COMPOSITIO MATHEMATICA

I. J. MADDOX Kuttner's theorem for operators

Compositio Mathematica, tome 29, nº 1 (1974), p. 35-41 <http://www.numdam.org/item?id=CM_1974__29_1_35_0>

© Foundation Compositio Mathematica, 1974, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

KUTTNER'S THEOREM FOR OPERATORS

I. J. Maddox

1.

In this note we extend Kuttner's theorem [1] to certain infinite matrices of bounded linear operators on a Banach space X into a Banach space Y. The method is to characterize the class $(w_p(X); c(Y))$ of matrices $A = (A_{nk})$ which are such that $\sum A_{nk} x_k$ converges for each n, and tends to a limit as $n \to \infty$, whenever $\bar{x} = (x_k) \in w_p(X)$. All sums without limits will be taken from k = 1 to $k = \infty$. It is shown in section 4 that, as in the classical case [3, Theorem M'], we have the inclusion $(w_p(X), c(Y) \subset (l_{\infty}(X), c(Y)))$ when 0 .

2.

We now establish notation. Let X, Y be Banach spaces with (undifferentiated) norms ||x||, ||y||, and let B(X, Y) be the Banach space of bounded linear operators on X into Y, with the usual operator norm. The continuous dual of Y is denoted by Y^{*}. If $T \in B(X, Y)$ we denote the adjoint of T by T^{*}, so that $(f, Tx) = (T^*f, x)$ for all $f \in Y^*$ and all $x \in X$, where as usual $(f, y) \equiv f(y)$ for $f \in Y^*$ and $y \in Y$.

We shall write

$$S^* = \{ f \in Y^* \colon ||f|| \le 1 \}$$

and make use of the fact that, by the Hahn-Banach theorem, for every $y \in Y$ there exists $f \in S^*$ such that ||y|| = f(y).

Throughout we shall suppose that $A_{nk} \in B(X, Y)$; $n, k = 1, 2, \cdots$.

c(Y) denotes the space of convergent Y-valued sequences, $l_{\infty}(X)$ the space of bounded X-valued sequences, and $w_p(X)$ the space of strongly Cesàro summable sequences with values in X. For $0 , as in [3], we make <math>w_p(X)$ into a complete p-normed space with

$$\|\bar{x}\| = \sup_{r} \frac{1}{2^{r}} \sum_{r} \|x_{k}\|^{p},$$

where \sum_{r} denotes a sum over $2^{r} \leq k < 2^{r+1}$. Following [3], w_{p} denotes $w_{p}(C)$, where C is the space of complex numbers.

By O we denote the zero element of B(X, Y) and by T a fixed non-zero

element of B(X, Y). We shall use O and T in Theorem 1 below.

We regard to operators A_{nk} , a convergence statement such as $\sum A_{nk} \to T$ $(n \to \infty)$ refers to the topology of pointwise convergence, i.e. it means that $\sum A_{nk} x \to Tx$ $(n \to \infty)$ for each $x \in X$.

If $(B_k) = (B_1, B_2, \cdots)$ is an infinite sequence in B(X, Y) we denote its group norm (see [2]) by

$$||(B_k)|| = \sup ||\sum_{k=1}^n B_k x_k||,$$

where the supremum is taken over all $n \ge 1$ and all $||x_k|| \le 1$. Also, we write R_{nm} for the *m*th "tail" of the *n*th row of the matrix A, i.e.

(1)
$$R_{nm} = (A_{nm}, A_{n,m+1}, A_{n,m+2}, \cdots)$$

3.

The following result, in the case Y = X and T the identity operator, was proved by Robinson [5, Theorem IV]. The extension stated here is a trivial one.

THEOREM 1: $A \in (c(X), c(Y))$ and $\lim \sum A_{nk} x_k = T(\lim x_n)$ if and only if

(2)
$$A_{nk} \to O \quad (n \to \infty, each k),$$

(3)
$$\sum A_{nk} \to T \qquad (n \to \infty),$$

$$\sup_{n} ||R_{n_1}|| < \infty.$$

We remark that (3) also involves the convergence of $\sum A_{nk}$ for each *n*. To aid the determination of $(w_p(X), c(Y))$ we first prove

LEMMA 1: Let $0 , and suppose <math>(B_k) \in B(X, Y)$. Then $\sum B_k x_k$ converges, whenever $\bar{x} \in w_p(X)$ if and only if

(5)
$$M = \sup \sum_{r=0}^{\infty} 2^{r/p} \max_{r} ||B_{k}^{*}f|| < \infty,$$

where the supremum is taken over $f \in S^*$ and max, is over $2^r \leq k < 2^{r+1}$.

PROOF: First suppose that (5) holds. Write T_m for the *m*th tail of (B_k) . Then for $s \ge 0$ and $m \ge 2^s$ we have

(6)
$$||T_m|| \le ||T_{2^s}|| = \sup ||\sum_{k=2^s}^{i} B_k x_k||$$

 $\le \sup \sum_{k=2^s}^{i} |(f, B_k x_k)|, \quad \text{for some } f \in S^*,$

36

$$\leq \sup \sum_{k=2^{s}}^{i} ||B_{k}^{*}f|| ||x_{k}||$$
$$\leq \sum_{r=s}^{\infty} \sum_{r} ||B_{k}^{*}f||$$
$$\leq M \cdot 2^{s/q}, \quad \text{where } q = p/(p-1) < 0.$$

In (6) above $||T_m||$ denotes the group norm of the sequence T_m and the supremum is taken over all $i \ge 2^s$ and all $||x_k|| \le 1$. It now follows that (5) implies

(7)
$$||T_m|| \to 0 \quad (m \to \infty).$$

From (7) we see immediately that $\sum B_k$ converges.

Now suppose that $\sum_{r} ||x_k - l||^p = o(2^r)$ as $r \to \infty$. Since $\sum B_k l$ converges we have to show that $\sum B_k(x_k - l)$ converges. Take *m* and $s \ge 0$ and let $n \ge 2^m$. Then for some $f \in S^*$ we have

$$\begin{split} \|\sum_{k=n}^{n+s} B_k(x_k - l)\| &\leq \sum_{k=n}^{n+s} \|B_k^*f\| \|x_k - l\| \\ &\leq \sum_{r=m}^{\infty} \max_r \|B_k^*f\| \sum_r \|x_k - l\| \\ &\leq \sum_{r=m}^{\infty} 2^{r/p} \max_r \|B_k^*f\| \cdot (2^{-r} \sum_r \|x_k - l\|^p)^{1/p}. \end{split}$$

By (5) it is now clear that $\sum B_k(x_k-l)$ converges. This proves the sufficiency.

Conversely let $\sum B_k x_k$ converge for all $\bar{x} \in w_p(X)$. Take $f \in Y^*$. Then $\sum (f, B_k x_k)$ converges for all $\bar{x} \in w_p(X)$. Now by definition of $||B_k^*f||$ we may choose z_k in the closed unit sphere in X such that $||B_k^*f|| \leq 2|(f, B_k z_k)|$. Let us take any complex sequence (a_k) such that $a_k \to o(w_p)$. Then $(a_k z_k) \in w_p(X)$; and so $\sum a_k(f, B_k z_k)$ converges whenever $a_k \to o(w_p)$. It follows from [3] that

$$\sum_{r=0}^{\infty} 2^{r/p} \max_{r} |(f, B_k z_k)| < \infty$$

and so

(8)
$$\sum_{r=0}^{\infty} 2^{r/p} \max_{r} ||B_{k}^{*}f|| < \infty$$

for each $f \in Y^*$. Now let $q_n(f)$ be the *n*th partial sum of the series in (8). Then each q_n is a continuous seminorm on the Banach space Y^* , whence by a version of the Banach-Steinhaus theorem [4, corollary to Theorem

11, p, 114] the series in (8) is also a continuous seminorm on Y^* , so that (5) holds.

4.

We now present the main result.

THEOREM 2: Let $0 . Then <math>A \in (w_p(X), c(Y))$ if and only if:

(9) There exists
$$\lim_{n \to \infty} A_{nk} = A_k$$
 (each k).

(10)
$$M_1 = \sup \sum_{r=0}^{\infty} 2^{r/p} \max_r ||A_{nk}^* f|| < \infty,$$

(11)
$$M_2 = \sup \sum_{r=0}^{\infty} 2^{r/p} \max_r ||(A_{nk}^* - A_k^*)f|| < \infty,$$

where in (10) and (11) the supremum is taken over all $n \ge 1$ and all $f \in S^*$.

PROOF: Consider the necessity. That (9) is necessary is trivial. Let us show that (11) is necessary – the necessity of (10) may be shown by similar reasoning. Define $T_n(x) = \sum A_{nk} x_k$, the series converging for each *n* and all $\bar{x} \in w_p(X)$. By the Banach-Steinhaus theorem each T_n is a continuous linear operator on $w_p(X)$ into *Y*, whence for each triple (m, n, h) of positive integers the set

$$E(m, n, h) = \{ \bar{x} \in w_p(X) : ||(T_n - T_m)(x)|| \le h \}$$

is closed. Hence E(h), the intersection over all (m, n), is closed, and $w_p(X)$ is the union of the E(h). Since $w_p(X)$ is of the second category a standard type of argument yields the existence of an absolute constant H such that $\sup_{m,n} ||(T_n - T_m)(x)|| \leq H ||\bar{x}||^{1/p}$ for all $\bar{x} \in w_p(X)$.

Now let s be a positive integer, θ the zero of X and consider only those sequences \bar{x} such that $x_k = \theta$ for $k \ge 2^{s+1}$. Also, write $B_{nk} = A_{nk} - A_k$. Then, using (9), but letting $m \to \infty$, we obtain

$$\left\|\sum_{k=1}^{2^{s+1}-1} B_{nk} x_k\right\| \leq H \|\bar{x}\|^{1/p},$$

so that, for every $f \in Y^*$,

(12)
$$|\sum_{k=1}^{2^{s+1}-1} (f, B_{nk} x_k)| \leq ||f|| \cdot H \cdot ||\bar{x}||^{1/p}.$$

Next we determine $||z_{nk}|| \leq 1$ such that $||B_{nk}^* f|| \leq 2|(f, B_{nk} z_{nk})|$. Then by suitable choice of a complex sequence (a_k) , with w_p norm equal 1 (see [4, p. 173]) we have $(a_k z_{nk}) \in w_p(X)$, so from (12) we get

$$\sum_{r=0}^{s} 2^{r/p} \max_{r} |(f, B_{nk} z_{nk})| \leq ||f|| \cdot H,$$

whence

$$\sup_{n}\sum_{r=0}^{\infty} 2^{r/p} \max_{r} ||B_{nk}^{*}f|| \leq 2||f|| \cdot H$$

for every $f \in Y^*$, which implies (11).

Conversely, let (9), (10) and (11) hold. Let R_{nm} be given by (1) and write R_m for the *m*th tail of the sequence (A_k) . By the argument used to prove that (5) implied (7), we see that (11) implies

(13)
$$\sup_{m} ||R_{nm} - R_{m}|| \to 0 \qquad (m \to \infty).$$

Also, (10) implies

(14)
$$||R_{nm}|| \to 0 \quad (m \to \infty, \text{ each } n)$$

Now let $x_k \rightarrow l(w_p(X))$. Then by (10) and the argument of the sufficiency part of Lemma 1,

(15)
$$\|\sum_{k=m}^{m+s} A_{nk}(x_k-l)\| \leq \varepsilon M_1,$$

for each $\varepsilon > 0$, for all (n, s) and all sufficiently large *m*. Letting $n \to \infty$ in (15) we get

(16)
$$||\sum_{k=m}^{m+s} A_k(x_k-l)|| \leq \varepsilon M_1.$$

Hence by (16),

$$\begin{split} \|\sum_{k=m}^{m+s} A_k x_k\| &\leq \varepsilon M_1 + \|\sum_{k=m}^{m+s} (A_k - A_{1k})l\| + \|\sum_{k=m}^{m+s} A_{1k}l\| \\ &\leq \varepsilon M_1 + \|R_{1m} - R_m\| \cdot \|l\| + \|R_{1m}\| \cdot \|l\|, \end{split}$$

so by (13) and (14) we see that $\sum A_k x_k$ converges for each $\bar{x} \in w_p(X)$.

Is is now a simple matter to show that (9), (13) and (14) are sufficient for A to be in $(l_{\infty}(X), c(Y))$, and that for such A,

(17)
$$\lim_{n} \sum A_{nk} x_{k} = \sum A_{k} x_{k}$$

for each $\bar{x} \in l_{\infty}(X)$. We remark that (9), (13) and (14) are also necessary for

39

[5]

A to be in $(l_{\infty}(X), c(Y))$, but the proof is not completely trivial, and we do not require the necessity for our present purpose.

Finally, let us write

$$\sum A_{nk} x_{k} = \sum A_{k} x_{k} + \sum (A_{nk} - A_{k})(x_{k} - l) + \sum (A_{nk} - A_{k})l.$$

Then (9) and (13) imply $\sum (A_{nk} - A_k)(x_k - l) \to \theta \ (n \to \infty)$, and (17) implies $\sum (A_{nk} - A_k)l \to \theta \ (n \to \infty)$. Hence

(18) $\lim_{n} \sum A_{nk} x_{k} = \sum A_{k} x_{k}$

for every $\bar{x} \in w_p(X)$. This proves the theorem.

Next we give the generalization of Kuttner's theorem.

THEOREM 3: Let 0 and let T be a fixed non-zero element of <math>B(X, Y). Suppose that $A = (A_{nk})$ is as in Theorem 1. Then there is a sequence in $w_p(X)$ which is not summable A.

PROOF: Suppose, if possible, that $A \in (w_p(X), c(Y))$. Take $x \in X$ such that $T(x) \neq \theta$. Then by (18) we have $\lim_{n \to \infty} A_{nk}x$. But (3) implies $\lim_{n \to \infty} A_{nk}x = T(x)$ and (2) implies $\sum A_k x = \theta$, whence $T(x) = \theta$, contrary to the choice of x.

5.

We now briefly consider the case $1 \leq p < \infty$. The norm

$$\|\bar{x}\| = \sup_{r} \left(\frac{1}{2^{r}} \sum_{r} \|x_{k}\|^{p}\right)^{1/p}$$

makes $w_p(X)$ into a Banach space.

The analogue of Lemma 1 is:

LEMMA 2: Let $1 \leq p < \infty$ and $(B_k) \in B(X, Y)$. Then $\sum B_k x_k$ converges, whenever $\bar{x} \in w_p(X)$ if and only if

(19)
$$\sum B_k$$
 converges,

(20)
$$\sup \sum_{r=0}^{\infty} 2^{r/p} (\sum_{r} ||B_{k}^{*}f||^{q})^{1/q} < \infty,$$

where 1/p + 1/q = 1, the supremum is taken over $f \in S^*$ and \sum_r denotes a sum over $2^r \leq k < 2^{r+1}$. The case p = 1 of (20) is interpreted as (5) with p = 1.

We remark that (19) and (20) are independent. For example, in the space of complex numbers, if $b_k = (-1)^k/k$ then (19) holds but

$$\sum_{r=0}^{\infty} 2^{r/p} (\sum |\mathbf{b}_k|^q)^{1/q} = \infty,$$

40

so that (20) fails. On the other hand, let $X = Y = \{x \in w_p : x_k \to 0(w_p)\}$. Then by [3, p. 290], $f \in X^*$ if and only if $f(x) = \sum a_k x_k$ where a is such that

(21)
$$||f|| = \sum_{r=0}^{\infty} 2^{r/p} (\sum_{r} |a_k|^q)^{1/q} < \infty.$$

Let us define $B_k: X \to X$ by $B_k x = (0, 0, \dots, x_1, 0, 0, \dots)$ with x_1 in the kth place. Then $(B_k^*f, x) = (f, B_k x) = a_k x_1$, so that $||B_k^*f|| = |a_k|$. Hence (21) implies

$$\sum_{r=0}^{\infty} 2^{r/p} (\sum ||B_k^*f||^q)^{1/q} < \infty$$

for each $f \in X^*$. Thus, by the argument immediately following (8) we see that (20) holds. Now take $x = (1, 0, 0, \cdots)$ and write $y(n) = \sum_{k=1}^{n} B_k x$. Then $z \equiv y(2^{r+1}-1)-y(2^r-1)$ is a sequence such that $z_k = 1$ for $2^r \leq k < 2^{r+1}$ and $z_k = 0$ otherwise. Hence ||z|| = 1, so that $\sum B_k x$ diverges, which means that (19) fails.

Finally, using arguments similar to those in the proof of Theorem 2 we can establish

THEOREM 4: Let $1 \leq p < \infty$. Then $A \in (w_p(X), c(Y))$ if and only if: There exists

(22)
$$\lim_{n} A_{nk} (each k) and \lim_{n} \sum A_{nk},$$

(23)
$$\sup \sum_{r=0}^{\infty} 2^{r/p} (\sum_{r} ||A_{nk}^*f||^q)^{1/q} < \infty,$$

(24)
$$\sup \sum_{r=0}^{\infty} 2^{r/p} (\sum_{r} ||(A_{nk}^* - A_k^*)||^q)^{1/q} < \infty,$$

the suprema being over all $n \ge 1$ and all $f \in S^*$.

REFERENCES

- [1] B. KUTTNER: Note on strong summability. J. London Math. Soc., 21 (1946) 118-122.
- [2] G. G. LORENTZ and M. S. MACPHAIL: Unbounded operators and a theorem of A. Robinson. Trans. Royal Soc. of Canada, XLVI, Series III (1952) 33–37.
- [3] I. J. MADDOX: On Kuttner's theorem. J. London Math. So., 43 (1968) 285-290.
- [4] I. J. MADDOX: Elements of functional analysis (Cambridge University Press, 1970).
- [5] A. ROBINSON: On functional transformations and summability. Proc. London Math. Soc., (2), 52 (1950) 132–160.

(Oblatum 12–IX–1973)

Department of Pure Mathematics, The Queen's University of Belfast