
COMPOSITIO MATHEMATICA

M. LEJEUNE-JALABERT

B. TEISSIER
Normal cones and sheaves of relative jets
Compositio Mathematica, tome 28, no 3 (1974), p. 305-331
<http://www.numdam.org/item?id=CM_1974__28_3_305_0>

© Foundation Compositio Mathematica, 1974, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation
commerciale ou impression systématique est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1974__28_3_305_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


305

NORMAL CONES AND SHEAVES OF RELATIVE JETS 1

M. Lejeune-Jalabert and B. Teissier

COMPOSITIO MATHEMATICA, Vol. 28, Fasc. 3, 1974, pag. 305-331
Noordhoff International Publishing
Printed in the Netherlands

Introduction

Given a subscheme, (or analytic subspace) Y of a relative scheme (or
analytic space) X/S, one may wish to link the tangent cones of the fibers
of X/S at points of Y with the normal cone of X along Y. (which generalises
the normal bundle; see (1.8)). The main result of this work (see th. 2.3
and its avatar th. 3.6) is that if we imbed Y in Y x s Y and X x s Y diago-
nally, there exists a canonical sequence of morphisms of normal cones

which is ’exact’ in the sense that Cx, y is a quotient of Cx x sy, y by a
natural action of Cy x SY, y, if Y is smooth over the base S. Hence, in that

case, Cx, y is flat over Y if and only if CX sY, y is, and then the fiber of this
last space above a point of Y is nothing but the tangent cone at this point
to the fiber of X/S. The geometric meaning is that the various tangent
cones to the fibers of X/S at points of Y glue up into a nice flat family
parametered by Y if and only if Cx, y is flat over Y

This exact sequence of normal cones gives rise locally to a split
sequence of graded Algebras, looking only at the terms of degree 1, we
must get an exact sequence of Modules and this is nothing but the well-
known sequence

The main result enables us to give, for a notion of relative normal flatness
which we introduce in Section 3, a numerical criterion similar to Bennett’s
in [1], and to prove the existence of a relative Samuel stratification, i.e. a
partition of X into subschemes (or subspaces) such that two points belong
to the same subscheme (or subspace) if and only if the Samuel function
of the fibers of X/S through these points are equal. (See Section 4).

Notations

Throughout this paper we work either in the category of schemes or in
the category of analytic spaces defined over a valued, complete, non

1 This research was supported by the C.N.R.S., Paris and NSF GP 9152.
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discrete, algebraically closed field. By scheme, we mean a non necessarily
separated one.

If X is a scheme (resp. analytic space), we note (9x the structural sheaf
of rings on X. If x is a point in X, OX,x (resp. mx, x) (resp. x(x)) is the local
ring of X at x (resp. its maximal ideal) (resp. its residue field).

Let ff be an (9x-Module, Fx is the stalk of 3F at x, F(x) =
Fx ~OX,x K(x) is the fiber of F at x.

0. Smooth morphisms and regular immersions

We recall here some basic properties we shall use in the later sections.
For more details (maybe not strictly necessary at the first reading) one
may refer to [4] exposé 2 or [5] Ch. IV, § 16 and 17, Ch. 0, § 15 and 19,
and [2] exposé 13.
From now on the topological structure on a noetherian local ring 0

will always be that defined by its maximal ideal and completion will
mean with respect to this topology.

0.1. Let us recall A being a topological ring, B, A’ topological A-
algebras, if B is formally smooth over A, B ~A A’ is formally smooth
over A’. (In particular, if P is a prime ideal in A, A p the localization of A
at P, B p = B~AAP is formally smooth over Ap).

0.2. If B is formally smooth over A, C formally smooth over B, C
viewed as an A-topological algebra is formally smooth over A.

0.3. B is formally smooth over A, if and only if B is formally smooth
over Â.

0.4. If A ~ B is a local morphism of noetherian local rings, m (resp. K)
the maximal ideal (resp. residue field) of A, B is formally smooth over A
if and only if B is A-flat and B/mB = B (8) A K is formally smooth over K
([5], 0.19.7.1).

0.5. If A is a local noetherian k-algebra where k is a field, K its residue
field, if K is an extension of finite type of k, A is formally smooth over k
if and only if A is geometrically regular (i.e., for every finite extension k’
of k, the semi-local ring A Qk k’ is regular).

0.6. Assumptions as in (0.5). Moreover assume k = K. Then A is for-
mally smooth over k if and only if Â is k-isomorphic with some ring of
power series k[[T1,’ ° °, Tn]] ([5], 0.19.6.4).

0.7. From (0.4) and (0.6), one may easily deduce that if A ~ B is a local
morphism of noetherian local rings residually trivial, B is formally
smooth over A if and only if B is A-isomorphic with some ring of power
series Â[[T1, ..., Tn]] ([5], 0.19.7.1.5).
0.8. Let k be a field, K an extension of k. K is formally smooth over k

if and only if K is a separable extension of k ([5], 0.19.6.1).
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0.9. Let S be a locally noetherian scheme (resp. analytic space), f: X ~ S
a morphism of schemes locally of finite type (resp. of analytic spaces).
Let x be a point in X, s = f (x).
The following conditions are équivalent : 

(1) f is smooth at x.
(2) (!Jx, x is formally smooth over OS,s.
(3) f is flat at x and the canonical morphism f, X, = f-1(s) ~ Spec k(s)

is smooth at x.

(4) f is flat at x and OXs,x is geometrically regular. If K(X) = K(S) (auto-
matically satisfied in the analytic case), then the conditions (1) to (4)
are also equivalent to the following one.

(5) OX,x is (9s,, isomorphic to some ring of power series S,s[[T1,···, Tn]].
0.10. A smooth morphism remains smooth after base extension.
0.11. The composition of smooth morphisms is a smooth morphism.
0.12. Assumptions as in (0.9). If f is smooth at x, OX,x is a reduced ring

if and only if (9s,, is reduced.
0.13. Assumptions as in (0.9). The set of points where f is smooth is

open in X (perhaps empty).
0.14. Let k be a field, X an algebraic scheme over k. Assume X is

integral. X is smooth over k at its generic point if and only if its function
field is a separable extension of k.

Let us now come to regular immersions : 
0.15. Let i : Y ~ X be an immersion of noetherian local schemes (resp.

germs of analytic spaces). Let y be the closed point of Y (resp. the picked
point on the germ Y), the following conditions are équivalent : 
(1) i is a regular immersion.
(2) Xy = Ker (9x, y ~ OY,y is generated by a regular sequence of elements

for (Px, y.
(3) The canonical morphism SymOY,y [Jy/J2y] ~ gr5y (9x, y is an iso-

morphism and Jy/J2y is a free-(9y, y-Module.
(4) Let X = Spec X,y,  = Spec Y,y, î  ~ X is a regular immersion.

0.16. Assumptions as in (0.15). Let S be a noetherian local scheme (resp.
germ of analytic space), s its closed point (resp. picked point). Assume that
X and Y are S-schemes (resp. analytic spaces), i is an S-immersion and

Y is flat over S. The condition (1) to (4) are equivalent to the following one : 
(5) X is flat over S and is:Ys ~ X, where x (resp. X,) is the fiber of Y

(resp. X)over s is a regular immersion.
0.17. Assumptions as in (0.16). Assume that Y and X are smooth over S.

Then i is a regular immersion.
0.18. Assumptions as in (0.17). If the residual extension K(s) - K(X) is

trivial then there exist S,s-isomorphisms 
yl, Ys]], E2 : éy, y - S,s[[Y1,···, Ys]], such that the diagram (of
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(3s, s-algebras):

where 03C9 is the canonical projection, is commutative.
0.19. Let i : Y ~ X be an immersion of schemes (resp. analytic spaces).

i is a regular immersion at y E Y if the immersion iy induced on the local
schemes (resp. germs of analytic space) at y is a regular immersion. i is a

regular immersion if it is at every point y E Y
0.20. If i is a regular immersion at y, there exists an open neighborhood

U of y in X such that  regular immersion.
0.21. i : Y ~ X is a regular closed immersion if and only if: J being the

Ideal defining Y in X, J/J2 is a locally free (9y-Module and the canonical
morphism Sym(9y [J/J2] ~ grJ (9x is an isomorphism.

0.22. Let fi X - S be a morphism of schemes locally of finite type
(resp. of analytic spaces). Assume the scheme S is locally noetherian. Let
i : Y ~ X be an S-immersion. Let y be a point in Y. If X is smooth over S
at i(y) and Y smooth over S at y, i is a regular immersion at y.

0.23. Let f : X ~ S as in (0.22). Let 11 f: X ~ X x sX be the diagonal
immersion. If f is smooth at x, 11 f is a regular immersion at x. (Apply
0.22+0.10+0.11).

0.24. Conversely if 11 f is a regular immersion at x and f is flat at x,
f’ is smooth at x.

1. Some functorial properties of Yxls, gry and a nice commutative
diagram

We recall here some definitions and properties of the differential in-
variants used in the categories of schemes and analytic spaces. The reader
is referred in the algebraic case to [5], Chap. IV, § 16, in the analytic
case to [2], exposé n’. 14.

1.1 Let f:X ~ S be a morphism of schemes (resp. analytic spaces),
0394f:X~X SX the diagonal immersion, i = 1,2: pi:X SX~X the
canonical projections. There exists a projective system of (9x-Algebras
(JnX/S)n~0 called the system of relative jets of X/S. (One calls it also the
system of relative principal parts.)
For simplicity, assume 11 f is a closed immersion and let D be the

associated OX SX-Ideal. JnX/S = p1*(OX sX/Dn+1). Let
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1.2. If S is a locally noetherian scheme and f is locally of finite type or
if f is a morphism of analytic spaces, n ~ 0, JnX/S is a coherent OX-Module.

1.3 Let i : Y ~ X be an immersion. Let us define JX/S(Y) = i*(X/S).
1.4. Let gr0 JX/S(Y) = OY, n ~ 1,

~n~0 grn JX/S(Y) has a canonical structure of OY-Algebra called

gr JX/S(Y). If i = idx, we write simply gr Yxls instead of gr JX/S(X).
Note that by definition gr 1 Yxls = Qlls and (9x being (9x-flat,

grl JX/S(Y) = i*(03A91X/S).
1.5. Let us recall that the nth infinitesimal neighborhood of Y for i is

(if i is a closed immersion and denotes the associated (9x-Ideal) the
subscheme (resp. analytic subspace) of X defined by Jn + 1.

1.6. Finally, let us denote by gry X the graded (9y-Algebra associated
with i. Again if i is closed, gry X is grJ (9x = ~n~0 Jn/Jn+ 1.

1.7. If S is a locally noetherian scheme and f is locally of finite type,
or if f is a morphism of analytic spaces, grY X is an (9y-Algebra of finite
presentation.

1.8. If Cx, y is Spec gry X (resp. Specan gry X) the canonical morphism
Cx, y ~ y is the normal cone of X along Y
Given a commutative diagram

where i and i’ are immersions, one gets canonical maps : 

1.12. If the diagram on the right hand side is cartesian, then (1.9) is an
isomorphism.

1.13. If h is flat and the diagram on the left hand side is cartesian, then
(1.10) is an isomorphism.

1.14. Let y be a point in Y, s its image in S, Xx, Yx, Ss the local scheme,
(resp. germ of analytic space) of X at x, Y at x, S at s. The stalk of JX/S(Y),

gr JX/S(Y), gry X at y is JXy/Ss(Yy), gr  gryy Xy.
1.15. Given an immersion i:Y~X of S-schemes (resp. S-analytic

spaces), we get canonically immersions of S-schemes (resp. S-analytic
spaces)

03B4(i): Y ~ X x s Y, 03B4’(1) Y sY~X SY such that
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is commutative, hence graded (9y-Algebras gry Y x s Y and gry X x s Y
and normal cones CY SY,Y and CX SY,Y.

1.16. Let us note that, if X and S are Spec of complete noetherian local
rings and if the associated residual extension is trivial, Y x s 1: X x sX,
X x s Y are local schemes. Denote by  the Spec
of the completion of their respective local rings. We obtain commutative
diagrams : 1

The canonical morphisms gry X x s Y - gry X ; s Y and gry Y x s Y ~
gry Y S Y are isomorphisms. If  is the ideal defining X in XSX,
JnX/S is canonically isomorphic to 

1.17. Let us consider the following commutative diagram of graded
(9y-Algebras: 

where a and 03B2 arise from the functoriality property (1.11) and the com-
mutative diagram: 

where 03B2’ arises from the functoriality property (1.10) and the commutative
diagram



311

where 03B1’n, 03BBn, y,,, the homogeneous component of degree n of a’, 03BB,03BC are
induced respectively by:

the (9s-linear map obtained from the action of

Note that Mn = An(Id Y).

LEMMA (1.18): The (9y-Algebra JnX/S(Y) is canonically (9y-isomorphic to
the structural sheaf of nth infinitesimal neighborhood of Y for the immersion
03B4(i), (9y,,,,[n] endowed with the structure of (9y-Algebrafrom the projection
XxSYon Y.

PROOF : From the commutative diagram : 

and property (1.12) we get an isomorphism of Wy-Algebras 

Applying now [5] Chap. IV.16.4.11, resp. [2], with the section 03B4(i), we
have now an isomorphism of OY-Algebra:

But i = p1o03B4(i), so finally the isomorphism of OY-Algebras:

LEMMA (1.19) : 03BB and J1 of diagram 1.17 are isomorphisms.

It is enough to prove that 03BB is an isomorphism. From Lemma (1.18),
we get a canonical isomorphism: grn JX/S(Y) ~ grnY X X S Y It is easy to
see that it is reciprocal of 03BB.

REMARK (1.20): If S is a locally noetherian scheme and f is locally
of finite type, or f is a morphism of analytic space, gr JX/S(Y) is an
(Çy-Algebra of finite presentation. Immediate from (1.7) and (1.19).

REMARK (1.21): If f: Y - S is smooth over S at x, the stalk at x of 03A91Y/S
is a locally free OY,y-module and its symmetric algebra is canonically
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isomorphic to the stalk at x of gr JY/S. Immediate from (1.19) and (0.23),
(0.21).

2. The key exact séquence of cones

Given Ya scheme (resp. analytic space), we say that C is a Y cone if C
is Y isomorphic to the Spec (resp. Specan) of an OY-positively graded,
augmented Algebra of finite presentation generated by its degree 1

elements. It is equivalent to saying that there exists on C an action of the
multiplicative group Gm, y induced by a Y immersion of C in a locally
trivial Y vector bundle. We note (0) = Spec (9y (resp. Specan Cy).
Remark that we have canonical Y morphisms, p:C~(0), v:(0)~C.

p is the structural morphism, v is the vertex.

DEFINITION (2.1): Let (0)~C’~~ sequence of Y
morphisms of Y-cones. We say that it is exact if there exists a covering
(Yi)i~I of Y by open sets such that if Ci = C x Y Y, C’ = C x Y Y, C"i =
C x y Y there exists a commutative diagram of Y-cones

where : 

(i) the vertical arrows are closed immersions

(ii) the upper horizontal sequence is an exact and split sequence of trivial
vector bundles (i.e., Spec (resp. Specan) of the symmetric Algebra of a
free (9y,-Module)

(iii) the action of C’i by translation on Vi induces an action on Ci and Pi
induces a Y-isomorphism of Ci/03B1i(C’i) on Ci’.

We leave to the reader as an exercise to check that (iii) may be changed
to:

or

(iii") A splitting of the upper exact sequence induces a left inverse of oci,
so that the induced morphism Ci - C’i x YlC"i is a Y-isomorphism.

REMARK (2.2) : Note that if (0) ~ C’ 03B1 C 14- C" ~ (0) is exact, a is an

immersion and f3 is surjective.

THEOREM (2.3) : Let X be an S-scheme, i : Y - X an S-immersion. Assume : 
(1) X and S are local schemes, Spec of noetherian complete local rings
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(2) x (resp. s) being the closed points of X (resp. S), the residual extension
K(s) ~ K(x) is trivial

(3) Y is formally smooth over S at x.
Then the canonical sequence

is an exact sequence of Y-cones.

PROOF : Let 0 (resp. A) (resp. S) be the local ring of X (resp. Y) at x,
(resp. S) at s. Let M be the maximal ideal of 0 and choose T = (03C41,···, Tn)
to be a system of generators of M. Let t/1: S[[t]] ~ 0 be the S-morphism,
such that 1 ~ i ~ n, 03C8(ti) = Li. t/1 is surjective. From (2) it follows that
O=S+M.
Take f~O. Thus there exists f0~S, hi~O, such that:

Now, applying to each hi the same process, and so on, we get for
03B1=(03B11,···,03B1n), f03B1~S, such that : f=03A303B1:|03B1|~n f03B103C4 where

H = 03B11 + ... + 03B1n, 03C403B1 = 03C403B111 ... inn. 0 being complète f = 03A303B1f03B103C403B1 and
03C8 being continuous f = 03C8(03A303B1f03B1t03B1). Let R = S[[t]], Z = Spec S[[t]] ;
then, we have an S-immersion of X in Z formally smooth over S at x.
From [5] (0.19.6.4 and 0.19.7.1), the S-algebra A is S-isomorphic to

a ring of formal power series over S, S[[y]]. Hence, we have a surjective
S-morphism 03C8: S[[t]] ~ S[[y]]. We can find (cf. 0.18) an S-isomorphism
03BB:S[[y, z]] ~ S[[t]] such that

So, up to S-isomorphisms, the S-immersion of Y in Z corresponds to the
canonical projection S[[y, z]] ~ S[[y]].
By functoriality, we get a commutative diagram (of Y cones)

corresponding to the following one (of A-algebras)
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Condition (i) appears to be trivially satisfied.
Look now at condition (ii). As already observed in Section 1, one does

not change the normal cones by replacing the usual tensor product by
the completed one. For simplicity, call x the closed point of Z, Y x S Y,
X  s Y: Z S Y; we have a commutative diagram of S-algebras :

where vertical arrows are S-isomorphisms, ~1(y) = y, ~1(z) = z, ~2(y) = y,
(P2(Z) = 0, ~2(y’) = y’. So the ideal of OZSY,x (resp. OYSY,x) defining Y
in Z x S Y (resp. Y x S Y) appears to be generated by (z, y - y’) (resp.
(y - y’)). Consider now the commutative diagram (of S-algebras)

6 and ao are S-isomorphisms and 6(y - y’) = y".
Now we can identify gry Z (resp. gry Z x s Y) (resp. gry Y  S Y) with

gr(z) S[[y, z]], (resp. gr(z, y’’) S[[y, z, y"]]), (resp. gr(y’’) S[[y, y"]]), à with
gr (03C3·~1),  with gr (CP2). Finally, by letting : Z = cl z mod (z)2 or

mod (z, y")2, Y" = cl y" mod (y")’ or (z, y")2 (as no confusion may pos-
sibly happen), it turns out that: :S[[y]][z] ~ S[[y]] [Z, Y"] is simply
the canonical injection, : S[[y]][Z, Y"] ~ S[[y]][Y"] is simply the
canonical projection, so that (ii) holds clearly.
We shall prove now that (iii’) is satisfied, i.e., that: 

is a cocartesian diagram (in A-algebras). The vertical arrows being sur-
jective, this amounts to saying that the ideal generated in gry Z  S Y by
the image of the kernel of the left hand side arrow is the kernel of the
right hand side arrow.
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Recall now ([7] IL2. Lemma 5) that, B being a noetherian ring, I, J
ideals in B, by definition, the sequence 0 ~ in J (B, I) - grj B - grj B /1 - 0
is exact. If, for f ~ B, f ~ 0, we note vj(f’) = (sup n: f E Jn} and ini f =
cl f mod J03BDJ(f)+1, it is easily seen that inJ(B, I ) is generated by all inj f
with f~I, f ~ 0.

If I is the ideal in S[[y, z]] defining X in Z, the ideal K generated by
~1(I) in S[[y, z, y’]] is that defining X x s Y in Z S Y

So, after transformation by 6 as above, what we have to check is that:

in(z, y") (S[[y, z, y"]], u(K» is generated in gr(z, y,,) S[[y, z, y"]] identified
with S[[y]][Z, Y"] by à(in(z) (S[[y, z]], I)).
Take an element g in 03C3(K) ~ 0. There exists fi~I, Qi E S[[y, z, y"]]

such that: 

and

But, cl g03B1 mod(z, y")03BC-|03B1|+1 is in S[[y]][Z], so it vanishes and for

a : lai ~ v, g03B1~(z)03BC+1. So, finally,

So there exists some a such that g03B1~(z)03BD-|03B1|+1, and restricting 1 only to
those a :

REMARK (2.4): In fact, we proved that for every S-immersion of X in
Z, a local scheme, Spec of a noetherian complete local ring, formally
smooth over S

is an exact sequence of trivial vector bundles and diagram (I) is cartesian.
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COROLLARY (2.5) : Let f : X ~ S be a morphism of analytic spaces (over a
complete, valued, non discrete, algebraically closed field k), i : Y - X an

S-immersion, x a point in Y, s its image in S.
(i) If Y is smooth over S at x, there exists an open neighborhood U

(resp. V) of x (resp. s) in X (resp. S) such that f(U) = V and that, letting
X o (resp. Yo) (resp. So) to be the restriction of X (resp. Y) (resp. S) on U
(resp. U n Y) (resp. V), the canonical sequence of Yo-cones : 

is exact.

(ii) If Y is smooth over S, then

is exact.

PROOF : The exactness of a sequence of cones being of local nature, (ii)
is an immediate consequence of (i).
Now, things being local around x, we may assume that i is a closed

immersion and f is a separated morphism. Let us choose an immersion
of an open neighborhood U1 of x in X in an open set S2 of some affine
k-space E". Since Y is smooth over S at x, there exists an open neighbor-
hood W (resp. V) of x (resp. s) on Y (resp. S) such that f(W) = V, W ~ U1
and f|W:W ~ V is smooth.
Let U be any open set contained in f-1(V)~U1, whose intersection

with Y is W Clearly, f(U) = E Now, by shrinking 03A9 if necessary, we may
also assume that the immersion of U in 03A9 is closed, so that combining
with f 1 U, we get a closed v immersion j0:U ~ V x Q. Let Zo = V x Q;
finally, Yo is smooth over So, io : Y0 ~ X o is a closed So-immersion and
jo : X0 ~ Zo is a closed So-immersion in an analytic space Zo smooth
over So.
By functoriality, we get a commutative diagram of Yo-cones :

Condition (i) holds clearly.
Yo (resp. Zo), (resp. Yo x so Yo)(resp. Zo x so Yo) being smooth over So,

jo - io (resp. 03B4(Id Yo)) (resp. £5(jo 0 io)) is a regular immersion, so that gr1Y0 Zo
(resp. grfo Yo x so Yo) (resp. grfo Zo x So Yo) is a locally free (9Yo-Module
and its symmetric Algebra is canonically isomorphic to grYo Zo (resp.
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gryo Yo x so Yo) (resp. gryo Zo x so Yo) (see Section 0). As an exact sequence
of free module splits, it is enough to show that the upper horizontal
sequence is exact and diagram I is cartesian, or equivalently that:

is exact and diagram

is cocartesian. To do so, we have to prove the same with the induced

sequence and diagram of stalks at every point y of Yo, and Y0,y, comple-
tion of OY0,y with respect to the mY0, y-adic topology, being a faithfully
flat OY0, y-module, it is actually enough to do it after this base extension.

But, generally 0Jj being an analytic subspace of some analytic space X
and letting Yy = Spec Oy,y, *y = Spec y,y, ¥y = Spec O¥,y, y =
Spec ¥,y,

and ¥1, Pl" 2 being J-analytic spaces, xl, X2 points of X1, X2 whose
image in J is s

(where  means that the usual tensor product has been replaced by the
completed one). So, it follows immediately from the proof of Corollary
(2.3) after noticing that all residual extensions being trivial in analytic
geometry, and Yo (resp. Zo) being smooth over So, 0,y (resp. ZO,y) is
formally smooth over 0,fo(y) and there is no residual extension.
COROLLARY (2.6): Let f : X ~ S be a morphism of schemes, locally of

finite type, i : Y - X an S-immersion, x a point of X, s its image in S.
Assume S is locally noetherian.

(i) If Y is smooth over S at x, there exists an open neighborhood U (resp.
V) of x (resp. s) in X (resp. S) such that f ( U) = V and that, letting Xo
(resp. Yo) (resp. So) to be the restriction of X (resp. Y) (resp. S) on U (resp.
U n Y) (resp. V), the canonical sequence of Yo-eones :

is exact.
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(ii) If Y is smooth ver S, then

is exact.

PROOF : As above, (ii) follows from (i).
It is enough to prove (i) under the following additional hypothesis:

X is an affine scheme, S is a noetherian affine scheme, f is of finite type,
i is a closed immersion, f 1 Y: Y ~ S is surjective and smooth. X being
affine and f of finite type, there exists Z smooth over S (one may choose
some S[Ti , ..., Tn]) and a closed S-immersion j : X - Z. As in Corollary
(2.5), j - i, ô(ld Y), 03B4(j o i) are regular immersions and it is enough to show
that, at every point y of Y, the sequence (resp. diagram) of stalks induced
by

is exact (resp. cocartesian). Here, we use a trick to kill the nasty residual
extension k(f(y)) ~ x(y) which possibly may occur. f ) Y : Y ~ S is smooth,
so it is flat and thus OS,f(y) - OY,y and OY,y - OY S,03B4(Id Y)(y) are faith-
fully flat. (We obtain the second arrow from the first one by base change
followed by localization at a suitable prime ideal and one knows that
every flat morphism of noetherian local rings is faithfully flat). Apply
this base extension. After easy functorial computation (Section 1) we
reduce ourselves to prove the same replacing S (resp. Y) (resp. X) (resp. Z)
by the local scheme of Y (resp. Y x s Y) (resp. X x s Y) (resp. Z x s Y) at
y (resp. b(Id)(y)) (resp. 03B4(i)(y)) (resp. bU 0 i)(y)). But now, all those local
schemes have the same residue field x(y) at their closed point and smooth-
ness is preserved. So that, it is, in fact, enough to prove our statement
with S, Y, X, Z local schemes and trivial residual extension k(f(y)) ~ k(y).
But (as in the analytic case) if Y is the Spec of the completion of the local
ring of Y at its closed point, the canonical projection  ~ Y is faithfully
flat, so that after this base change, and usual functorial computation (see
again Section 1) our proposition becomes an immediate consequence of
Theorem (2.3) and Remark (2.4).

REMARK (2.7): Under the hypothesis of Theorem (2.3) (resp. i)
Corollary (2.5)) (resp. (i) of Corollary (2.6)) grY X  S Y being 10
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around x on Y a tensor product of grY X and gry Y  S Y, from (1.19),
we deduce that gr,9xls(Y) is locally around x on Y a tensor product
of gry X and gr Yyls.
REMARK (2.8): Assumptions as in Remark (2.7). gr 1 Yxls(Y) is locally

around x on Y a direct sum of gr1Y X and grl,9yls. But by definition
gr00FF X = J’V x, y is the conormal sheaf of the immersion i:Y ~ X, gr1 JX/S
= xls gr’ Yyls = 03A91Y/S, and (9x being (9x-flat, gr’ JX/S(Y) = i*(grl Yxls)
i*(Ql X/S). Thus we recover the well-known exact sequence of Jacobi-
Zariski (see [5])

COROLLARY (2.9) : Let X/S be a scheme locally offinite type over a locally
noetherian scheme S (resp. a relative analytic space) and Y a subscheme
(resp. analytic subspace) of x. At any point y E Y such that Y is smooth over
S at y, the following conditions are equivalent : 
(i) (JX/S(Y))y is (9 y, y-flat
(ii) (gr JX/S(Y))y is (9 y, y-flat
(iii) (gry X),, is (9y, y-flat.

PROOF : The equivalence of (i) and (ii) does not depend upon the smooth-
ness of Y over S at y. Let us remark also that since we are dealing with
sums of (9y, y-modules of finite type, we may replace flat by free in the
assertion. Assume (JX/S(Y))y (9y,y-free i.e. each (JnX/S(Y))y (9y,y-free,
n ~ 0. Then the exact sequences

show that (grnJX/S(Y))y is OY,y-free for all n ~ 0, hence also (gr JX/S(Y))y.
Conversely, assume that each grn JX/S(Y))y is (Dy, y-free. Since (gr° JX/S(Y))y
= (J0X/S(Y))y = OY,y, the same exact sequences show by induction on n
that each (JnX/S(Y))y is (Dy, y-free, hence also (JX/S(Y))y.
The equivalence of (ii) and (iii) comes from Corollary (2.6) (resp. (2.5))

which tells us that we have a (non-canonical) isomorphism (see Remark

and since Y is smooth over S, in view of Remark 1.21, (gr,9yls), is a direct
sum of free OY,y-modules. But TorOY,y commutes with direct sums.

COROLLARY (2.10): Assumptions as in T heorem (2.3). The following
conditions are equivalent : 
(i) -9xls(Y) is (9y-flat
(ii) gr JX/S(Y) is (9y-flat
(iii) gryx is OY-flat.
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It follows from Theorem (2.3) by the same arguments as those used in
(2.9).

3. Relative normal flatness and W-normal flatness

DEFINITION (3.1): Let X/S be a scheme locally of finite type over a locally
noetherian scheme S (resp. a relative analytic space) and Y a subscheme
(resp. analytic subspace) of X. We say that X/S is normally flat along Y/S
(or that X is normally flat along Y over S) at a point y E Y if the following
conditions are satisfied : 
(a) Y is smooth over S at y
(b) (gry X)y is (9y, y-flat, i.e., the equivalent conditions of Corollary (2.9)

hold at y.
We say that X/S is normally, flat along Y/S if it is so at every point y ~ Y.

PROPOSITION (3.2): If X/S is normally , flat along Y/S, for any base
extension S’ - S, setting X’ = X x S S’, Y’ = Y x S S’, the canonical map
of Y’-cones (1.11)

is an isomorphism.

PROOF : We may localize ourselves at y’ E Y’. Let y be the image of y’ by
the canonical projection p : Y’ ~ 1’: Since Y is smooth over S at y, and

grY Y - OY is UY-flat, fnY/S is my-flat, for all n ~ 0. Hence the following
séquences :

are exact for all n ~ 0. But by the nice behaviour of 9x under base exten-
sion [Section 1], they coincide with the following:

respectively. So that we get canonical isomorphisms of graded (9y,,.,,-
algebras :
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But on the other hand, from Corollary (2.6) (resp. (2.5)) we have the (non
canonical) isomorphism (see remark (2.7))

hence

hence in the commutative diagram of graded OY’,y’-algebras

both lines represent exact sequences of cones. The upper one by (3.2.3),
and the lower one because by base extension Y’ remains smooth over S’
at y’, (0.10) and Corollary (2.6) (resp. (2.5)). It follows that the vertical
arrow must be an isomorphism.

COROLLARY (3.3): If X is normally flat along Y over S, then after any
base extension S’ ~ S. X’ = X x S S’ is normally flat along Y’ = Y x S S’
over S’.

FROOF : Y’ remains smooth over S’, and gry, X’ is a flat OY’-Module
as the inverse image of gry X by the canonical projection p: Y’ ~ Y in
view of the above proposition. We remark that this Corollary is also a
direct consequence of Corollary (2.9) and the nice behaviour of Yxls(Y)
under base extension.

In particular, after any base extension S’ ~ S such that S’ is regular,
X’ is normally flat along Y’ (in the classical sense of ([7] Chap. II), i.e.,
Y’ is now regular, and gry, X’(9y,-flat). One may ask whether the converse
is true, and we have : 

PROPOSITION (3.4): Let X be a scheme locally offinite type over a locally
noetherian reduced scheme (resp. a relative complex analytic space with S
reduced) and Y a subscheme (resp. analytic subspace) of X, smooth over S.
X is normally flat along Y over S if and only if, for any base extension
S’ - S where S’ is the spectrum of a discrete valuation ring (resp. the unit
disk in C), X’ = X x S S’ is normally , flat along Y’ = Y x S S’.
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PROOF: It suffices to see the ’if’ part. To check that gry X is (9y-flat,
we apply the valuative criterion for flatness [EGA IV 11.8 resp. [8]
Chap. 0] : Let h : S’ ~ Y be any morphism such that S’ is as in the Proposi-
tion. By composition we obtain a base extension S’ - S, and Y’/S’ is

endowed with a section s:S’ ~ Y’ 

Now again Y’ is smooth over S’, and our assumption that gry, X’ is (9y,-
flat gives us by Corollary (2.9) that f!JJ x’ IS’( Y’) is also (9y,-flat. Using once
more the fact that JX’/S’(Y’) = p*JX/S(Y), we see that this implies that
h*JX/S(Y) = s*JX’/S’(Y’) is (9s,-flat, and since Y, being smooth over S
which is reduced, is itself reduced, and h is arbitrary, the valuative criterion
tells us that Yxls(Y) is (9y-flat, Q.E.D. by Corollary (2.9).

REMARK : If S is not reduced, the proposition is not true as is shown by
the following example: 

One can generalize the concept of normal flatness in another direction : 

DEFINITION (3.5) (Hironaka) : Let X be a scheme (resp. analytic space),
Y a subscheme (resp. analytic subspace) of X, and W a subscheme (resp.
analytic subspace) of Y We say that X is W-normally flat along Y at a
point x E W if the following conditions hold:
(a) W is regularly imbedded in Y at x.
(b) The canonical sequence of W cones

is exact in a neighborhood of x in W.
We say that X is W normally flat along Y if it is so at every point of W.
With this definition, we find that we can translate our main result as : 

THEOREM (3.6): Let X/S be a scheme locally of finite type over a locally
noetherian séheme S (resp. a relative analytic space), Y a subscheme (resp.
analytic subspace) of X flat over S.

Consider the immersions (as in Section 1)

X x s Y is Y-normally flat along Y x s Y at a point y E Y if and only if Y
is smooth over S at y.
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Indeed, if Y is smooth over S at y, the diagonal immersion Y - Y x s Y
is regular at y (0.23) and condition (b) is exactly Corollary (2.3) (resp. (2.5))
since CX  s Y, Y  S Y x Y YSY Y = C x, y. 
The converse follows only from (a) in view of (0.4).

4. Computation of dim03BA(x) JnX/S(x) and applications
DEFINITION (4.1) : Let O be a noetherian local ring, m its maximal ideal.

The Samuel function of O, H10: N~N is defined by

For the purpose of comparing the Samuel functions of two noetherian
local rings of different dimensions one is led to define by induction
functions Hô by v

and it is easily checked that

So if we want to compare (9, O’, say dim O’ - dim O = d, the natural
comparison is that of H’, and H1+dO.

DEFINITION (4.2): Let k be a field, and (9 a k-algebra which is local and
noetherian, and such that the residual extension k - K = (91M is of finite
type. The arithmetic Samuel.function of the k-alqebra O is by definition :

LEMMA (4.3) : Let k be a field and (9 a local noetherian k-algebra whose
residue field is of finite type over k. Let k’ be a finite radicial extension of k,
so that (9’ = O~kk’ is a local k’-algebra whose residue field is offinite type
over k’. T hen

and if 19 contains a prime ideal P such that
(a) (91P is a formally smooth k-algebra
(b) grpl9 is a flat 19/P-algebra
we have equality.

PROOF: Clearly dk’(O’) = dk(O) so we are reduced to proving that
H10(03BD) ~ H1O’(03BD) for all v ~ 0. By induction on [k’ : k] it is enough to prove
the lemma in the case where k’ = k[X]/Xp-u with u ~ k - kp. Now
consider K Ok k’. If it is not a field, u has a pth root in K. We choose an
element U in 19 such that UP mod m is u, make the change of variables
Y = X - U and apply Proposition 10 of [6]. If it is a field, in particular
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if K is a separable extension of k, we have by the flatness of O ~ O’ that
mO’ = m’ and grm,O’ = grmO ~o/mO’/m’, hence equality. Now the gen-
eral equality case reduces to the preceding one in the following way:
By the flatness of O’ over O, conditions a) and b) hold for PO’ in O’ with
respect to k’. By [7, Remark to Cor. 3] we have that H1O = H1+dOP,

where d = dim O/P = O’/PO’. Since O/P is formally
smooth over k, the residual extension of the k-algebra OP is now separable
(0.14), and we apply the preceding equality case to OP, which gives us
H1OP = H1O’PO’, hence Hô = Hô..

DEFINITION (4.4): Let k be a field and O a local noetherian k-algebra
whose residue field is of finite type over k. T he Samuel function HO/k of O
over k is defined b y :

where k’ runs through the set -4 o,f’all finite radicial extensions of k, and t’
is the k’-algebra t &#x26;Jk k’.

PROPOSITION (4.5) : (9 being as above, there exists a finite radicial exten-
sion ko of k such that, if O0 = O 0 k ko,

If O contains a prime ideal P such that
(a) (91P is a formally smooth k-algebra
(b) grP  O is a flat O/P-module
we may choose ko = k.

(This happens in particular if the residue field of 6 is a separable exten-
sion of k, since then the maximal ideal m of t satisfies conditions (a)
and (b).)

PROOF : By [5, Chap IV, 4.7.4] the k-algebra O is of finite radicial multi-
plicity, i.e., there exists a finite radicial extension ko of k such that the
residue field Ko of (!Jo = t Q9k ko is a separable extension of ko. By Lemma
(4.3) we have Hplk = HO0/k0 and HO0/k0 = aHO0. The second part of the
assertion follows immediately from the equality case in Lemma 4.3.

DEFINITION (4.6) : Let X/S be a scheme locally offinite type over a locally
noetherian scheme S (resp. a relative analytic space) and x a point of X.
Let s be the image of x in S, Xs the fiber of X/S through x and K(s) the residue
field of S at s. We define the relative Samuel, function of X over S at x:

We also define the arithmetic relative Samuel , function



325

and remark that one always has aHxls, x(v) HXIs,x(v) for all v ~ 0 and
equality holds in particular if’ the residual extensions are separable (e.g.,
analytic case).

PROPOSITION (4.7): Let X/S be a scheme locally of finite type over a
locally noetherian scheme S (resp. a relative analytic space). One has

,for all n ~ 0 and any point x E X.

PROOF : Let s be the image of x in S, Xs the fiber of X/S through x.
We have dim03BA(x)JnXs/03BA(s)(x) = dim03BA(x)JnX/S(x) (1.14) and moreover, if k’ is
a finite radicial extension of k(s) and if x’ is the point of Xg = Xs x k(s)k’
mapped to x by the first projection, we have

(1.12). Thanks to our definition of HXIs,x we also have HX’slk’,x’ =

H Xslk, x. Since (9 Xs. x satisfies the conditions of Proposition (4.5), we may
thus, to prove our equality, reduce to the case where x(x) is a separable
extension of K(s). In this case, the closure {x} of x in Xs is smooth over
x(s) at x (0.8; 0.14). Applying now Lemma 1.19 and Corollary 2.6 (resp.
2.5) via remark 2.7, we find that we have isomorphisms:

But on the one hand we have by (1.21) that

where d = dk(s)(OXs,x) and on the other hand we have

so that we have dimk(x)grnJX/S(x) = HdOXs,x(n) and by the exact se-

quences

we get dimk(x)JnX/S(x) = H1oX Hto (n) = Hxls,x(n). QED.

COROLLARY (4.8): Let sv be an integer. Then Xsv = {x ~ X/HX/S,x(v) ~
sv} is a closed subscheme (resp. closed analytic subspace) of X.

This follows immediately from the above proposition and the semi-
continuity of the dimension of the fibers of coherent sheaves.

COROLLARY (4.9) : (A special case of Bennett’s T heorem 3 in [1]). Let (Ç
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be a noetherian equicharacteristic local ring, and P an ideal in O such that
CIP is regular. Then grp O is a flat O/P-module if and only if

where d = dim (91P.

PROOF : First one can reduce to the complete case. Let 19 ~  be the
completion of (9. Then (P = CIP - (9 is regular, hence P· is a prime
ideal of ê. Using the flatness of lÔ over C, it is easily seen (1.13) that

H1+dOP = H1+d, H cg = H1O and grptJ (!) = grPO~ plp 6-IP. Since /P is a

faithgully flat O/P-module, grp W is 19/P-flat if and only if grP. is (97P-
flat. Now we can use Cohen’s structure theorem ([9], Theorem 27) which
tells us that e has a field of representatives, say k,k is also a field of repre-
sentatives for /P· which, being regular, is then isomorphic to

k[[T1,···, Td]] where d = dim O/P = dim &#x26;IP - if .

Hence /P is a formally smooth K-algebra with trivial residual exten-
sion. By Corollary (2.10), all we have to prove is that, if X = Spec ê,
Y = Spec 6-/ P, 9-/,(Y) is OY-flat, for all n ~ 0.

In view of the numerical criterion for flatness it is enough to check that
if x is the closed point of Y and q its generic point, dimk(x) JnX/x(x) =
dimk(~) JnX/k(~). A straightforward computation shows that dimk(x)JJX/k(x)
= H1O; if we let K be the field of fractions of K[[T1,..., Td]], we have by
Theorem 2.3

hence dim,(,) (grn X/k(y))~ = HdOP, and since yn x (JnX/k(Y))~ by the
exact sequences 0 ~ (grn JX/k(Y))~ - (JnX/k(Y))~ - Jn-1X/k(Y))~ - 0 we find
that dimk(~)  = H This also proves the converse.
REMARK (4.10) : Since we have in fact used only the arithmetic Samuel

function, Corollary (4.9) provides an independent proof of the equality of
[7, remark to Cor. 3] which we used in the proof of the equality case in
Proposition 4.5.
We are now ready to prove the numerical criterion for relative normal

flatness :

THEOREM (4.11): Let X/S be a scheme locally offinite type over a locally
noetherian scheme S (resp. a relative analytic space) with S reduced, and Y
a subscheme (resp. analytic subspace) of X. The following conditions are
equivalent , for a point x E Y

(i) XIS is normally flat along YIS at x
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(ii) Y is smooth over S at x and the application y ---Hxls, y is constant in
a neighborhood of x in Y.

(iii) Y is smooth over S at x and the application yHxls, y is constant
in a neighborhood of x in Y.

Furthermore, if these conditions are satisfied, there exists a neighborhood
of x in Y at every point y of which X/S is normally flat along Y/S, and
Hx /s, y = aHX/S,y.

PROOF : By the openness of flatness (see [4] resp. [3]) and smoothness
(see [4] resp. [2]) (i) implies that X/S remains normally flat along Y/S
in some neighborhood of x in Y By Corollary (2.9) and the numerical
criterion for freeness of coherent sheaves on a reduced space ([4]) this
in turn implies (ii), thanks to Proposition (4.7). Conversely, using again
the openness property of smoothness, the same numerical criterion shows
that (ii) implies that all the  are free in a neighborhood of x in Y,
hence (i). Now Proposition (4.5) tells us that at any point y such that (i)
holds, we have Hxls, y = a Hxls, y, hence we have shown that (ii) ~ (iii).

Let us now assume that (iii) is fulfilled. Let s be the image of x in S and
X, (resp. YS) the fiber of X/S (resp. Y/S) through x. (iii) tells us that

aHXs/k(s) is constant in a neighborhood of x in Ys, and that Y is smooth
over K(s) at x. Setting 6 = (9x,,,, which is equicharacteristic since it is a
K(s)-algebra, and P to be the ideal of x in X, at x, we find by Corollary
(4.10) that grp (9 is a flat (9/P-algebra, hence by Proposition 4.5 that we
have aHXsIK(S),x = HXS/x(s), x , i.e., aHXIS,x = Hxls,x. Using again the open-
ness of smoothness, this shows that (iii) =&#x3E; (ii).
We now prepare ourselves to prove the existence of a ’relative Samuel

stratification’ which will enable us to state the above theorem in a more

geometric way. From now on, analytic space will mean complex analytic
space.

LEMMA (4.12): Let X/S be a scheme locally of finite type over a locally
noetherian scheme S (resp. a relative analytic space) and Y a reduced sub-
scheme (resp. analytic subspace) of X. The set of points y E Y at which
JX/S(Y) is (9y-flat is the complement of a closed subscheme (resp. analytic
subspace) Yi of Y and dim Yi  dim Y.

PROOF: The result follows from the generic flatness theorem [4] (resp.
[3]) in the following way: first, by Corollary (2.9), the flatness of JX/S(Y)
is equivalent to that of gr JX/S(Y), but by Remark (1.20) gr JX/S(Y) is a
graded (9y-Algebra of finite presentation, corresponding to the Y cone
Cx . , y, y ; By the generic flatness theorem, this cone is flat over Youtside of
a closed subscheme (resp. analytic subset) Ci and dim Ci  dim Cx  SY, y.
We are interested in flatness at points of the vertex (0). If no irreducible
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component of (0) is contained in Ci, we have our lemma. But this fact is
also guaranteed by the generic flatness theorem, since otherwise the
image of the non-flat locus of CX SY,Y would contain an irreducible
component of Y.

LEMMA (4.13): Let X be a scheme locally of finite type over a locally
noetherian scheme S (resp. a relative analytic space). Every point x E X
has a neighborhood in which the application xHX/S, x takes only a
finite number of values (i.e., only a finite number of distinct Samuel functions
appear).

PROOF : We use the fact that for any Y subscheme (resp. analytic sub-
space) containing x, dim = dim Let us first
choose Y° = Xred. By Lemma 4.12, we find that there is a closed reduced
subscheme (resp. analytic subspace) Y 1 of Y° such that dim Y 1  dim Y°
and gr f!JJxIS(YO), hence also Yxls(Y’) is (9yo-flat on yO - Y’, i.e., in view
of Proposition 4.7, the application xHX/S, x is constant on each con-
nected component of Y0-Y1. These are locally in finite number. We
now apply Lemma 4.12 to Y and in the same way find a reduced closed
subscheme y2 of Y 1 such that: xHX/S,x is constant on each con-
nected component of Y1 - Y2, and dim y2  dim Y’. Since the dimen-
sion strictly decreases at each step, this has to stop after a finite number of
steps, and that is clearly enough to prove the lemma.

LEMMA (4.14): Let Q be the set o, f ’sequences o, f ’ integers with the product
order. The application X ~ S (notations of Lemma 4.12, and same assump-
tions) given by xHX/S, x is upper semi-continuous, i.e. i f s = (sv) c-
{x ~ X : HX/S,x(v) ~ sv for all v ~ 01 is a closed subscheme (resp. analytic
subspace) of X.

PROOF : First we remark that this is a closed subset of X : if x does not

belong to it, there exists a smallest integer vo such that Hxls, x(vo)  svo,
But by Corollary 4.8, there exists then a neighborhood U of x such that
for any x’ E U we have Hxls, x, (v0) ~ HXIs,x(vo)  sv., i.e., no element of
U belongs to the subset either. Let us now show that it is a locally closed
subscheme (resp. analytic subspace): using Lemma 4.13, let us take a
neighborhood V of x in which only a finite number of different Samuel
functions appear, say H1,···, Hr . Assume that H1,···, H, (0 ~ s ~ r) are
those which satisfy: Hi(v)  sv for some v ~ 0. Let vi (1 ~ i ~ s) be the
smallest integer such that Hi(vi)  Svi (1 ~ i ~ s) and consider the closed
subscheme (resp. analytic subspace) (in view of Corollary 4.8)
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It is clear that for x’ E V, if HX/S,x(v) ~ Sv for all v ~ 0, x’ E F but the con-
verse is also true since Hxls. x,(vi) ? sv, implies that Hxls. x’ is not one of
the Hi for 0 ~ i ~ s, hence we must have Hxls, x,(v) ~ sv for all v ~ 0.

THEOREM (4.15) : Let X/S be a scheme locally offinite type over a locally
noetherian scheme S (resp. a relative analytic space). There exists a locally
finite partition of X into subschemes (resp. analytic subspaces) X =

UaEA Xa having the following properties:
(i) given a E A there exists an application Ha: N ~ N such that x E X03B1 ~

Hxls, x = Ha
(ii) Xa and Xa - Xa are closed subschemes (resp. analytic subspaces) of X

and dim(X03B1 - X03B1)  dimXa.

PROOF : Let {H03B1}03B1~A be the set of those applications N ~ rBJ which
actually occur as Samuel functions of some point x E X. Clearly what we
have to prove is that the sets

are subschemes of X(resp. analytic subspaces).
First we observe that if x~X03B1, we must have HX/S, x(v) ~ H03B1(v) for all

v ~ 0. Otherwise there exists a smallest integer vo such that HXIs,x(vo) 
svo and by Corollary 4.8 the strict inequality must subsist in a neighbor-
hood of x. But this neighborhood meets Xa, and we have our contra-
diction.

Let us now consider the closed subschemes (resp. analytic subspace)
(see Lemma 4.14)

In view of the above observation and Lemma 4.14 any x~X03B1 has an

open neighborhood V such that

where B(x) is the finite set of those Samuel functions appearing in V and
such that H03B2(v) ~ Ha(v) for all v ~ 0 with Hp =1= Ha. This shows that X a
is a subscheme (resp. analytic subspace) of X and the assertion (ii) is

easy to obtain since ( n V is a strict closed subscheme
(resp. analytic subspace) of X*03B1 n K

DEFINITION (4.16): The subscheme (resp. analytic subspaces) Xa of X
are called the (relative) Samuel strata of X/S.

PROPOSITION (4.17): Let X/S be a scheme locally of finite type over a
locally noetherian scheme S (resp. a relative analytic space with S reduced)
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and Y a subscheme (resp. analytic subspace). The following conditions are
equivalent at a point y E Y.
(i) X/S is normally flat along Y/S at y.
(ii) Y is smooth over S at y and locally around y contained in a Samuel

stratum of X/S.

PROOF : This is nothing but Theorem 4.11.

REMARK (4.18) : The fibers of the Samuel strata of X/S at s E S are

nothing but the Samuel strata of Xs/K(S).

5. An example of application

DEFINITION (5.1) : Let (Xo, xo) be a germ of complex analytic space with
isolated singularity. Let F: (X, x) ~ (S, s) be a deformation of (X0, xo) in
the sense of [10] i.e. F is flat and we have a cartesian diagram :

We say that the deformation F is (J-normally flat if there exists a section 6
of F such that X is relatively normally flat along 6(S) at x (with respect to F).

REMARK (5.2): The section 6 is not necessarily unique as shown by
taking for X the family of plane curves given by the equation :

considered as a deformation with parameter T of the germ of plane curve
Y3 + X4Y + X6 = 0. The two sections 03C31 and (J 2 given by (X - T, Y)
and (X + T, Y) make X 6-normally flat over the T axis, since the Samuel
function of a plane curve is determined by its multiplicity.
THEOREM (5.3): Given a germ (X0, xo) of complex analytic space with

isolated singularity, there exists a semi-universal (J-normally flat de.f’orma-
tion of (X0, xo). (i.e. there exists a a-normallyflat deformation

of(X 0, xo) such that any other is obtained from it by a base change uniquely
determined at the first order.)

PROOF: (Xo, xo) has a semi-universal deformation (See [10]).
FU : (X v, xU) ~ (Su, su). Let SM be the unique relative Samuel stratum of
Xu/Su containing xu (theorem 4.15). Let us consider the mapping of SM
in Su obtained by composing with Fu the inclusion in of SM in Xu, and
the corresponding base change:
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FM now has a section LM corresponding to iM and it is immediate to
check that the a-normally flat deformation FM : (Xm, XM) (Sm, Xv)
is semi-universal for a-normally flat deformations, using § 4 and the fact
that Fu is semi-universal. 

REMARK (5.4): One can show by various methods (see [11] or [12])
that in the special case where (Xo, xo) is a germ of hyper surface of dimen-
sion do, with isolated singularity of multiplicity mo, writing io for the
dimension of the base of the semi-universal deformation of (X0, xo), SM
is smooth at xu, of dimension:

REMARK (5.5): Example 5.2 shows that in general the image of SM in Su
has self-intersection.
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