_{i \in I} B_{i} c \cap B_{i}^{\prime}\right|<\alpha, \text { for all } c \in C .
$$

(ii) Suppose $C^{g}=C^{h}$ with $h \in K_{\alpha}$. Then $z=g h^{-1}$ is in the centraliser of C and hence is constant on each left coset $b C$ of C in B. Since $\left|\operatorname{supp} \quad\left(z^{-1} g\right)\right|=|\operatorname{supp}(h)|<\alpha \quad$ and $\quad|C| \geqq \alpha, \quad z(B) \subseteq g(B)$. Let $J=\left\{i \in I: a_{i} \in z(B)\right\}$ and let $D_{j}=\left\{b \in B: z(b)=a_{j}\right\}$, for $j \in J$. Then $\left\{D_{j}: j \in J\right\}$ is a partition of B with $D_{j} C=D_{j}$ and

$$
\bigcup_{j \in J} D_{j} \cap B_{j}^{\prime}=\operatorname{supp}\left(z^{-1} g\right)=\operatorname{supp}(h)
$$

$$
\left|\bigcup_{j \in J} D_{j} \cap B_{j}^{\prime}\right|<\alpha
$$

Conversely, suppose the given condition is satisfied and define $z \in A^{B}$ by $z\left(D_{j}\right)=\left(g\left(B_{j}\right)\right)^{-1}$. Then $C^{g}=C^{z g}$ and

$$
\operatorname{supp}(z g)=\bigcup_{j \in J} D_{j} \cap B_{j}^{\prime}
$$

so \mid supp $(z g) \mid<\alpha$.
Theorem (3): Suppose L is a baseless subgroup of W_{α} with $L A^{B}=C A^{B}$, $C \leqq B$. If $e_{\alpha}(C)=1$, then L is conjugate to C in W_{α}.

Proof: We have $L=C^{g}$ where the partition associated with g satisfies

$$
\left|\bigcup_{i \in I} B_{i} c \cap B_{i}^{\prime}\right|<\alpha
$$

for $c \in C$. For $i \in I, b \in B$ we have, for all $c \in C$,
$B_{i} c \cap B_{i}^{\prime} \supseteq\left(b C \cap B_{i}\right) c \cap\left(b C \cap B_{i}^{\prime}\right)=b\left(\left(C \cap b^{-1} B_{i}\right) c \cap\left(C \cap b^{-1} B_{i}^{\prime}\right)\right)$
and hence $\left|\left(C \cap b^{-1} B_{i}\right) c \cap\left(C \backslash\left(C \cap b^{-1} B_{i}\right)\right)\right|<\alpha$. Since $e_{\alpha}(C)=1$, $\left|C \cap b^{-1} B_{i}\right|<\alpha$ or $\left|C \cap b^{-1} B_{i}^{\prime}\right|<\alpha$ and so $\left|b C \cap B_{i}\right|<\alpha$ or $\left|b C \cap B_{i}^{\prime}\right|<\alpha$. Let $M=\left\{(b C, i): 0<\left|b C \cap B_{i}\right|<\alpha\right\}$.

We first suppose $|C|>\alpha$ and take $N \subseteq M$, with $|N| \leqq \alpha$. Then

$$
\left|\bigcup_{(b c, i) \in N}\left(b C \cap B_{i}\right)^{-1}\left(b C \cap B_{i}\right)\right| \leqq \alpha,
$$

so there is an element $c \in C$ such that, for $(b C, i) \in N$, $c \notin\left(b C \cap B_{i}\right)^{-1}\left(b C \cap B_{i}\right)$ and $\left(b C \cap B_{i}\right) c \subseteq B_{i}^{\prime}$. Then

$$
\begin{aligned}
\left|\bigcup_{(b C, i) \in N} b C \cap B_{i}\right| & =\left|\bigcup_{(b C, i) \in N}\left(b C \cap B_{i}\right) c\right| \\
& =\left|\bigcup_{(b C, i) \in N}\left(b C \cap B_{i}\right) c \cap B_{i}^{\prime}\right| \\
& \leqq\left|\bigcup_{i \in I} B_{i} c \cap B_{i}^{\prime}\right|<\alpha .
\end{aligned}
$$

So $|N|<\alpha$ and we deduce that $|M|<\alpha$ and

$$
\left|\bigcup_{(b C, i) \in M} b C \cap B_{i}\right|<\alpha
$$

In the other case, $|C|=\alpha$. Since we are assuming $e_{\alpha}(C)=1$, Theorem 1 implies that $\alpha=\kappa_{0}$ and C is not locally finite. Let $D=\left\langle d_{1}, \cdots, d_{n}\right\rangle$ be a finitely generated infinite subgroup of C. Since, for $j=1, \cdots, n$,

$$
\bigcup_{i \in I} B_{i} d_{j} \cap B_{i}^{\prime}
$$

is finite, almost all B_{i} are fixed under right multiplication by d_{1}, \cdots, d_{n}. So $H=\left\{i: B_{i} \neq B_{i} D\right\}$ is finite. If $(b C, i) \in M$ then $b C \cap B_{i}$ is finite and non-empty. Thus $b C \cap B_{i} \neq\left(b C \cap B_{i}\right) D=b C \cap B_{i} D$, so $B_{i} \neq B_{i} D$
and $i \in H$. Also, for some $d_{j},\left(b C \cap B_{i}\right) d_{j} \cap B_{i}^{\prime} \neq \emptyset$ so, for some $c \in C$, $b c \in B_{i} \cap B_{i}^{\prime} d_{j}^{-1}$ and $b \in\left(B_{i} \cap B_{i}^{\prime} d_{j}^{-1}\right) C$. Thus if $(b C, i) \in M$, then $i \in H$ and $b C \subseteq F C$, where F is the finite set

$$
\bigcup_{j=1}^{n}\left(\bigcup_{i \in I} B_{i} d_{j} \cap B_{i}^{\prime}\right) d_{j}^{-1} .
$$

So M is finite and hence

$$
\bigcup_{(b C, i) \in M} b C \cap B_{i}
$$

is also finite.
In each case, we now have

$$
\left|\bigcup_{(b c, i) \in M} b C \cap B_{i}\right|<\alpha .
$$

Furthermore,

$$
|C| \geqq \alpha \text { and } b C=\bigcup_{i \in I} b C \cap B_{i}
$$

Thus, for $b \in B,\left|b C \cap B_{i}\right| \geqq \alpha$ for some i and then $\left|b C \cap B_{j}\right|<\alpha$ for $\neq i$. For $i \in I$, let $T_{i}=\left\{b C:\left|b C \cap B_{i}\right| \geqq \alpha\right\}$ and let

$$
D_{i}=\bigcup_{b C \in T_{i}} b C .
$$

Put $J=\left\{i \in I: D_{i} \neq \emptyset\right\}$. Then $\left\{D_{j}: j \in J\right\}$ is a partition of B with $D_{j}=D_{j} C$. For $j \in J$,

$$
D_{j} \cap B_{j}^{\prime} \subseteq \bigcup_{(b C, i) \in M} b C \cap B_{i}
$$

so

$$
\left|\bigcup_{j \in J} D_{j} \cap B_{j}^{\prime}\right| \leqq\left|\bigcup_{(b C, i) \in M} b C \cap B_{i}\right|<\alpha
$$

Then Lemma 2 (ii) implies L is conjugate to C in W_{α}.
Theorem 1 describes a class of groups C with $e_{\alpha}(C)$ infinite. We now consider these groups in more detail.

Lemma (4): Suppose $|C|=\alpha>\boldsymbol{\aleph}_{0}$ or $|C|=\alpha=\boldsymbol{\aleph}_{0}$ and C is locally finite. Then there is a partition $\left\{C_{1}, C_{2}\right\}$ of C such that $\left|C_{1}\right|=\left|C_{2}\right|=\alpha$ and $\left|s C_{1} t \cap C_{2}\right|<\alpha$, for all $s, t \in C$.

Proof: Consider α as an ordinal equivalent to none of its predecessors. Under the conditions of the theorem,

$$
C=\bigcup_{\lambda<\alpha} H_{\lambda}
$$

for some system of subgroups such that $\left|H_{\lambda}\right|<\alpha$ and $H_{\lambda}<H_{\mu}$ if $\lambda<\mu$.

Let

$$
C_{1}=\bigcup_{\lambda<\alpha} H_{2 \lambda+1} \mid H_{2 \lambda} .
$$

Then

$$
C_{2}=C\left|C_{1}=H_{0} \cup \bigcup_{\lambda<\alpha} H_{2 \lambda+2}\right| H_{2 \lambda+1}
$$

and $\left|C_{1}\right|=\left|C_{2}\right|=\alpha$. Suppose $s, t \in C$. For some ordinal $\mu<\alpha$, we have $s, t \in H_{\lambda}$, for $\lambda \geqq \mu$, and so $s H_{\lambda} t=H_{\lambda}$ and $s\left(H_{\lambda+1} \backslash H_{\lambda}\right) t=H_{\lambda+1} \backslash H_{\lambda}$. Thus $s C_{1} t \cap C_{2} \subseteq s H_{\mu} t$ and $\left|s C_{1} t \cap C_{2}\right|<\alpha$.
A refinement of this argument gives a proof of Theorem 1. For a positive integer n,

$$
C_{i}=\bigcup_{\lambda<x} H_{n \lambda+i} \mid H_{n \lambda+i-1}
$$

is in $Q_{\alpha}(C)$ and $\left\{C_{1}, \cdots, C_{n-1}, C_{n} \cup H_{0}\right\}$ is a partition of C. Thus the number of α-ends of C is unbounded.

Suppose $e_{\alpha}(C)=2$. Then $\alpha=\boldsymbol{\kappa}_{0}$ and C has an infinite cyclic normal subgroup $E=\langle e\rangle$ of finite index. The centraliser H of E in C has index 1 or 2 and so $C=H \cup H d=E(F \cup F d)$, where $d=1$ or $d \in C \backslash H$ and the finite set F is a set of coset representatives for E in H. Let $P=$ $\left\{e^{i}: i>0\right\}, \quad C_{1}=P(F \cup F d)$ and $C_{2}=C \backslash C_{1}$. For $s \in H, t \in C$, $s(F \cup F d) t$ is a set of coset representatives for E in C and $s C_{1} t=$ $P s(F \cup F d) t=P\left\{e^{i(f)} f: f \in F \cup F d\right\}$, for some finite set of integers $\{i(f)\}$. Then $s C_{1} t \cap C_{2}$ is finite, and similarly $s C_{2} t \cap C_{1}$ is finite, for $s \in H$, $t \in C$. Thus we have proved the following result.

Lemma (5): Suppose C has 2 ends. Then there is a partition $\left\{C_{1}, C_{2}\right\}$ of C, with $C_{1} \in Q(C)$, such that the sets $\left\{c \in C_{2}: c C_{1} \cap C_{2}\right.$ is finite $\}$ and $\left\{c \in C_{1}: c C_{2} \cap C_{1}\right.$ is finite $\}$ are infinite.

Once again we consider C as a subgroup of B in W_{α}, but now assuming $e_{\alpha}(C)>1$. We recall that this implies that either $e_{\alpha}(C)$ is infinite or $\alpha=$ $火_{0}$ and $e_{\alpha}(C)=e(C)=2$.

Theorem (6): Suppose $C \leqq B$ with $e_{\alpha}(C)>1$. Then there is a baseless subgroup L of W_{α} satisfying the following conditions:
(i) $L A^{B}=C A^{B}$,
(ii) L is not conjugate to C in W_{α},
(iii) if M is a baseless subgroup of W_{α} with $M>L$ then $C=N_{D}(C)$ where $M A^{B}=D A^{B}$ with $D \leqq B$. Furthermore, if either $|C|=\alpha>\boldsymbol{\aleph}_{0}$ or otherwise $|C|=\alpha=\aleph_{0}$ and C is locally finite or has 2 ends, then the assumptions of (iii) imply the following stronger result:
(iv) $\left|C \cap u C v^{-1}\right|<\alpha$ for all $u, v \in D \backslash C$.

Proof: Since $e_{\alpha}(C)>1$, there is a partition $\left\{C_{1}, C_{2}\right\}$ of C with $\left|C_{i}\right| \geqq \alpha$ and $\left|C_{1} c \cap C_{2}\right|<\alpha$, for all $c \in C$. Then $\left|C_{2} c \cap C_{1}\right|=\mid C_{2} \cap$ $C_{1} c^{-1} \mid<\alpha$, for all $c \in C$. Take $a \in A, a \neq 1$, and define $g \in A^{B}$ by $g\left(C_{1}\right)$ $=a, g\left(C_{1}^{\prime}\right)=1$, where C_{1}^{\prime} denotes $B \backslash C_{1}$. For $c \in C, \mid\left(C_{1} c \cap C_{1}^{\prime}\right) \cup$ $\left(C_{1}^{\prime} c \cap C_{1}\right)\left|=\left|\left(C_{1} c \cap C_{2}\right) \cup\left(C_{2} c \cap C_{1}\right)\right|<\alpha\right.$, so Lemma 2(i) implies $C^{g} \leqq W_{\alpha}$. Let $\left\{D_{1}, D_{2}\right\}$ be a partition of B with $D_{i} C=D_{i}$ and suppose $C \subseteq D_{1}$ (here we allow $D_{2}=\emptyset$). Then $D_{1} \cap C_{1}^{\prime} \supseteq C_{2}$ and $D_{1} \cap C_{1}$ $=C_{1}$ so, from Lemma 2 (ii), C^{g} is not conjugate to C in W_{α}.
Under the assumptions of (iii) we have $C^{g} \leqq D^{h} \leqq W_{\alpha}$ for some $h \in A^{B}$. Then $C^{g}=C^{h}$ so hg^{-1} centralises C and the parts of the partition of B corresponding to hg^{-1} consist of unions of left cosets $b C$. Suppose $h g^{-1}(C)=a_{1}$ and so $h\left(C_{1}\right)=a_{1} a, h\left(C_{2}\right)=a_{1}$, and $h(b)=h g^{-1}(b)$ for $b \notin C$. Let $B_{1}=\left\{b: h(b)=a_{1} a\right\}, B_{2}=\left\{b: h(b)=a_{1}\right\}$. Then

$$
B_{1}=C_{1} \cup \bigcup_{b C \in T_{1}} b C, B_{2}=C_{2} \cup \bigcup_{b C \in T_{2}} b C,
$$

where T_{1}, T_{2} are disjoint sets of cosets distinct from C. From Lemma 2(i), $\left|B_{i} d \cap B_{1}^{\prime}\right|<\alpha$, for $d \in D$ and $i=1$, 2. If $d \in N_{D}(C) \backslash C$, then $\left|C_{i} d \cap d C\right| \geqq \alpha$ so $d C \cap B_{1} \neq \emptyset \neq d C \cap B_{2}$ and $d C \in T_{1} \cap T_{2}=\emptyset$. Thus $N_{D}(C)=C$.
We now suppose that either $|C|=\alpha>\kappa_{0}$ or otherwise $|C|=\alpha=\kappa_{0}$ and C is locally finite or has 2 ends. We can then assume that the partition $\left\{C_{1}, C_{2}\right\}$ has been chosen as described in Lemma 4 or 5 . Given $u, v \in D \backslash C$, we have $\left|C_{i} u \cap B_{i}^{\prime}\right|<\alpha,\left|C_{i} v \cap B_{i}^{\prime}\right|<\alpha$. Thus for some $G_{i} \subseteq C_{i}$ with $\left|C_{i} \backslash G_{i}\right|<\alpha$, we have $G_{i} u \cup G_{i} v \subseteq B_{i}$. Then

$$
G_{i} u \cup G_{i} v \subseteq \bigcup_{b C \in T_{i}} b C .
$$

Thus, for $c_{1} \in G_{1}, c_{2} \in G_{2}, c_{1} u C \neq c_{2} v C$ and $c_{1} v C \neq c_{2} u C$ and so $c_{1}^{-1} c_{2}, c_{2}^{-1} c_{1} \notin u C^{-1}$. From Lemmas 4 and 5 , since $\left|C_{1} \backslash G_{1}\right|<\alpha$, we may choose $c_{1} \in G_{1}$ such that $\left|c_{1} C_{2} \cap C_{1}\right|<\alpha$ and hence $\mid c_{1}^{-1} C_{1} \cap$ $C_{2} \mid<\alpha$. Now $\left\{c_{2} \in C_{2}: c_{2} \notin u C v^{-1}\right\} \supseteq c_{1}^{-1} G_{2} \cap C_{2}$ so $C_{2} \cap u C v^{-1} \subseteq$ $C_{2} \cap c_{1}^{-1}\left(C \backslash G_{2}\right) \subseteq\left(C_{2} \cap c_{1}^{-1} C_{1}\right) \cup c_{1}^{-1}\left(C_{2} \backslash G_{2}\right)$ and hence $\mid C_{2} \cap$ $u C v^{-1} \mid<\alpha$. Similarly, $\left|C_{1} \cap u C v^{-1}\right|<\alpha$ and so $\left|C \cap u C v^{-1}\right|<\alpha$.
We note a consequence of Theorems 3 and 6. This generalises a result in [3] that if $A^{(B)}$ is the group of functions from B to A with finite support and B acts as in the wreath product, then the first cohomology set $H^{1}\left(B, A^{(B)}\right)$ is trivial if and only if B has 1 end. However $H^{1}\left(B, A^{(B)}\right)$ is precisely the set of conjugacy classes of complements of the base group $A^{(B)}$ in A wr $B=W_{\times_{0}}$.
Corollary (7): Suppose $C \leqq B$ with $|C| \geqq \alpha$. Every baseless subgroup L of W_{α} such that $L A^{B}=C A^{B}$ is conjugate to C in W_{α} if and only if $e_{\alpha}(C)=1$.

For certain subgroups C of B, Theorem 6 gives sufficient conditions for the existence of baseless subgroups L, with $L A^{B}=C A^{B}$, which are maximal in certain classes. Hartley's Theorem B, the first part of Theorem A and the second part of Theorem D [2] may be deduced. Using Corollary 7, the other parts of his Theorems A and D lead to new sufficient conditions for a group to have 1 end. Thus, unless they are infinite cyclic by finite, radical groups with non-periodic Hirsch-Plotkin radical have 1 end and so also do uncountable locally finite groups satisfying the normaliser condition. In this connection we mention the conjecture that uncountable locally finite groups have 1 end.

I would like to thank Dr. Hartley for sending me a preprint of [2].

REFERENCES

[1] D. E. Cohen: Groups of cohomological dimension one. Lecture Notes in Mathematics 245. (Springer-Verlag, Berlin, 1972).
[2] B. Hartley: Complements, baseless subgroups and Sylow subgroups of infinite wreath products. Compositio Mathematica, 26 (1973) 3-30.
[3] C. H. Houghton: Ends of groups and the associated first cohomology groups. J. London Math. Soc., 6 (1972) 81-92.
[4] E. Specker: Endenverbände von Räumen und Gruppen. Math. Ann. 122 (1950) 167-174.
[5] J. Stallings: Group theory and three-dimensional manifolds. Yale Mathematical Monographs, 4. (Yale University Press, New Haven, 1971).
(Oblatum: 23-I-1973)
Department of Pure Mathematics University College Cardiff, Wales, U.K.

