P. L. CIJSOUW

Transcendence measures of certain numbers whose transcendency was proved by A. Baker

<http://www.numdam.org/item?id=CM_1974__28_2_179_0>
TRANSCENDENCE MEASURES OF CERTAIN NUMBERS WHOSE TRANSCENDENCY WAS PROVED BY A. BAKER

P. L. Cijsouw

1. Introduction

In the subsequent paper we continue the investigation of transcendence measures of certain transcendental numbers σ, i.e. positive lower bounds for $|P(\sigma)|$ in terms of the degree N and height H of P, where P is an arbitrary polynomial with integral coefficients. For more information about transcendence measures and the type of transcendence measures we will look for, see the earlier paper [4]; see also the authors thesis [3], which includes the results of the present paper.

Let $\alpha_1, \ldots, \alpha_n$ be non-zero algebraic numbers such that, for any (fixed) values of the logarithms, $\log \alpha_1, \ldots, \log \alpha_n$ are linearly independent over \mathbb{Q}. In this paper, transcendence measures are derived for numbers which can be written in one of the following ways:

(i) $\beta_1 \log \alpha_1 + \cdots + \beta_n \log \alpha_n$ with $n \geq 2$, where β_1, \ldots, β_n are algebraic numbers, not all zero

(ii) $\beta_0 \alpha_1^\beta_1 \cdots \alpha_n^\beta_n$ with $n \geq 1$ and

$$\alpha_i^{\beta_i} = \epsilon^{\beta_i \log \alpha_i}$$

where $\beta_0, \beta_1, \ldots, \beta_n$ are algebraic numbers such that at least one of β_1, \ldots, β_n is irrational. We prove the transcendence measure

$$\exp \left\{ -C_1 N^{n^2 + n + \varepsilon} S (1 + \log S)^{n+1 + \varepsilon} \right\}$$

for numbers of the form (1), and the transcendence measure

$$\exp \left\{ -C_2 N^{n^2 + 2n + 2 + \varepsilon} S^{n+1 + \varepsilon} \right\}$$

for numbers of the form (2). Here $S = N + \log H$, ε is an arbitrary positive number and C_1 and C_2 are effectively computable numbers, depending on ε, n, the α’s and their logarithms and the β’s.

We remark, that these transcendence measures are the first explicit ones to be published for these numbers in which both the dependence on H and N is expressed. If one is interested merely in the height H, better results can be given. For numbers of the form (i), N. I. Fel’’dman [6] proved the transcendence measure $\exp \{ -CS \}$, where C is a positive
number, depending on N, the α's and their logarithms and the β's. For numbers of the form (ii), a recent result of A. Baker [2] implies the transcendence measure $\exp \{-C \log H \log \log H\}$ for $H \geq 4$, where C again is a positive number depending on N, the α's and their logarithms and the β's. An earlier result for the special case of numbers of the form $e^{\beta_0}x_1$ can be found in [7].

The method of proof of our transcendence measures is A. Baker's one with some improvements introduced by N. I. Fel'dman. In the proof we firstly derive a measure for the approximability of numbers of the types (i) and (ii); after that, the transcendence measures are given.

The transcendence of numbers of the form (i) follows immediately from e.g. Theorem 1 of A. Baker's paper [1]. The transcendence of numbers of the form (ii) was proved by A. Baker, distinguishing the cases $\beta_0 = 0$ and $\beta_0 \neq 0$; see the same paper.

2. Lemmas

We shall use the same notations (especially for the degree; height and size) as in [4]. For shortness, we use without reformulation the lemmas 3, 6, 7, 8 and 9 of [4]. Further, we need the following lemmas:

Lemma 1: Let $\alpha_1, \ldots, \alpha_n$ be non-zero algebraic numbers such that, for any fixed values of the logarithms, $\log \alpha_1, \ldots, \log \alpha_n$ are linearly independent over \mathbb{Q}. Let ε be positive and let d be a positive integer. Then there exists an effectively computable positive number

$$\theta(\varepsilon, d) = \theta(\varepsilon, d, \log \alpha_1, \ldots, \log \alpha_n)$$

such that

(1) $|\beta_0 + \beta_1 \log \alpha_1 + \cdots + \beta_n \log \alpha_n| > \theta(\varepsilon, d) \exp \{-(\log h)^{1+\varepsilon}\}$

for all algebraic numbers $\beta_0, \beta_1, \ldots, \beta_n$, not all zero, of degrees at most d and of heights at most h.

Proof: See Theorem 1 of [5].

Lemma 2: Let α and β be algebraic numbers, $\beta \neq 0$. Then

(2) $s(\alpha \beta^{-1}) \leq 2d(\alpha)d(\beta) + d(\alpha)s(\beta) + d(\beta)s(\alpha)$.

Proof: From Lemma 3 of [5] it follows that

$$h(\alpha \beta^{-1}) \leq 2^{d(\alpha)d(\beta)}(h(\alpha)(d(\alpha) + 1))^{d(\beta)}(h(\beta)(d(\beta) + 1))^{d(\alpha)}.$$

Using $d(\alpha) + 1 < e^{d(\alpha)}$ and $d(\beta) + 1 < e^{d(\beta)}$ we get

$$s(\alpha \beta^{-1}) = d(\alpha \beta^{-1}) + \log h(\alpha \beta^{-1})$$

$$\leq d(\alpha)d(\beta)(1 + \log 2) + d(\beta)s(\alpha) + d(\alpha)s(\beta)$$

from which (2) follows.
LEMMA 3: Let β be an algebraic number, and let k and ℓ be integers. Then

$$h(k+\ell \beta) \leq h(\beta)|2k\ell|^{d(\beta)}.$$

PROOF: If $a_n z^n + \cdots + a_1 z + a_0$ is the minimal polynomial of β, then

$$a_n (z-k)^n + \cdots + a_1 \ell^{n-1} (z-k) + a_0 \ell^n$$

is a constant multiple of the minimal polynomial of $k+\ell \beta$. Thus, the coefficient of z^i ($i = 0, 1, \cdots, n$) of this minimal polynomial is in absolute value at most

$$|a_n \binom{n}{i} (-k)^{n-i} + a_{n-1} \ell \binom{n-1}{i} (-k)^{n-1-i} + \cdots + a_1 \ell^{n-i}|$$

$$ \leq h(\beta)|k|^n |\ell|^n \left(\binom{n}{i} + \binom{n-1}{i} + \cdots + 1 \right).$$

From the obvious inequality $\binom{n}{i} \leq 2^{n-1}$ for all positive integers m, it follows that

$$\left(\binom{n}{i} + \binom{n-1}{i} + \cdots + 1 \right) \leq 2^n,$$

by which the proof is completed.

3. The case $\beta_1 \log \alpha_1 + \cdots + \beta_n \log \alpha_n$

First we give a measure for the approximability for numbers of the form (i), in the special case in which $\beta_n = -1$.

THEOREM 1: Let, for $n \geq 2$, $\alpha_1, \cdots, \alpha_n$ and $\gamma_1, \cdots, \gamma_{n-1}$ be non-zero algebraic numbers such that, for any fixed values of the logarithms, $\log \alpha_1, \cdots, \log \alpha_n$ are linearly independent over \mathbb{Q}. Let ε be a positive number. Then there exists an effectively computable number $S_1 = S_1(\varepsilon, \log \alpha_1, \cdots, \log \alpha_n, \gamma_1, \cdots, \gamma_{n-1})$ such that

$$|\gamma_1 \log \alpha_1 + \cdots + \gamma_{n-1} \log \alpha_{n-1} - \log \alpha_n - \eta|$$

$$ \geq \exp \left\{-N^{n+2} + S(\log S)^{n+1+\varepsilon}\right\}$$

for all algebraic numbers η of degree N and size $S \geq S_1$.

PROOF: Put $\delta = (2n^3 + 4n^2 + 3n + 7)^{-1} \varepsilon$. For abbreviation, put

$$\sigma = \gamma_1 \log \alpha_1 + \cdots + \gamma_{n-1} \log \alpha_{n-1} - \log \alpha_n$$

and

$$U = N^{n^2 + n + (2n^3 + 4n^2 + 2n + 1)^{\delta}} S(\log S)^{n+1+(2n^3 + 3n + 7)^{\delta}}.$$
if $S \geq S_1$. In this proof we may restrict ourselves to the case in which
δ is rather small. By c_1, c_2, \cdots we denote positive numbers which
depend only on n, $\log \alpha_1$, \cdots, $\log \alpha_n$, β_1, \cdots, γ_{n-1}.

Suppose that

$$|\sigma - \eta| > \exp \{ -U \}$$

(5) $$|\sigma - \eta| \leq \exp \{ -U \}$$

for some algebraic number η of degree N and size S. We prove that this
leads to a contradiction if S is sufficiently large.

Choose the following integers:

$$K = \left[N^{n^2-1} \log S \right]^{1/(2n+1)},$$

$$M = \left[N^{n^2+n} \log S \right]^{1/(2n+3)},$$

$$C = 2 \left[\frac{1}{2} \exp \left\{ N^{n^2+n} \log S \right\} \right],$$

$$T = \left[N^{n^2+n} (\log S)^{1/(2n+3)} \right],$$

$$P = \left[S (\log S)^{1+2\beta} \right],$$

$$R = \left[\frac{n-1}{\delta} + 2n^2 + n \right],$$

$$T' = \left[2^{-R} T \right]$$

and

$$P' = \left[N^{n^2-1} (n^3-n) S (\log S)^{n+2n+1} \right].$$

Put

$$F(z) = \sum_{k_1=0}^{K-1} \cdots \sum_{k_n=0}^{M-1} \sum_{m=0}^{N-1} \sum_{\nu=0}^{n-1} C_{k_1 \cdots k_n \nu} \eta^\nu z^m$$

$$\times \exp \{ -k_n \eta z + \sum_{i=1}^{n-1} (k_i + k_n \gamma_i) (\log \alpha_i) z \},$$

where the numbers $C_{k_1 \cdots k_n \nu}$ are integers of absolute values at most C;
they will be specified later.

For $t = 0, 1, 2, \cdots$ it is easily seen that

$$f^{(t)}(z) = \sum_{\tau + \tau_1 + \cdots + \tau_{n-1} = t} \frac{t!}{\tau! \tau_1! \cdots \tau_{n-1}!}$$

$$\times (\log \alpha_1)^{\tau_1} \cdots (\log \alpha_{n-1})^{\tau_{n-1}} F_{\tau_1 \cdots \tau_{n-1}}(z)$$

where

$$F_{\tau_1 \cdots \tau_{n-1}}(z) = \sum_{k_1} \cdots \sum_{k_n} \sum_{m} \sum_{\nu} C_{k_1 \cdots k_n \nu} \eta^\nu$$

$$\times \sum_{\kappa=0}^{m} \left(\frac{m!}{(m-\kappa)!} \right) z^{m-\kappa} (-k_n)^{\tau-\kappa} \eta^{\tau-\kappa}$$

$$\times \prod_{i=1}^{n-1} (k_i + k_n \gamma_i)^{\tau_i}$$

$$\times \exp \{ \sum_{i=1}^{n} k_i \log \alpha_i + k_n (\sigma - \eta) z \}.$$
Put
\[
\Phi_{\tau_1 \cdots \tau_{n-1}}(z) = \sum_{k_1} \cdots \sum_{k_n} \sum_{m} \sum_{v} C_{k_1 \cdots k_m v} \eta^v \times \frac{m!}{(m-\kappa)!} \frac{(\kappa)!}{m^{\kappa}} (-k_n)^{y-\kappa} \eta^{\kappa} \prod_{i=1}^{n-1} (k_i + k_n \gamma_i)^{\nu_i} \times \exp \left\{ \left(\sum_{i=1}^{n} k_i \log \alpha_i \right) z \right\}.
\]

We estimate the difference
\[
|F_{\tau_1 \cdots \tau_{n-1}}(p) - \Phi_{\tau_1 \cdots \tau_{n-1}}(p)|
\]
as follows: by \(|e^z - 1| \leq |z|e^{|z|}\), one has for \(k_n = 0, 1, \cdots, K-1\) and
\[
p = 0, 1, \cdots, [N^{n-1} + (2n^3 + 3n^2 + n)\delta] (\log S)^{n-1} + (2n^2 + n + 2)\delta]
\]
the inequality
\[
|e^{\delta(p-n)} - e^{\delta(p-1)}| \leq \exp \left\{ -\frac{1}{2} U \right\}.
\]

Hence,
\[
|F_{\tau_1 \cdots \tau_{n-1}}(p) - \Phi_{\tau_1 \cdots \tau_{n-1}}(p)| \leq \exp \left\{ -\frac{1}{2} U \right\}
\]
for \(\tau, \tau_1, \cdots, \tau_{n-1} = 0, 1, \cdots, T-1\) and
\[
p = 0, 1, \cdots, [N^{n-1} + (2n^3 + 3n^2 + n)\delta] (\log S)^{n-1} + (2n^2 + n + 2)\delta].
\]

Let
\[
P_{\tau_1 \cdots \tau_{n-1} p k_1 \cdots k_m}(z_0, z_1, \cdots, z_{2n-1})
\]
\((\tau, \tau_1, \cdots, \tau_{n-1} = 0, 1, \cdots, T-1; p = 0, 1, \cdots, P-1; k_1, \cdots, k_n = 0, 1, \cdots, K-1; m = 0, 1, \cdots, M-1)\) be the polynomials, chosen in the appropriate way, such that
\[
\Phi_{\tau_1 \cdots \tau_{n-1}}(p) = \sum_{k_1} \cdots \sum_{k_n} \sum_{m} \sum_{v} C_{k_1 \cdots k_m v} \eta^v \times P_{\tau_1 \cdots \tau_{n-1} p k_1 \cdots k_m}(\eta, \alpha_1, \cdots, \alpha_n, \gamma_1, \cdots, \gamma_{n-1}).
\]

We apply Lemma 6 of [4] to these polynomials in the specified points. If \(r, s\) and \(B\) have the same meaning as in this lemma we have
\[
r = T^n p \leq N^{n^2 + n + (n^3 + n^2)\delta} (\log S)^{n+1} + (2n^2 + 3n + 2)\delta,
\]
\[
s = K^n M \leq \frac{1}{2} N^{n^2 + n + (n^3 + n^2)\delta} (\log S)^{n+1} + (2n^2 + 3n + 3)\delta.
\]

Hence, \(s \geq 4rd\) where \(d = [Q(\alpha_1, \cdots, \alpha_n, \gamma_1, \cdots, \gamma_{n-1}) : Q]\). Further,
\[
B \leq \exp \left\{ c_1 N^{n^2 + n + (n^3 + n^2)\delta} (\log S)^{2 + (n^2 + 3)\delta} \right\}.\]
Hence, the right hand side of the second condition in Lemma 6 of [4] is at most
\[\exp \{ c_2 N^{n+1} + (n^2+n)\delta S(\log S)^{2+(2n+3)\delta} \} \leq C^n. \]

It follows that the numbers \(C_{k_1\cdots k_{mv}} \) can be chosen as integers, not all zero, of absolute values at most \(C \), such that \(\Phi_{\tau_1\cdots\tau_{n-1}}(p) = 0 \) for \(\tau, \tau_1, \ldots, \tau_{n-1} = 0, 1, \ldots, T-1 \) and \(p = 0, 1, \ldots, P-1 \). Doing so, we certainly have \(\Phi_{\tau_1\cdots\tau_{n-1}}(p) = 0 \) for \(0 \leq \tau + \tau_1 + \cdots + \tau_{n-1} \leq T-1 \) and \(0 \leq p \leq P-1 \). From (8) we now get
\[|F_{\tau_1\cdots\tau_{n-1}}(p)| \leq \exp \{ -\frac{1}{2} U \} \]
for \(0 \leq \tau + \tau_1 + \cdots + \tau_{n-1} \leq T-1 \) and \(0 \leq p \leq P-1 \).

Define \(T_r \) and \(P_r \) for \(r = 0, 1, \ldots, R \) by
\[T_r = [2^{-r}T] \]
and
\[P_r = [(N^{n+1} \log S)^{\delta r}] \]

Remark that
\[(10) \quad P_R \leq [N^{n^2-1} + (2n^3+3n^2+n)\delta S(\log S)^{n+(2n^2+n+2)\delta}] \]

Lemma: For \(r = 0, 1, \ldots, R \) the inequality
\[(11) \quad |F_{\tau_1\cdots\tau_{n-1}}(p)| \leq \exp \{ -\frac{1}{2} U \} \]
holds for all non-negative integers \(\tau, \tau_1, \ldots, \tau_{n-1} \) and \(p \) with
\(0 \leq \tau + \tau_1 + \cdots + \tau_{n-1} \leq T_r - 1 \) and \(0 \leq p \leq P_r - 1 \).

Proof: We proceed by induction on \(r \). For \(r = 0 \) the statement is proved in (9). Let \(r \) be an integer with \(0 \leq r \leq R-1 \) for which
\[(12) \quad |F_{\tau_1\cdots\tau_{n-1}}(p)| \leq \exp \{ -\frac{1}{2} U \} \]
for \(0 \leq \tau + \tau_1 + \cdots + \tau_{n-1} \leq T_r - 1 \) and \(0 \leq p \leq P_r - 1 \). Since
\[F_{\tau_1\cdots\tau_{n-1}}(z) = \sum_{k_1} \cdots \sum_{k_{mv}} \sum_{r} C_{k_1\cdots k_{mv}} \eta^{-\sum_{i=1}^{n-1} (\log \alpha_i)^{-r}} \times (z^m e^{-k_n z})^{(r)} \prod_{i=1}^{n-1} (\exp \{(k_i + k_n \gamma_i)(\log \alpha_i)z\})^{(n_i)} \]
we have for \(t = 0, 1, 2, \cdots \)
\[F_{\tau_1\cdots\tau_{n-1}}^{(t)}(z) = \sum_{\mu_1 + \cdots + \mu_{n-1} = t} \frac{t!}{\mu_1! \cdots \mu_{n-1}!} \times \prod_{i=1}^{n-1} (\log \alpha_i)^{\mu_i} \times F_{\tau + \mu_1, \tau_1 + \mu_1, \cdots, \tau_{n-1} + \mu_{n-1}}(z). \]
Together with (12) we obtain

$$|F_{\tau_1 \cdots \tau_{n-1}}(p)| \leq \exp\{-\frac{1}{4}U\}$$

for

$$0 \leq \tau + \tau_1 + \cdots + \tau_{n-1} = T_{r+1} - 1, \quad 0 \leq t \leq T_{r+1} - 1 \quad \text{and} \quad 0 \leq p \leq P_r - 1.$$

From (7) we know that

$$\max_{|z| \leq R} |F_{\tau_1 \cdots \tau_{n-1}}(z)| \leq \exp\{c_3 N^{n+a_2+n+r+r}\delta S(\log S)^2 + (2n+r+4)^6\}$$

for

$$\tau + \tau_1 + \cdots + \tau_{n-1} \leq T_{r+1} - 1.$$

We apply Lemma 7 of \cite{4} to \(F_{\tau_1 \cdots \tau_{n-1}}\) with \(R = P_{r+1}, \ A = 6, \ T = T_{r+1} \) and \(P = P_r\). From (13), (14) and the inequality

$$N^{n+1} \log S \leq \exp\{N^\delta(\log S)^\delta\}$$

we then obtain

$$\max_{|z| \leq P_{r+1}} |F_{\tau_1 \cdots \tau_{n-1}}(z)| \leq \exp\{-2^{-r+3}(n+1+a_2+n+r+r)\delta S(\log S)^2 + (2n+r+5)^6\}.$$

In particular,

$$\max_{|z| \leq P_{r+1}} |F_{\tau_1 \cdots \tau_{n-1}}(p)| \leq \exp\{-2^{-r+3}(n+1+a_2+n+r+r)\delta S(\log S)^2 + (2n+r+5)^6\}$$

for

$$0 \leq \tau + \tau_1 + \cdots + \tau_{n-1} \leq T_{r+1} - 1 \quad \text{and} \quad 0 \leq p \leq P_{r+1} - 1.$$

From (8) and (10) it follows that

$$|\Phi_{\tau_1 \cdots \tau_{n-1}}(p)| \leq \exp\{-2^{-r+4}(n+1+a_2+n+r+r)\delta S(\log S)^2 + (2n+r+5)^6\}$$

for

$$0 \leq \tau + \tau_1 + \cdots + \tau_{n-1} \leq T_{r+1} - 1 \quad \text{and} \quad 0 \leq p \leq P_{r+1} - 1.$$

But for these values of \(\tau, \tau_1, \cdots, \tau_{n-1}\) and \(p\), we can consider \(\Phi_{\tau_1 \cdots \tau_{n-1}}(p)\) as a polynomial in \(\eta, \alpha_1, \cdots, \alpha_n, \gamma_1, \cdots, \gamma_{n-1}\), of degree less than \(T_{r+1} + N\) in \(\eta, KP_{r+1}\) in \(\alpha_1, \cdots, \alpha_n\) and \(T_{r+1}\) in \(\gamma_1, \cdots, \gamma_{n-1}\). If \(B\) denotes the sum of the absolute values of the coefficients, then we have

$$B \leq \exp\{2N^{n+(n+1)+a_2+n+r+r}\delta S(\log S)^2 + (2n+r+4)^6\}.$$

According to Lemma 3 of \cite{4} we thus have either \(\Phi_{\tau_1 \cdots \tau_{n-1}}(p) = 0\) or

$$|\Phi_{\tau_1 \cdots \tau_{n-1}}(p)| \geq \exp\{-c_4 N^{n+1+a_2+n+r+r}\delta S(\log S)^2 + (2n+r+4)^6\}$$

for

$$0 \leq \tau + \tau_1 + \cdots + \tau_{n-1} \leq T_{r+1} - 1 \quad \text{and} \quad 0 \leq p \leq P_{r+1} - 1.$$

Hence, \(\Phi_{\tau_1 \cdots \tau_{n-1}}(p) = 0\) for these \(\tau, \tau_1, \cdots, \tau_{n-1}\) and \(p\). Again from (8) and (10) we obtain
\[|F_{\tau_1 \cdots \tau_{n-1}}(p)| \leq \exp \left\{ -\frac{1}{3}U \right\} \]

for \(0 \leq \tau + \tau_1 + \cdots + \tau_{n-1} \leq T_r + 1 \) and \(0 \leq p \leq P_r + 1 \). The lemma has been proved.

From (11) with \(r = R \) we get

\[|F_{\tau_1 \cdots \tau_{n-1}}(p)| \leq \exp \left\{ -\frac{1}{3}U \right\} \]

for \(0 \leq \tau + \tau_1 + \cdots + \tau_{n-1} \leq T_R - 1 \) and \(0 \leq p \leq P_R - 1 \). From their definitions we have \(T_R = T' \). Since

\[R \geq n - 1 \delta + 2n^2 + n - 1 \]

we see that

\[P_R \geq \frac{1}{2} N^{n^2 - 1 + 2n^3 + 3n^2 - 1} S (\log S)^{n + (2n^2 + n + 1)\delta} \geq P'. \]

Hence,

\[|F_{t_1, \cdots, t_{n-1}}(p)| \leq \exp \left\{ -\frac{1}{3}U \right\} \]

for \(0 \leq \tau + \tau_1 + \cdots + \tau_{n-1} \leq T' - 1 \) and \(0 \leq p \leq P' - 1 \). From (6) it now follows that

\[|F^{(t)}(p)| \leq \exp \left\{ -\frac{1}{4}U \right\} \]

for \(t = 0, 1, \cdots, T' - 1 \) and \(p = 0, 1, \cdots, P' - 1 \).

We apply Lemma 8 of [4] to \(F \) with \(K \) replaced by \(K^\alpha \). Let \(\Omega \) and \(\omega \) have the same meaning as in this lemma. Since the exponents of \(F \) have the form

\[k_1 \log \alpha_1 + \cdots + k_n \log \alpha_n + k_n(\sigma - \eta), \]

we see that

\[\Omega \leq c_5 N^{n + (n^2 - 1)\delta} (\log S)^{1 + (2n + 1)\delta}. \]

With this, the condition

\[T'P' \geq 2K^\alpha M + 13\Omega P' \]

is easily checked. Further, we know from Lemma 1, applied with \(\varepsilon = \delta \), that

\[|k_1 \log \alpha_1 + \cdots + k_n \log \alpha_n| \geq \exp \left\{ -(\log K)^{1 + 2\delta} \right\} \]

\[\geq \exp \left\{ -N^\delta (\log S)^\delta \right\} \]

for all integers \(k_1, \cdots, k_n \), not all zero, with \(|k_1| \leq K - 1, \cdots, |k_n| \leq K - 1 \). From (21) and (5) it follows that

\[\omega \geq \exp \left\{ -N^\delta (\log S)^\delta \right\} - \exp \left\{ -\frac{1}{2}U \right\} \geq \exp \left\{ -2N^\delta (\log S)^\delta \right\}. \]
From (20) we have

\[\Omega \leq \exp \{ N^3 \log S \} \].

From lemma 8 of [4], with (19), (22) and (23) we obtain

\[
\begin{align*}
\sum_{v=0}^{N-1} C_{k_1 \ldots k_{nv}} \eta^v & \leq \exp \left\{ c_6 N^{n^2+n+(n^2+n^2+1)\delta} (\log S)^{n+1+(2n^2+3n+4)\delta} - \frac{1}{2} U \right\} \\
& \leq \exp \left\{ -\frac{1}{2} U \right\}
\end{align*}
\]

for \(k_1, \cdots, k_n = 0, 1, \cdots, K-1 \) and \(m = 0, 1, \cdots, M-1 \).

But according to Lemma 3 of [4] we have either

\[
\sum_{v=0}^{N-1} C_{k_1 \ldots k_{nv}} \eta^v = 0
\]

or

\[
\sum_{v=0}^{N-1} C_{k_1 \ldots k_{nv}} \eta^v \geq \exp \left\{ -2N^{n+1+(n^2+n)\delta} (\log S)^{2+(2n^2+4)\delta} \right\}
\]

for the same values of \(k_1, \cdots, k_n \) and \(m \). Hence,

\[
\sum_{v=0}^{N-1} C_{k_1 \ldots k_{nv}} \eta^v = 0 \quad \text{for} \quad k_1, \cdots, k_n = 0, 1, \cdots, K-1
\]

and \(m = 0, 1, \cdots, M-1 \). Since \(\eta \) has the degree \(N \), it follows that all integers \(C_{k_1 \ldots k_{nv}} \) are zero, in contradiction to their choice. This contradiction proves Theorem 1.

We have the following

COROLLARY: Under the conditions of Theorem 1, there exists an effectively computable, number \(C_3 = C_3 (\epsilon, \log \alpha_1, \cdots, \log \alpha_n, \gamma_1, \cdots, \gamma_{n-1}) > 0 \) such that

\[
|\gamma_1 \log \alpha_1 + \cdots + \gamma_{n-1} \log \alpha_{n-1} - \log \alpha_n - \eta| > \exp \left\{ -C_3 N^{n^2+n+\epsilon} (1+\log S)^{n+1+\epsilon} \right\}
\]

for all algebraic numbers \(\eta \) of degree at most \(N \) and size at most \(S \).

PROOF: There are only finitely many algebraic numbers \(\eta \) of size \(s(\eta) < S_1 \). Choose \(C_3 \geq 1 \) such that (26) holds for these finitely many numbers.

THEOREM 2: Let, for \(n \geq 2, \alpha_1, \cdots, \alpha_n \) and \(\beta_1, \cdots, \beta_n \) be non-zero algebraic numbers such that, for any fixed values of the logarithms, \(\log \alpha_1, \cdots, \log \alpha_n \) are linearly independent over \(\mathbb{Q} \). Let \(\epsilon \) be a positive number. Then there exists an effectively computable positive number \(C_4 = C_4 (\epsilon, \log \alpha_1, \cdots, \log \alpha_n, \beta_1, \cdots, \beta_n) \) such that
for all algebraic numbers ξ of degree N and size S.

Proof: Put $\gamma_i = -\beta_i/\beta_n$ ($i = 1, \cdots, n-1$) and $\eta = -\xi/\beta_n$. Then

$$(-1/\beta_n)(\beta_1 \log \alpha_1 + \cdots + \beta_n \log \alpha_n - \xi)$$

$$= \gamma_1 \log \alpha_1 + \cdots + \gamma_{n-1} \log \alpha_{n-1} - \log \alpha_n - \eta.$$

We have $d(\eta) \leq c_7 N$ with $c_7 = d(\beta_n)$ and, by Lemma 2, $s(\eta) \leq c_8 S$ with $c_8 = 3d(\beta_n) + s(\beta_n)$. From (26) we now obtain

$$|\beta_1 \log \alpha_1 + \cdots + \beta_n \log \alpha_n - \xi|$$

$$= |\beta_n| \gamma_1 \log \alpha_1 + \cdots + \gamma_{n-1} \log \alpha_{n-1} - \log \alpha_n - \eta| >$$

$$|\beta_n| \exp \{-C_3(c_1 N)^{n^2+n+\varepsilon} c_2 S(1 + \log S)^{n+1+\varepsilon}\}$$

$$\geq \exp \{-C_4 N^{n^2+n+\varepsilon} S(1 + \log S)^{n+1+\varepsilon}\}$$

for some effectively computable positive number C_4.

Theorem 3: Under the conditions of Theorem 2, there exists an effectively computable number $C_1 = C_1(\varepsilon, \log \alpha_1, \cdots, \log \alpha_n, \beta_1, \cdots, \beta_n) > 0$, such that

$$\exp \{-C_1 N^{n^2+n+\varepsilon} S(1 + \log S)^{n+1+\varepsilon}\}$$

is a transcendence measure of $\beta_1 \log \alpha_1 + \cdots + \beta_n \log \alpha_n$.

Proof: Apply Lemma 9 of [4] to the result of Theorem 2 and put $C_1 = 6C_4(1 + \log 2)^{n+1+\varepsilon}$.

4. The case $\varepsilon \alpha_1^{\beta_1} \cdots \alpha_n^{\beta_n}$

Theorem 4: Let n be a positive integer. Let α_0 be algebraic and let $\alpha_1, \cdots, \alpha_n$ be non-zero algebraic numbers such that, for any fixed values of the logarithms, $\log \alpha_1, \cdots, \log \alpha_n$ are linearly independent over \mathbb{Q}. Let β_1, \cdots, β_n be algebraic numbers, not all rational. Put

$$\alpha_i^{\beta_i} = e^{\beta_i \log \alpha_i} \text{ for } i = 1, \cdots, n.$$

Let ε be a positive number. Then there exists an effectively computable number $S_2 = S_2(\varepsilon, \log \alpha_1, \cdots, \log \alpha_n, \beta_0, \beta_1, \cdots, \beta_n) > 0$ such that

$$|e^{\varepsilon \alpha_1^{\beta_1} \cdots \alpha_n^{\beta_n}} - \xi| > \exp \{-N^{n^2+2n+2+\varepsilon} S^{n+1+\varepsilon}\}$$

for all algebraic ξ of degree N and size $S \geq S_2$.

Proof: Put $\delta = (2n^3 + 8n^2 + 10n + 4)^{-1}\varepsilon$. For the sake of brevity, put
\[\sigma = e^{\beta_0 \beta_1 \cdots \beta_n} \]

and

\[U = N^{n^2 + 1 + (2n^3 + 8n^2 + 10n + 4)\delta S^{n + 1 + (2n^2 + 7n + 11)\delta}}. \]

It is sufficient to prove that

\[|\sigma - \xi| > \exp \{ -U \} \]

if \(S \geq S_2 \); in this proof we may assume that \(\delta \) is rather small. By \(c_1, c_2, \cdots \) we shall denote positive numbers which depend on \(n, \log \alpha_1, \cdots, \log \alpha_n, \beta_0, \beta_1, \cdots, \beta_n \) only.

Suppose that

\[(29) \quad |\sigma - \xi| \leq \exp \{ -U \} \]

for some algebraic number \(\xi \) of degree \(N \) and size \(S \). We prove that this is impossible if \(S \) is sufficiently large.

Choose the following integers:

\[
\begin{align*}
K &= \left[N^{n^2 + n} S^{1 + (2n + 3)\delta} \right], \\
L &= \left[N^{n^2 + 1 + (n^2 + n)\delta} S^{(2n + 3)\delta} \right], \\
M &= \left[N^{n^2 + 1 + (n^2 + 2n + 1)\delta} S^{1 + (2n + 5)\delta} \right], \\
C &= 2^{\left[\frac{1}{2} \exp \left\{ N^{n^2 + 1 + (n^2 + 2n + 1)\delta} S^{1 + (2n + 6)\delta} \right\} \right]}, \\
T &= \left[N^{n^2 + 1 + (n^2 + 2n + 1)\delta} S^{1 + (2n + 5)\delta} \right] (= M), \\
P &= \left[NS^{2\delta} \right], \\
R &= \left[\frac{n}{\delta} + 2n^2 + 5n + 3 \right], \\
T' &= \left[2^{-RT} \right], \text{ and} \\
P' &= \left[\frac{1}{2} N^{n^2 + n + 1 + (n^2 + 2n + n)\delta} S^{n + (2n^2 + 5n + 4)\delta} \right].
\end{align*}
\]

Put

\[
F(z) = \sum_{k_1=0}^{K-1} \cdots \sum_{k_n=0}^{K-1} \sum_{l=0}^{L-1} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} C_{k_1 \cdots k_n l m v} z^v z^m \\
\times \exp \left\{ \ell \beta_0 z + \sum_{i=1}^{n} (k_i + \ell \beta_i)(\log \alpha_i)z \right\},
\]

where the numbers \(C_{k_1 \cdots k_n l m v} \) are integers of absolute values at most \(C \); they will be specified later.

For \(t = 0, 1, 2, \cdots \) we have

\[(30) \quad F^{(t)}(z) = \sum_{\tau + \tau_1 + \cdots + \tau_n = t} \frac{t!}{\tau! \tau_1! \cdots \tau_n!} \prod_{i=1}^{n} (\log \alpha_i)^{\nu_i} F_{\tau_1 \cdots \tau_n}(z) \]

where
Define \(\Phi_{\tau_1 \cdots \tau_n} \) by

\[
\Phi_{\tau_1 \cdots \tau_n}(z) = \sum_{k_1} \cdots \sum_{k_n} \sum_{l} \sum_{m} \sum_{v} C_{k_1 \cdots k_n l m v} \xi^v \sum_{k} \frac{m!}{(m-k)!} \\
\times z^{m-k} \ell_{-k} \beta_0^{r-k} \prod_{i=1}^{n} (k_i + \ell \beta_i) t_i \exp \left\{ \sum_{i=1}^{n} k_i (\log \alpha_i) z \right\} \xi^z.
\]

For \(\ell = 0, 1, \cdots, L-1 \) and

\[
p = 0, 1, \cdots, \left[Nn^2 + n + 1 + (2n^3 + 7n^2 + 8n + 3) \delta \right] S n + (2n^2 + 5n + 5) \delta
\]

one has

\[
|\sigma^p - \xi^p| \leq lp |\sigma - \xi| (|\sigma| + 1)^p \leq \exp \left\{ -\frac{1}{2} U \right\}.
\]

Hence,

\[
(F_{\tau_1 \cdots \tau_n}(p) - \Phi_{\tau_1 \cdots \tau_n}(p)) \leq \exp \left\{ -\frac{1}{2} U \right\}
\]

for \(\tau, \tau_1, \cdots, \tau_n = 0, 1, \cdots, T-1 \) and

\[
p = 0, 1, \cdots, \left[Nn^2 + n + 1 + (2n^3 + 7n^2 + 8n + 3) \delta \right] S n + (2n^2 + 5n + 5) \delta
\]

We apply Lemma 6 of [4] to the polynomials

\[
P_{\tau_1 \cdots \tau_n p k_1 \cdots k_n l m}(r_1, \tau_1, \cdots, \tau_n = 0, 1, \cdots, T-1 \}; p = 0, 1, \cdots, P-1; \]

\[
k_1, \cdots, k_n = 0, 1, \cdots, K-1; \ell = 0, 1, \cdots, L-1 \text{ and } m = 0, 1, \cdots, M-1, \]

chosen in the appropriate way such that

\[
\Phi_{\tau_1 \cdots \tau_n}(p) = \sum_{k_1} \cdots \sum_{k_n} \sum_{l} \sum_{m} \sum_{v} C_{k_1 \cdots k_n l m v} \xi^v \\
\times P_{\tau_1 \cdots \tau_n p k_1 \cdots k_n l m}(\xi, \alpha_1, \cdots, \alpha_n, \beta_0, \beta_1, \cdots, \beta_n).
\]

If \(r, s \) and \(B \) denote the same numbers as in Lemma 6 of [4], we have

\[
r = T^{n+1} p \leq N^{n^2 + 2n + 2 + (n^3 + 3n^2 + 3n + 1) \delta} S n + 1 + (2n^2 + 7n + 7) \delta,
\]

\[
s = K^n LM \geq \frac{1}{2} N^{n^2 + 2n + 2 + (n^3 + 3n^2 + 3n + 1) \delta} S n + 1 + (2n^2 + 7n + 8) \delta
\]

and

\[
B \leq \exp \left\{ c_1 N^{n+1} + (n^2 + 2n + 1) \delta S^{n+1} (2n+5) \log S \right\}.
\]

From these inequalities it is easy to check the conditions of this lemma. Hence, we can fix the numbers \(C_{k_1 \cdots k_n l m} \) as integers, not all zero, of
absolute values at most C, such that $\Phi_{\tau_1 \ldots \tau_n} = 0$ for $\tau, \tau_1, \ldots, \tau_n = 0, 1, \ldots, T-1$ and $p = 0, 1, \ldots, P-1$. With (32) this implies

(33) \[|F_{\tau_1 \ldots \tau_n}(p)| \leq \exp \{-\frac{1}{3}U\} \]

for $0 \leq \tau + \tau_1 + \cdots + \tau_n \leq T-1$ and $0 \leq p \leq P-1$.

Define T_r and P_r for $r = 0, 1, \ldots, R$ by

\[T_r = [2^{-r}T] \]

and

\[P_r = [(N^{n+1}S)^{\delta}P]. \]

Observe that

(34) \[P_R \leq N^{n^2+n+1+(2n^2+7n^2+8n+3)\delta}S^{n+(2n^2+5n+5)\delta}. \]

Lemma: For $r = 0, 1, \ldots, R$ the inequality

(35) \[|F_{\tau_1 \ldots \tau_n}(p)| \leq \exp \{-\frac{1}{3}U\} \]

holds for all non-negative integers $\tau, \tau_1, \ldots, \tau_n$ and p with $0 \leq \tau + \tau_1 + \cdots + \tau_n \leq T_r-1$ and $0 \leq p \leq P_r-1$.

Proof: We use induction on r. For $r = 0$ the inequality has already been proved in (33). Let r be an integer with $0 \leq r \leq R-1$ for which

(36) \[|F_{\tau_1 \ldots \tau_n}(p)| \leq \exp \{-\frac{1}{3}U\} \]

for $0 \leq \tau + \tau_1 + \cdots + \tau_n \leq T_r-1$ and $0 \leq p \leq P_r-1$. Since

\[F_{\tau_1 \ldots \tau_n}(p) = \sum_{k_1} \cdots \sum_{k_n} \sum_{l_1} \sum_{l_n} C_{k_1} \cdots k_n l m \xi^y \]

\[\times \prod_{i=1}^{n} (\log \alpha_i)^{-\tau_i} \times (z^{m} e^{\beta_0 z^{(t)}}) \times \prod_{i=1}^{n} (e^{(k_1+1)\beta_0 (\log \alpha_i(z))^{(t)}}) \]

it follows that for $t = 0, 1, 2, \ldots$

\[F_{\tau_1 \ldots \tau_n}(z) = \sum_{\mu \mu_1 + \cdots + \mu_n = t} \frac{t!}{\mu! \mu_1 ! \cdots \mu_n !} \]

\[\times \prod_{i=1}^{n} (\log \alpha_i)^{\mu_1} F_{\tau + \mu_1 + \tau_1 + \mu_1, \ldots, \tau_n + \mu_n}(z). \]

Hence, (36) implies

(37) \[|F_{\tau_1 \ldots \tau_n}(p)| \leq \exp \{-\frac{1}{3}U\} \]

for $0 \leq \tau + \tau_1 + \cdots + \tau_n \leq T_{r+1}-1$, $0 \leq t \leq T_{r+1}-1$ and $0 \leq p \leq P_r-1$.

For the same values of $\tau, \tau_1, \ldots, \tau_n$ we obtain from (31)
We apply Lemma 7 of [4] to $F_{z_1 \cdots z_n}$ with $R = P_{r+1}$, $A = 6$, $T = T_{r+1}$ and $P = P_r$. From (37), (38) and (34) we then obtain
\[
\max_{|z| \leq 6P_{r+1}} |F_{z_1 \cdots z_n}(z)| \leq \exp \{ c_2^{n+1 + (n^2 + nr + 2n + r + 1)S^1 + (2n + r + 6)S^2} \}.
\]
Consequently,
\[
|F_{z_1 \cdots z_n}(p)| \leq \exp \{ -2^-(r+3)N^{n+2 + (n^2 + nr + 2n + r + 1)S^1 + (2n + r + 7)S^2} \}
\]
for $0 \leq \tau + \tau_1 + \cdots + \tau_n \leq T_{r+1} - 1$ and $0 \leq p \leq P_{r+1} - 1$. From (32) and (34), it follows that
\[
|\Phi_{z_1 \cdots z_n}(p)| \leq \exp \{ -2^-(r+4)N^{n+2 + (n^2 + nr + 2n + r + 1)S^1 + (2n + r + 7)S^2} \}
\]
for $0 \leq \tau + \tau_1 + \cdots + \tau_n \leq T_{r+1} - 1$ and $0 \leq p \leq P_{r+1} - 1$.

However, for these values of τ, τ_1, \cdots, τ_n and p, we can consider $\Phi_{z_1 \cdots z_n}(p)$ as a polynomial in ζ, α_1, \cdots, α_n, β_0, β_1, \cdots, β_n, of degree less than $L P_{r+1} + N$ in ζ, KP_{r+1} in α_1, \cdots, α_n and T_{r+1} in β_0, β_1, \cdots, β_n. The sum of the absolute values of its coefficients is at most
\[
\exp \{ 2N^{n+1 + (n^2 + 2n + 1)S^1 + (2n + 6)S^2} \}.
\]
According to Lemma 3 of [4] we have either $\Phi_{z_1 \cdots z_n}(p) = 0$ or
\[
|\Phi_{z_1 \cdots z_n}(p)| \geq \exp \{ -c_3^{N^{n+2 + (n^2 + nr + 2n + r + 1)S^1 + (2n + r + 6)S^2}} \}.
\]
Hence,
\[
\Phi_{z_1 \cdots z_n}(p) = 0 \quad \text{for } 0 \leq \tau + \tau_1 + \cdots + \tau_n \leq T_{r+1} - 1 \quad \text{and} \quad 0 \leq p \leq P_{r+1} - 1.
\]
From (32) and (34) we see
\[
|F_{z_1 \cdots z_n}(p)| \leq \exp \{ -\frac{1}{3}U \}
\]
for $0 \leq \tau + \tau_1 + \cdots + \tau_n \leq T_{r+1} - 1$ and $0 \leq p \leq P_{r+1} - 1$, which proves the lemma.

From (35) with $r = R$ we get
\[
|F_{z_1 \cdots z_n}(p)| \leq \exp \{ -\frac{1}{3}U \}
\]
for $0 \leq \tau + \tau_1 + \cdots + \tau_n \leq T_R - 1$ and $0 \leq p \leq P_R - 1$. We have $T_R = T'$. From $R \geq n/\delta + 2n^2 + 5n + 2$ we see...
Thus,

\[|F_{\tau_1, \ldots, \tau_n}(p)| \leq \exp\left\{-\frac{1}{3} U\right\} \]

for \(0 \leq \tau + \tau_1 + \cdots + \tau_n \leq T' - 1 \) and \(0 \leq p \leq P' - 1 \). From (30) we now obtain

\[|F^{(i)}(p)| \leq \exp\left\{-\frac{4}{3} U\right\} \]

for \(t = 0, 1, \cdots, T' - 1 \) and \(p = 0, 1, \cdots, P' - 1 \).

The exponents of \(F \) have the form

\[\ell \beta_0 + (k_1 + \ell \beta_1) \log \alpha_1 + \cdots + (k_n + \ell \beta_n) \log \alpha_n. \]

Let \(\Omega \) and \(\omega \) have the same meaning as in Lemma 8 of [4]. Then

\[\Omega \leq c_4 N^{n+(n^2+n)^\delta} S^{1+(2n+3)^\delta}, \]

from which the condition

\[T'P' \geq 2KL^M + 13\Omega P' \]

follows by direct computation.

The difference of two exponents of \(F \) is of the form

\[\ell \beta_0 + (k_1 + \ell \beta_1) \log \alpha_1 + \cdots + (k_n + \ell \beta_n) \log \alpha_n \]

with integral \(k_1, \cdots, k_n, \ell, \) not all zero, and \(|k_i| \leq K - 1 \) for \(i = 1, \cdots, n \) and \(|\ell| \leq L - 1 \). Moreover, at least one of the numbers \(k_i + \ell \beta_i \) \((i = 1, \cdots, n)\) is non-zero, since \(\beta_1, \cdots, \beta_n \) are not all rational. The degrees of \(\ell \beta_0, k_1 + \ell \beta_1, \cdots, k_n + \ell \beta_n \) are constants. We estimate their heights by means of Lemma 3; we then see that these heights do not exceed

\[c_5(2KL)^{c_6} \leq S^{c_7} \]

in which \(c_5 \) and \(c_6 \) are upper bounds for the heights and degrees resp. of \(\beta_0, \beta_1, \cdots, \beta_n \). From Lemma 1 with \(\varepsilon = \delta \) it follows that

\[|\ell \beta_0 + (k_1 + \ell \beta_1) \log \alpha_1 + \cdots + (k_n + \ell \beta_n) \log \alpha_n| > \exp\left\{- (\log S)^{1+2\delta}\right\}. \]

Hence, the exponents of \(F \) are distinct and

\[\omega > \exp\left\{- (\log S)^{1+2\delta}\right\} > \exp\left\{- S^{\varepsilon}\right\}. \]

From Lemma 8 of [4], using (41), (42) and (43) we obtain the inequality

\[\sum_{v=0}^{N-1} C_{k_1, \cdots, k_m} \xi^v \leq \exp\left\{-\frac{1}{3} U\right\} \]

for \(k_1, \cdots, k_n = 0, 1, \cdots, K - 1; \ell = 0, 1, \cdots, L - 1 \) and \(m = 0, 1, \cdots, M - 1 \).
According to Lemma 3 of [4] we have either

$$\sum_{v=0}^{N-1} C_{k_1 \cdots k_n \ell m v} \xi^v = 0 \text{ or}$$

$$|\sum_{v=0}^{N-1} C_{k_1 \cdots k_n \ell m v} \xi^v| > \exp\{-2N^{n+2+(n^2+2n+1)\delta S t + (2n+6)\delta}\}$$

for the same values of k_1, \cdots, k_n, ℓ and m. It follows that

$$\sum_{v=0}^{N-1} C_{k_1 \cdots k_n \ell m v} \xi^v = 0$$

for all of these values. Since ξ has the degree N, this implies that all integers $C_{k_1 \cdots k_n \ell m v}$ are zero, in contradiction to their choice. The theorem has been proved.

Using the fact, that there are only finitely many algebraic numbers ξ of size $S < S_2$, and using Lemma 9 of [4], one immediately obtains the following theorem:

Theorem 5: Under the conditions of Theorem 4, there exists an effectively computable, number $C_2 = C_2(e, \log \alpha_1, \cdots, \log \alpha_n, \beta_0, \beta_1, \cdots, \beta_n) > 0$ such that

$$\exp\{-C_2 N^{n^2+2n+2+\varepsilon S n+1+\varepsilon}\}$$

is a transcendence measure of $e^{\beta_0 \alpha_1^{\beta_1} \cdots \alpha_n^{\beta_n}}$.

References

