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Introduction

A basic principle of classical Schubert calculus says that each solution
to the general case of an enumerative problem appears with multiplicity
one. The principle is a consequence of the following assertion: Consider
two subvarieties of a Grassmann variety; if the intersection of the one and
a general translate of the other is nonempty, the components each appear
with multiplicity one. This assertion, made in characteristic zero, is listed
as Fact (ii) on p. 338 of Hodge-Pedoe [4], but is inadequately justified by
an analogy.
A simple, elementary proof is given below for the following transver-

sality theorem : Assume the characteristic is zero, and consider two sub-
varieties, Y and Z, of a homogeneous space X. Then, Z intersects a
general translate of Y properly, and transversally if Y and Z are smooth.
In fact, Y and Z need not be subvarieties of X, just be over X (fibered
product replaces intersection); this extension permits drawing Bertini’s
theorem and related results as corollaries. There are two basic principles
involved in the proof. The first is that translating a map from a smooth
variety into a homogeneous space yields a smooth parametrized family
of maps. The second is that, if a parametrized family of maps is smooth,
then the generic individual map is transversal to a given map from a
smooth variety. (There are analogous principles with ’smooth’ replaced
’Cohen-Macaulay’, ’normal’, or the like [cf. (7) below].) The second prin-
ciple is used, more or less explicitly, in a proof of Bertini’s theorem given
in an unpublished preliminary version of part of the treatise. ’Elements
de Geometrie Algebrique’, by A. Grothendieck and J. Dieudonné. It is
also essentially used in Zariski’s proof [10] of Bertini’s theorem. The
formulation here is inspired by the remark after Lemma 4.6 in [1] ;
thanks are due to M. Golubitsky for pointing it out, for suggesting a
proof, given in (3) below, of the first principle, and for remarking that the
theorem carries over to the differentiable case.

The situation is different in positive characteristic. For example [see
(9) below], the Grassmann variety of 2-dimensional subspaces of a 4-
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dimensional vector space contains a smooth subvariety that does not
intersect a certain Schubert variety, nor any translate of it, transversally.
However, the subvariety does not arise from an enumerative problem,
and the principle of Schubert calculus, stated at the beginning, might
still be valid in a useful form in positive characteristic.

In positive characteristic, the transversality result holds if the homo-
geneous space is a projective space. Indeed, the proof of Theorem I, p.
153, of Hodge-Pedoe [4] carries over. An updated version ofit is presented
in (10) below. This version underscores the action of the stability group of
a point on its tangent space; this action is dramatically better in the case
of a projective space than in the case of a more general Grassmann variety,
contrary to the impression given in [4]. This version also yields the form
of Bertini’s theorem given in the unpublished part of the treatise by
Grothendieck and Dieudonné cited above. It is easy, but instructive, to
have examples showing Bertini’s theorem needs more stringent hypo-
theses in positive characteristic. Zariski gives several examples in [10];
another example, one more in the spirit of this article, is given in (13)
below.

Fix an algebraically closed ground field k.

1. LEMMA: Consider a diagram with integral algebraic schemes,

(i) Assume q is flat. Then, there exists a dense open subset U of S such
that, for each point s in U, either the fibered product, p-’(s) x XZ, is empty
or it is equidimensional and its dimension is given by the,f’ormula,

(ii) Assume q is, flat with (geometrically) regular fibers (in short, smooth).
Assume Z is regular. Then, p-1(03C3) x XZ is regular, where a is the generic
point of S, and, if the characteristic is zero, then p - l(S) x X Z is regular for
each point s in an open dense subset of S.

PROOF : 

(i) Since W and X are integral and q is flat, the nonempty fibers of q
are equidimensional with dimension, dim (W) - dim (X), by (EGA IV 2 ,
6.1.1). Hence, clearly, the nonempty fibers of the projection,
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are also equidimensional with this dimension by (EGA IV 2 , 4.2.8). On
the other hand, prZ is flat since q is flat (EGA IV2, 2.1.4), and so, by (EGA
IV2, 6.1.1), the fiber through a point b of W XZ has at b dimension,
dimb ( W x zZ)- dim (Z), because Z is integral. Consequently, W x XZ
is equidimensional, and its dimension is given by the formula,

There exists a dense open subset U1 of S such that, for each s in U,
either the fiber p-1(s) is empty or it is equidimensional and its dimension
is given by the formula,

(in fact, there is a dense open subset of S over which p is flat (EGA IV 2 ,
6.9.1), and it will do (EGA IV2, 6.1.1)). Similarly, since W XZ is equi-
dimensional, there exists a dense open subset U2 of S such that, for
each s in U2 , either the fiber over s of the morphism,

is empty or it is equidimensional and its dimension is given by the
formula,

Now, for each s in S, the associativity formula,

may be rewritten in form,

Consequently, for each s in U = U 1 n U 2 , either p-1(s) x X Z is empty
or it is equidimensional and its dimension is given by formula (1.1).

(ii) Since q is smooth, prZ: W x XZ~ Z is smooth (EGA IV4, 17.3.3 or
EGA IV2, 6.8.3). Hence, since Z is regular, W x XZ is regular (EGA IV2,
6.5.2). Therefore, the generic fiber, (p 0 prw)-1(03C3), is regular because, at
each point, its local ring is obviously equal to the local ring of W x XZ.
If the characteristic is zero, then (p 0 prX)-1(03C3) is geometrically regular
(EGA IV 2, 6.7.4) and so (p 0 prW)-1(s) is (geometrically) regular for each s
in an open dense subset of S (EGA IV 3 , 9.9.4). In view of formula (1.2), the
proof is now complete.
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2. THEOREM : Let G be an integral algebraic group scheme, X an integral
algebraic scheme with a transitive G-action. Let f : Y ~ X and g: Z ~ X
be two maps of integral algebraic schemes. For each rational point s of G,
let s Y denote Y considered as an X-scheme via the map, y - sf (y).

(i) Then, there exists a dense open subset U of G such that, for each ra-
tional point s in U, either the fibered product, (s Y) x XZ, is empty or it is
equidimensional and its dimension is given by the formula,

(ii) Assume the characteristic is zero, and Y and Z are regular. Then,
there exists a dense open subset U of G such that, for each rational point s
in U, the fibered product, (s Y) x XZ, is regular.

PROOF : Consider the map,

By hypothesis, G and Y are intégral ; hence, G x Y is integral because the
ground field is algebraically closed (EGA IV 2 , 4.6.5). Therefore, q is flat
over a dense open subset V of X (EGA IV2, 6.9.1). Make G act on G x Y
through the first factor; obviously, then q is a homogeneous map. By
hypothesis, G acts transitively on X ; hence, the translates, SV; as s runs
through the rational points of G, form an open covering of X. Since q
is homogeneous, each restriction, q-1(sV)~SV, is isomorphic to the
restrictions, q-1(V) ~ V ; hence, each is flat. Thus, q is flat.
Assume the characteristic is zero and Y is regular. Since G is also regular

(G is reduced and homogeneous) and since the ground field is algebraically
closed, G x Y is regular (EGA IV2, 6.8.5). Hence, obviously, the generic
fiber of q is regular; so it is geometrically regular because the charac-
teristic is zero (EGA IV2, 6.7.4). Therefore, the fibers of q over the points
in a dense open subset of X are geometrically regular (EGA IV 3 , 9.9.4).
Since G acts transitively on X and q is a homogeneous map, it follows
that every fiber of q is geometrically regular.
The assertions obviously now follow from (1) applied with G for S,

with G x Y for W, with the projection from G x Y to G for p, and with q
as above.

3. REMARK : In (2), assume, for each rational point x of X, the differential
of the map,

is surjective at each rational point of G; this is always the case in charac-
teristic zero, and commonly occurs in positive characteristic. Then,
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clearly, the differential of the map, q : G x Y - X, is also surjective at each
rational point; hence, q is smooth (EGA IV4, 17.11.1). Nevertheless, the
hypothesis in (2, (ii)) that the characteristic be zero is needed to apply
(1, (ii)) and cannot be eliminated.

4. COROLLARY : Let G be an integral algebraic group scheme, X an
integral algebraic scheme with a transitive G-action. Let Y and Z be integral
subschemes of X.

(i) There exists a dense open subset U of G such that, for each rational
point s in U, the translate, sY, and the subscheme Z intersect properly, that
is, each component of their intersection has dimension, dim ( Y) + dim (Z) -
dim (X).

(ii) Assume the characteristic is zero and Y and Z are regular. Then, there
exists a dense open subset U of G such that, for each rational point s in U,
the subscheme, sY and Z, intersect transversally, that is, the intersection,
(s Y) n Z, is regular and has pure dimension, dim ( Y) + dim (Z) - dim (X).

PROOF : The assertions result from (2), applied with the inclusion maps
of Y and Z into X for f and g.

5. COROLLARY (Bertini’s theorem): Assume the characteristic is zero.
Then, a general member of a linear system on an integral algebraic scheme
Z is regular off the base locus of the system and the singular locus of Z.

PROOF: Discarding the base locus and the singular locus - both,
closed subsets of Z - we may assume the system has no base points and
Z is regular. Then, the system defines a map g of Z into a suitable pro-
jective space X in such a way that its members are exactly the scheme-
theoretic inverse images of the hyperplanes. The group G of automor-
phisms of X (or, just as good, the corresponding general linear group)
acts transitively on X and on the set of hyperplanes. Hence, the assertion
results from (2), applied with the inclusion map of a fixed hyperplane Y
into X for f.

6. REMARK : (5) generalizes easily. Let Z be an integral algebraic scheme,
E a locally free sheaf with a finite rank r, and V a finite dimensional vector

space of global sections of E generating E. Fix integers n and m satisfying
the (natural) inequalities,

1 ~ n ~ dim(V) and max (0,r-dim(V)+n) ~ m min (n, r).

Take n general, linearly independent elements of V, and consider the
subscheme of Z of points t at which they span a subspace of E O k(t)
with dimension at most m. Then, either this subscheme is empty or it has

pure codimension, (r - m)(n - m) ; moreover, if Z is regular and the charac-
teristic is zero, then it is regular except exactly at the points t at which the
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n sections span a subspace of E (D k(t) with dimension at most (m-1),
(it is regular everywhere if m = 0).

Indeed, there is a natural map g of Z into the Grassmann variety X of
r-dimensional quotients of V in such a way that the subscheme of Z in
question is the scheme-theoretic inverse image of an analogous subscheme
of X, which is a Schubert scheme (the one denoted in [6] by 03C3(n-m)(A)
where A is the subspace of V generated by the n elements). It is known
[6, 2.9, for example] that each Schubert scheme of this sort has pure
codimension, (r-m)(n-m), and that, in any characteristic, its singular
locus is the Schubert scheme obtained by replacing m by (m-1). Hence,
the assertion results by (2).
Taking r = 1 and m = 0 yields (5) because the members of a linear

system without base points are the schemes of zeros of the elements of a
finite dimensional vector space of global sections of an invertible sheaf.

7. REMARK: It is easy to prove similarly the analogous forms of (1, (ii)),
of (2, (ii)), of (4, (ii)), of (5) and a strengthened, analogous form of (6) with
the adjective ’regular’ replaced throughout by the adjective ’Cohen-
Macaulay’ (resp. ’normal’, ’reduced’, ’locally integral’ etc.); in the new
from of (6), the subscheme of Z can be proved Cohen-Macaulay, etc.,
everywhere because the corresponding Schubert variety is so [3, 5, 7, 8,
or 9]. In the forms with ’Cohen-Macaulay’, the characteristic can be
arbitrary.

8. COROLLARY: Let G be an integral algebraic group scheme, X an inte-
,gral (regular) algebraic scheme with a transitive G-action. Let Y and Z
be integral subschemes of X. Assume either the characteristic is zero or the
induced action of G on the projective tangent variety PTX (= P(Ql)) is
transitive. Then, there exists a dense open subset U of G such that,, f’or each
rational point s in U, the intersection, (s Y,) n Z, is proper and each of its
components appears with multiplicity one, that is, there exists a dense open
subset of (sY) n Z that is regular and has pure dimension, dim (Y) + dim (Z)
- dim (X).

PROOF : Let Y’ (resp. Z’) denote the open set of regular points of Y
(resp. of Z). Clearly, (4, (i)) implies that, for each rational point s in a dense
open subset U’ of G, the following four intersections are proper :

Hence, by dimension considerations, (s Y’) n Z’ is a dense (open) subset
of (sY) n Z for each such s ; moreover, it is equidimensional and its dimen-
sion is given by the formula,



293

Assume the characteristic is zero. Then, (4, (ii)) implies that, for each
rational point s in a dense open subset U of G contained in U’, the dense
open subset (s Y’) n Z’ of (s Y) n Z is regular and has pure dimension,
dim ( Y) + dim (Z) - dim (X), as desired.
Assume the induced G-action on PTX is transitive. Then, (4, (i))

implies that, for each rational point s in a dense open subset U of G con-
tained in U’, the subschemes s(PT Y’) and PTZ’ of PTX intersect
properly. Fix such an s, and consider the projection,

Since p is surjective and the two intersections are proper, there is a dense
open subset V of s Y’ n Z’ over which the fibers of p have dimension,
dim (Y) + dim (Z) - dim (X) - 1. Hence, at each rational point of V, the
tangent spaces to s Y’ and Z’ meet in a vector space with dimension,
dim (Y) + dim (Z) - dim (X). Therefore, V is a dense open subset of

(s Y) n Z that is regular and has pure dimension, dim ( Y) + dim (Z) -
dim (X), as desired.

9. EXAMPLE (showing some auxiliary hypothesis is necessary in (8)) :
Let X be the Grassmann variety of 2-dimensional subspaces of a 4-
dimensional vector space v Fix an element f of V, and let Y = Y( f )
denote the Schubert scheme parametrizing the subspaces containing f.
Locally, X can be coordinatized as the affine space of 2 x 2-matrices
(tu) via a choice of basis, (el, e2, e3, e4), of v and a decomposition of the
basis into two subsets of two elements, say, (el, e2) and (e3, e4), [6, 1.6,
for example]. In this coordinate patch, Y is defined by the following two
linear equations [6, 2.3, for example] :

where the si are determined by the relation,

In particular, Y is obviously smooth.
Assume the characteristic is p &#x3E; 0. Fis the coordinate patch U, and

define a subscheme Z of U by the following two équations :

The differentials of these equations are
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Since they are linearly independent, Z is smooth.
Assume s4 and (s3 + s4) are nonzero. Then, solving the equations de-

fining Y and Z simultaneously shows that Y and Z have exactly one point
in common. Now, we obviously have the relation,

Therefore, Y and Z do not intersect transversally.
The general linear group G of V acts transitively on X, and clearly

we have the formula,

Consequently, for each rational point s in a dense open subset of G, the
regular subschemes, sY(f) and Z, of X do not intersect transversally,
in fact, their intersection consists of a single, non-reduced point.

10. THEOREM : Let G be an integral algebraic group scheme, X an integral
algebraic scheme with a transitive G-action. Assume that, for each rational
point x of X, the induced homomorphism,

from the stability group of x into the general linear group of the tangent
space of X at x, is surjective. Let f : Y - X and g : Z ~ X be two maps of
integral algebraic schemes. Assume f and g are unramified ( for example,
embeddings). Then, there exists a dense open subset U of G such that, for
each rational point s of U, the fibered product, (s Y) x x Z, where s Y denotes
Y considered as an X-scheme via the map, y ~ sf (y), is empty or regular
with pure dimension, dim ( Y) + dim (Z) - dim (X).

PROOF : Since f is unramified, the map f*03A91X ~ 03A91Y is surjective
(EGA Iv4, 17.4.2, c)). So, there is a canonical closed embedding of
P T Y = P(03A91Y) in (PTX) x x Y = P(f*03A91Y); it corresponds to a (linear)
map, PTf : PT Y - PTX, lifting f. Similarly, since g is unramified, there
an analogous map, PTg:PTZ ~ PTX.
The projections, PTY ~ Y, etc., induce a map,

where G x PT Y is considered as a PTX-scheme via the map, (s, t) ~
s(PTf(t)), the action of G on PTX being the one lifting that of G on X,
and where GX Y is considered as an X-scheme via the map, (s, y) H sf ( y).
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Since the projections are proper, h is proper. Hence, the following set is
closed :

v = {v~(G  Y) XZ|dim(h-1(v)) ~ dim(Y)+dim(Z)-dim(X)+1}.
Let s, x, y, z be rational points of G, X, 1’: Z, and assume the relation,

x = sf(y) = g(z), holds. Since f and g are unramified, the projective
tangent spaces, PTy(Y) and P7z(Z), can be considered as (linear) sub-
spaces of PTx(X) via PTf and PTg. It is easy to see that the point, v =

(s, y, z), of (G x Y) x XZ lies in V if and only if the following inequality
holds :

(10.2) dim((sPTy(Y)) n PTz(Z)) ~ dim(Y)+dim(Z)-dim(X)+1.

In general, let A and B be subspaces of a vector space C, let a, b and c
denote the respective dimensions, and let p be an integer satisfying the
condition,

It is well-known that the closed set,

has codimension, p(c-a-b+p). (The set maps onto the Schubert

variety parametrizing the a-dimensional subspaces of C that meet B in a
space of dimension at least p.)
Consider the natural map, r : V ~ Y x Z. Fix a rational point (y, z) of

Y x Z, and let s be a rational point of G. Obviously, the point (s, y, z) of
(G x Y) x XZ lies in the fiber r-1(y, z) if and only if it lies in V, so if and only
if the inequality (10.2) holds. Hence, since the map (10.1) is surjective, the
general fact just recalled yields the formula,

Therefore, there is an inequality,

(In fact, equality holds because, as is easy to see, r is surjective.)
In view of (10.3), the natural map from V into G is not surjective. Hence,

the complement in G of the closure of the image ov V is a dense open set
U. Fix a rational point s of U. Let y and z be rational points of Y and Z,
and assume the relation, sf(y) = g(z), holds. Then, clearly, the following
equality holds:

It follows that (s Y) x x Z is regular with dimension, dim ( Y) + dim (Z) -
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dim (X), at (y, z) ; this is a local matter, which is easily verified using the
completions, for an unramified morphism is analytically a closed embed-
ding (EGA IV4, 17.4.4, f")). Thus, (sY) XZ is empty or regular with
dimension, dim ( Y) + dim (Z) - dim (X).

11. COROLLARY : Let X be projective n-space, G the corresponding
general linear group. Let f : Y - X and g : Z - X be two unramified maps of
integral algebraic schemes. Then, there exists a dense open subset U of G
such that, for each rational point s in U, the product, (s Y) x x Z, where s Y
denotes Y considered as an X-scheme via the map, y ~ sf (y), is empty or

regular with dimension, dim ( Y) + dim (Z) - n.

PROOF : Let x be a rational point of X. Coordinatize X so that x becomes
(1, 0, ···, 0) and, using the dual numbers, identify the tangent space
Tx(X) with the set of (n + 1 )-typles (1, b1 8, ..., bn 8) where the bi are

arbitrary scalars and 03B52 is equal to zero. Then, a matrix m in the general
linear group, Gl(Tx(X)), is obviously the image of the matrix (1 0m) in the
stability subgroup G, of x. Thus, the homomorphism (10.1) is surjective,
and the assertion follows from (10).

12. COROLLARY (Bertini’s theorem in arbitrary characteristic): A
general member of a linear system without base points on a regular, integral
algebraic scheme Z is regular i,f’the system separates infinitely near points,
that is, if the system defines an unramified map g of Z into a suitable projec-
tive space X.

PROOF: The assertion results from (11), applied with the inclusion map
of a fixed hyperplane Y into X for f

13. EXAMPLE (showing some auxiliary hypothesis is necessary in Ber-
tini’s theorem in characteristic p &#x3E; 0): Let Z be the affine plane of
variables x, y. The equations,

define a finite, surjective map g from Z onto the affine (u, v)-plane. (It is
ramified along the y-axis). The corresponding linear system on Z consists
of the curves defined by the equations,

where a, b, c are arbitrary scalars. Obviously, we have the formula,

So, if a is nonzero, the curve, Fa, b, c = 0, has a unique singular point at
x = 0, y = (ela)’11.
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