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Introduction

In this paper we give an explicit decomposition of the restriction of any
irreducible discrete series complex representation of GL(n, q) to the
unipotent subgroup consisting of upper unitriangular matrices. The

decomposition is as a tensor product of representations which are shown
to be multiplicity free, and whose components are exhibited explicitly as
representations induced from radical subgroups of a special type. The
subgroups occurring correspond precisely to root subgroups, and it is
hoped that the results presented here may lead to generalizations for
other groups of Lie type.
A by-product is the result that there are certain representations of

high degree in the restriction, and it is shown in the final section that these
representations have maximal degree among the irreducible complex re-
presentations of the unipotent group. This leads in particular to the result
that this maximal degree is a power q03BC(n) of q which depends only on n.
Also it is shown that the representations of maximal degree are in some
sense ’dense’.

The decomposition shall take place in three parts. Firstly, some general
propositions are proved which relate to representations of semi-direct
products. Then the restriction of the discrete series characters is defined
by means of its values, and an inductive property is used to achieve the
tensor product decomposition. The factors are then analysed, using the
results of the first part, and tensor products are calculated using Mackey’s
theorem.

1. Représentations of semi-direct products

PROPOSITION 1.1: Let G be a finite group expressible as a semi-direct
product G = A XI B, and let p be a complex representation of B. Then if
o is the permutation representation of G on cosets of B, we have

where p* denotes the lift (or ’pullback’) of p from B to G.
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PROOF: Let Vp be a CB module for the representation p. Then pG has
CG module W = ~a~AaV03C1 (see Serre [7]) where G acts as follows:
if 9 E G, G = ab(a E A, b E B) then g(a0v0) = ab(a0v0) =
(a . bao b - 1 ) . (bvo) = a1v1(a0, a1 ~ A; vo, V 1 E V.) where al = a - bao b-1
and vi = bvo (b acting by means of the representation p of B on V.). Thus
g = ab sends ao vo to al vl where al is the unique element of A in gao B
and v, = bvo. Now the elements of A are left coset representatives for
B in G and the permutation g : ao H al defined above is the permutation
g defines on the left B-cosets in G. Moreover Yp may be regarded as a
CG module for the representation p*, where if v E Vp, 9 = ab(a E A,
b E B) then gv = bv. But any element of W has a unique expression as a
sum ¿aeA a . Va(Va E VP) and thus as C-vector space W is the tensor pro-
duct of a space realising 0 (viz the set of C-linear combinations of ele-
ments of a) and a space realising p* (viz V03C1). Finally the description of
the G-action on W above shows that pG = 0 Q p*, where equality here
denotes equivalence of representations.
The object of the next proposition is to show that the processes of

lifting and of induction commute with each other.

PROPOSITION 1.2: Let G be as in proposition 1.1 and suppose C is a

subgroup of B. Let À be a complex character of C, 03BB* its lift to C* =
A . C = A x) C. Then 03BB*G = (03BBB*), where (03BBB*) denotes the lift of ÀB from
B to G.

PROOF: We can choose a common set of representatives bl , ’ ’ ’, bn
(bi E B) for cosets of C in B and for cosets of C* in B* = G. Then if
g E G, g = ab(a E A, b E B) we have

where 1(x) = Ã(x) if x ~ C and X(x) = 0 otherwise.
Also

where 1*(y) Â*(y) if y E C* and *(y) = 0 otherwise. But biabb, =
biab-1i · bibb-1i E C* ~ bi abi 1 E C. Hence *(biabb-1i) = (bibb-1i)
and the result follows.
The final proposition of this section describes the irreducible repre-

sentations of the group G of proposition 1.1 in case A is abelian.

PROPOSITION 1.3:

(i) With G as in proposition 1.1, let A be abelian. Then each irreducible
complex representation of G is of the form (~~)G where X is an irreducible
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representation of A and 0 is an irreducible representation of the centralizer

B~ of x in B.
(ii) In (i) above, x may be replaced by any representation conjugate to

it under the action of B.

PROOF: (i) is a theorem of Mackey ([6]) and (ii) is a simple consequence
(see [3]).

2. Représentations of the unipotent group

In this section we recall briefly (cf. [3]) the consequences of applying
proposition 1.3 to the unipotent group. Let G = U. be the group of
upper unitriangular matrices of size n with coefficients in GF(q). Let
A be the subgroup of G consisting of matrices all of whose non-diagonal
elements are zero except for the last column, and take for B the set of
matrices whose non-diagonal entries in the last column are zero. Then
G = A |B, A - (GF(q))" -’ is abelian and may be regarded as an
(n - 1 )-dimensional vector space over GF(q) on which B acts:

In fact B éé Un-1 and by an obvious identification B acts as Un-l on
column vectors of length n -1 which are regarded as the elements of A.
An irreducible character x of A is given by a set of n -1 characters

xi of GF(q)+, where

and if b E B, ~b(v) = ~(bvb-1). Henceforth let xo be a fixed non-trivial
irreducible character of GF(q) + ; then any irreducible character of

GF(q)+ is of the form axo, where a~0(f) = ~0(af) (a, f ~ GF(q)),
and thus corresponds to an element of GF(q). Hence characters
~ = xl ’ ’ ’ xn-1 also can be regarded as row vectors over GF(q).
With these identifications it is clear that if b ~ B and x = (xl , ’ ’ ’, ~n-1)

then ~b = (~1, ···, ~n-1)(bij) where (bij) is the leading (n-1)  (n-1)
part of b.

Let k be the least index such that Xk =1= 0, if ~ ~ (0, 0, ’ ’ ’, 0); then the
B-orbit of x contains precisely all characters of the form (0, 0, ’ ’ ’, 0,
Xk, 03BCk+1, ··· 03BCn-1) where the 03BCl are arbitrary. In particular this orbit
contains the character X, = (0, 0, ’ ’ ’, 0, xk, 0, ’ ’ ’, 0) which will be
referred to as the canonical character in the orbit of x. The B-orbits in the
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character group Â of A are thus represented by the (n -1 )(q -1 ) canonical
characters Xc, together with the zero (identity) character.
The centralizer B~c consists of matrices in B whose non-diagonal entries

in the kth row are zero. It depends, therefore, only on the index k which
is referred to as the type of x. The identity is canonical of type 0.

DEFINITION: If the irreducible character x of A  Un is of type k, we
write Zk,n-1 = B~c and Uk,n = A |Zk,n-1

Proposition 1.3 applied here gives

LEMMA 2.1: Any irreducible representation v of Un is of the form v =

(~~)UnUk,n where X is a canonical character of type k and ~ is an irreducible
representation o, f’ Bx .
To conclude this section we introduce some notation. For each integer

m, 1 ~ m ~ n we regard the group Um as the specific subgroup of Un con-
sisting of matrices in Un with all non-diagonal entries zero, except those
in the leading m x m square. Then Um has an obvious normal complement
Cm and Un = Cm |Um.

DEFINITION :

(i) If H is a subgroup of Um we write H* for H* = Cm XI H.
(ii) Am = Cm-1 n Um is the normal complement of Um-1 in Um

(e.g. An is the A of the discussion above).

3. The discrète series

There is a family of distinguished irreducible representations of

GL(n, q) which have degree (q-1)(q2-1) ··· (qn-1-1) and whose im-
portance is outlined in [8]. An explicit description of the values of the
characters of these representations is given in Green’s famous paper [2],
and can also be found in [4]. It transpires that all discrete series represen-
tations have the same restriction to Un since the character values are the
same on Un .

DEFINITION: For Me Un, define the rational integer 03B4n(u) by 03B4n(u) =
(-1)n-1(1-q)(1-q2) ··· (1-qs(u)) where s(u) = (n-1)-r(u) and

r(u) = rank of the matrix 1-u.
Then 03B4n is the character of the restriction to Un of any irreducible dis-

crete series representation of GL(n, q); we denote this representation of
Un by An and it is with its decomposition that we are concerned. The first
step is the remark

PROPOSITION 3.1: We have bn = 03B4Unn-1-03B4*n-1, where 03B4n-1 is the discrete
series character of Un-1 as defined in the previous section.



13

PROOF: This is simple to verify, using the formula for calcaalating
induced characters; the explicit calculation may be found in [5]. This
fact has been remarked on by several authors, including Ennola [1 ].

Proposition 1.1 enables us to exploit this inductive property of An.
We define the representation 03C1n as follows: Let T n be the set of cosets of
Un-1 in Un and let Fn be the set of functions f : 0393n ~ C. Then Un acts
naturally on the qn -1-dimensional space Fn, and this is simply the per-
mutation representation On of Un on the cosets of Un-1. Let

Then Un stabilizes IFn, and we define 03C1n to be the (qn-1-1)-dimen-
sional representation of Un on IF n.

PROPOSITION 3.2: We have An = pn Q 0394*n-1
PROOF : Let fo e Fn be the function taking the value 1 at each element

of Fn, and let f0&#x3E; be the 1-dimensional space spanned by fo. Then
Fn = IF n ~ f0&#x3E; and both components are stable under Un . But the
representation of Un on f0&#x3E; is the identity, and so we have On = Pn (D 1.

By proposition 1.1 0394Unn-1 = On Q A:-1 and this by the above is equal
to (Pn ~ 1) Q9 0394*n-1. Hence dnn 1 = 03C1n Q 0394*n-1 ~ A:-1. The result is

now immediate from proposition 3.1.
An immediate corollary is

THEOREM 3.3 : Let Pi be the (qi-1-1)-dimensional representation of Ui
defined as above. Then

where pi is identified with its lift.f’rom Ui to Un.
We now turn our attention to the p i.

4. The représentation pn

LEMMA 4.1: The restriction of p. to An is the sum of all the irreducible
representations (characters) of An except for the identity representation,
each one occurring with multiplicity one.

PROOF: The action of An on hn is the permutation action of An on its
own elements by left translation since the elements of An form a set of
coset representatives. Hence the representation of An on ffn is the regular
representation of An, which is the sum of all the irreducible representa-
tions of An, since An is abelian. But the representation of An on f0&#x3E; is the
identity representation, and so the representation of An on Fn (which
is PnlAn) is the sum of the non-identity representations of An.
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COROLLARY 4.1 : pn is a multiplicity free representation of Un .
This is clear, since its restriction to An is multiplicity free.

LEMMA 4.2: There is a 1-1 correspondence x - a(x) between canonical
non-trivial characters X of An and irreducible constituents a(x) of p. such
that if ~ is of type k, degree (a(x» = qn-k-1(k = 1,2, ..., n -1 ).

PROOF: Let a be an irreducible constituent of p.. By Clifford’s theorem
together with lemma 4.1, the restriction alAn is the sum of the characters
of An in a Un-1-orbit of non-trivial characters. By the discussion in
Section 2, these orbits are represented by canonical characters. Let X
be a canonical character of An’ of type k. Then if a is the unique consti-
tuent of pn containing x in its restriction to An, we have that the degree of
a is the number of characters of An in the orbit of X under Un-1. By the
discussion preceding lemma 2.1 this is q"-x-’-.

In view of this correspondence we introduce the following notation.

DEFINITION: 

(i) Let x be a non-trivial character of GF(q) +. Denote by ~(k) the type
k canonical character (0, ···, 0, x, 0, ···, 0) of An .

(ii) Write ak"(x) for the irreducible constituent of pn containing ~(k)
in its restriction to An .

COROLLARY 4.2: We have akn(X) = (~(k) · ~)UuUkn where 0 is a represen-
tation of degree one of Zk,n-1.

PROOF: By lemma 2.1 akn(x) is of the form stated; 0 has degree one by
Lemma 4.2.

We next show that 0 can in fact be taken as the identity representation
of Zk,n-1 in each case.

LEMMA 4.3: The restriction 03C1n|Ukn contains the one-dimensional repre-
sentations X(k) . 1 for each non-trivial character X of GF(q)+

PROOF: We construct a subspace Fn(~(k)) of Fn which realizes the
representation X(k) . 1 of Uk,n .
We consider the elements Of Fn as identified with An, and let f be the

function in 57n such that

and take Fn(~(k)) to be the 1-dimensional space spanned by f. Then An
clearly acts on Fn(~(k)) according to X(k). Moreover Zk,n-1 acts on f ac-
cording to
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since Zk,,, - 1 centralizes the character ~(k) of An. Hence Zk,,,- 1 fixes the

functionf and Fn(~(k)) is a module for Uk n realizing the representation
~(k) · 1.

This gives us the following explicit form for 03B1k,n(~).

PROOF: The right hand side is an irreducible representation of Un which
occurs in pn by lemma 4.3 and Frobenius reciprocity. Moreover it (the
R.H.S.) contains X(k) in its restriction to An . Hence the result.

Collecting together the last three results we have

THEOREM 4.4: The representation Pn has additive decomposition

where X runs over the non-trivial characters of GF(q)+ and ak,n(X) is in-
duced from the 1-dimensional representation X(k) . 1 of Uk,n .
Theorem 4.4 of course immediately yields the decomposition of pi for

each i (see theorem 3.3), but using proposition 1.2 we can obtain the con-
stituents of pi directly as induced representations.

PROFOSITION 4.5 : Let Àki(X) be the character of U*ki ( for notation see
Section 2) given by 03BBki(~)(u) = Y(Uki) where Uki is the (k, i) matrix coef-
ficient of u(u E U*ki). Then if aki(x) is the representation inducedfroMÂki (X)
we have

where x runs over the non-trivial characters of GR(q) +, and 03C1i is as in 3.3.

PROOF: This follows from Theorem 4.4 and proposition 1.2, which says
that lifting the analogues of the akn(x) from Ui to Un gives the same result
as first lifting the 1-dimensional representation of Uki and then inducing.

In summary, we have the following decomposition of An:

THEOREM 4.6: We have d n = On O On - 1 ~ ··· O 03C12 where

and the aki(x) are induced from the 1-dimensional representations Àki(X)
of U*ki, so that degree (03B1ki(~)) = qi-k-1.
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5. Tensor products

Theorem 4.6 shows that to obtain an additive decomposition of dn,
it is necessary to work out tensor products of the form

The object of the present section is to show that many such tensor pro-
ducts are irreducible.

LEMMA 5.1 : Suppose i  j and k &#x3E; 1; then 03B1ki(~) 0 alj(X’) is irreducible.

PROOF: The tensor product above is the lift of a corresponding tensor
product from Uj to Un . Hence we may assume that j = n and i  n.

We have 03B1ki(~) 0 À1n(X’) = 03BBki(~)Un 0 03BBln(~’)Un where 03BBki(~) and 03BBln(~’)
are one-dimensional representations of U*ki and U1n respectively. By
Mackey’s formula for tensor products, we have, since U*ki · U1n = Un
that

Let P = Ui-1 ~ Uln’ Q = Ai n Uln and R = PQ  Zl,n-1. Then

R = Ui n Uln = 6x)P with Q abelian, and proposition 1.3 applies.
Now we have

where * denotes the lift to Zl,n-l. Moreover since k &#x3E; 1 an easy cal-

culation shows that Zk,i-1 n Uln  P is the full centralizer of the charac-

ter Aki(X) of Q. Hence the first factor above is an irreducible representa-
tion of Zl,n-1 by proposition 1.3, and by another application of 1.3, so
is the representation aki(x) O 03B1ln(~’).
We have almost as a corollary

THEOREM 5.2: Suppose il  i2 ...  ir and k1 &#x3E; k2 &#x3E; ··· &#x3E;

kr(1  r  n). Then

is an irreducible representation of Un.

PROOF : Here we have

since the kj are distinct. We may also assume as in 5.1 that ir = n. Then
Mackey’s theorem shows that
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The proof now proceeds inductively; the induced representation on the
right is expressed as a representation induced in stages through sub-
groups of the form R of 5.1, and the irreducibility of the result of each
step has the same proof as lemma 5.1. The details are left to the reader.

COROLLARY 5.2’ : Let l1(n) = (n-2)+(n-4)+···. Then there are

irreducible components of An which have degree q’for each integer c such
that 0 ~ c  l1(n).

PROOF: The degree of aki(X) is qi-k-1. Hence

is qc where

Thus the corrollary amounts to finding sequences (kl,k2, ... ) such that

is specified between 0 and J1(n). Taking kn = 1, kn-1 = 2, ...,
k[n/2]+1 = [n/2]-1, ki = i-1 for i[n/2]+1 we obtain corresponding
degree q03BC(n), since if ki=i-1 then 03B1ki,i(~) has degree one. Taking ki = i-1
for each i we obtain corresponding degree q0. It is clear that by perturbing
these choices for ki we can obtain irreducible representations of degree
qc for each c such that 0 ~ c ~ J1(n).
COROLLARY 5.2" : The group Un has at least (q-1)[n/2] non-isomorphic

irreducible representations of degree q03BC(n), and the sum of the squares
of their degrees is an integer polynomial in q with leading term qtn(n -1).
PROOF: It is easy to show by induction on n that the (q-1)[n/2] irre-

ducible representations

(where the Xi range over all combinations of non-trivial characters of
GF(q)+) are mutually non-isomorphic, which explicitly constructs the
required number of irreducible representations of degree q03BC(n). The con-
clusion about the sum of squares of the degrees follows from the integer
identity 2,u (n) + [n/2] = 1 2n(n-1) which may be directly verified.

6. Representations of maximal degree

PROPOSITION 6.1: Let G = A XI B be a semi-direct product with A abelian.
Then the degree of any irreducible complex representation of G is not

greater than |B|.
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PROOF: Let 03C8 be an irreducible representation of G. By proposition
1.3, 03C8 is of the form 03C8 = (~~)GA )B~ where X is a character of A, and Bx
is its centralizer in B. Then degree (03C8) = (degree 0) - [B : Bx]. But 0 is an
irreducible representation of Bx and so has degree IB.J. The result
follows.

THEOREM 6.2: The degree of any irreducible complex representation of
Un of maximal degree is q4(").

PROOF: By corollary 5.2" it remains to show only that any irreducible
representation has degree  q4("). For this let A be the abelian normal
subgroup of Un given by matrices whose non-diagonal entries are zero
except for those in the upper right [n j2 ] x [(n+1)/2] rectangle, and
let B be its natural complement U[n/2] x U[n+1/2]. Then |A| = q’ where
1 = [nl2 ] - [(n+1)/2] and Un = A |B. By proposition 6.1 any irre-

ducible representation x of Un has degree IBI. But |B| = qN-l
where N = 2 n(n-1), and we complete the proof by observing that
N- l = ,u(n) which is easily verified using the relations 2p(n)+ [ni2]
N and 2l - [n/2] = N.
We conclude with a conjecture on the representations of Un, related

to that made at the ICM in Moscow by Professor J. G. Thompson.

CONJECTURE 6.3: 

(i) Un has irreducible complex representations only of degree qC for
0 ~ c ~ il (n).

(ii) The number of irreducible representations of degree qC is an integer
polynomial in q.

Part (i) in fact follows from theorem 6.2 and corollary 5.2’ if we assume
a result recently communicated privately to Professor Thompson by
E. Goutkin of Moscow. The result states that all irreducible complex
representations of Un have degree a power of q.

If we assume that q is prime, then we obtain

COROLLARY 6.4: For q prime the degrees of the irreducible complex re-
presentations of Un are polynomials in q, depending only on n.
The author wishes to thank G. Lusztig for enlightening conversations

and in particular for drawing his attention to another way of viewing the
representations pi .

It has also come to the attention of the author that the results in Section
2 have been independently obtained by P. V. Lambert and G. van Dijk
[9].
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