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1.

In this note we extend Kuttner’s theorem [1] to certain infinite ma-
trices of bounded linear operators on a Banach space X into a Banach

space Y The method is to characterize the class (wp(X)j c(Y)) of matrices
A = (Ank) which are such that ¿Ankxk converges for each n, and tends to
a limit as n - oo, whenever x = (xk) ~ wp(X). All sums without limits will
be taken from k = 1 to k = oo. It is shown in section 4 that, as in the
classical case [3, Theorem M’], we have the inclusion (wp(X), c(Y) ~
(l~(X), c(Y)) when 0  p  1.

2.

We now establish notation. Let X, Y be Banach spaces with (undiffe-
rentiated) norms Ilxll, ~y~, and let B(X, Y) be the Banach space of bounded
linear operators on X into Y, with the usual operator norm. The continu-
ous dual of Y is denoted by Y*. If T ~ B(X, Y) we denote the adjoint of
T by T*, so that ( f, Tx) = (T *f, x) for all f E Y* and all x e X, where as
usual ( f, y) ~ f(y) for f E Y * and y ~ Y
We shall write

and make use of the fact that, by the Hahn-Banach theorem, for every
y E Y there exists f ~ S* such that ~y~ = f(y).
Throughout we shall suppose that Ank E B(X, Y); n, k = 1, 2,···.
c(Y) denotes the space of convergent Y valued sequences, l~(X) the

space of bounded X-valued sequences, and wp(X) the space of strongly
Cesàro summable sequences with values in X. For 0  p  1, as in [3],
we make wp(X) into a complete p-normed space with

where ¿r denotes a sum over 2r ~ k  2r+l. Following [3], wp denotes
wp(C), where C is the space of complex numbers.
By 0 we denote the zero element of B(X, Y) and by T a fixed non-zero
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element of B(X, Y). We shall use 0 and T in Theorem 1 below.
We regard to operators Ank, a convergence statement such as E Ank ~ T

(n ~ oo) refers to the topology of pointwise convergence, i.e. it means

that 03A3Ankx ~ Tx (n ~ ~) for each x ~ X.
If (Bk) = (Bl, B2, ... ) is an infinite sequence in B(X, Y) we denote its

group norm (see [2]) by

where the supremum is taken over all n ~ 1 and all ~xk~ ~ 1. Also, we
write Rnm for the mth "tail" of the nth row of the matrix A, i.e.

The following result, in the case Y = X and T the identity operator,
was proved by Robinson [5, Theorem IV]. The extension stated here is a
trivial one.

THEOREM 1 : A ~ (c(X), c( Y)) and lim¿Ankxk = T(limxn) if and only if

We remark that (3) also involves the convergence of 1 A,,k for each n.
To aid the determination of (wp(X), c( Y)) we first prove
LEMMA 1: Let 0  p  1, and suppose (Bk) ~ B(X, Y). Then 03A3Bkxk

converges, whenever x E wD(X) if and only if

where the supremum is taken over f E S* and max, is over 2r ~ k  2r+ 1. 

PROOF : First suppose that (5) holds. Write Tm for the mth tail of (Bk).
Then for s ~ 0 and m ~ 2S we have
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In (6) above ~Tm~ denotes the group norm of the sequence T. and the
supremum is taken over all i ~ 2s and all ~xk~ ~ 1. It now follows that
(5) implies

From (7) we see immediately that E B, converges.
Now suppose that E, ~xk - l~p = o(2r) as r ~ oo. Since E Bk 1 converges

we have to show that 03A3 Bk(xk - l) converges. Take m and s ~ 0 and let
n ~ 2m. Then for some f ~ S* we have

By (5) it is now clear that 03A3 Bk(xk - l) converges. This proves the suf-
ficiency.

Conversely let E Bkxk converge for all x ~ wp(X). Take f E Y*. Then
03A3 (f, Bk xk) converges for all x ~ wp(X). Now by definition of ~B*kf~ we
may choose Zk in the closed unit sphere in X such that ~B*k f~ ~
2|(f, Bkzk)|. Let us take any complex sequence (ak) such that ak ~ o(wp).
Then (ak zk) E wp(X); and so E ak( f, Bk zk) converges whenever ak ~ o(wp).
It follows from [3] that

and so

for each f E Y*. Now let qn(f) be the nth partial sum of the series in (8).
Then each qn is a continuous seminorm on the Banach space Y*, whence
by a version of the Banach-Steinhaus theorem [4, corollary to Theorem
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11, p, 114] the series in (8) is also a continuous seminorm on Y*, so that
(5) holds.

4.

We now present the main result.

THEOREM 2: Let 0  p  1. Then A ~ (wp(X), c( Y)) i, f and only if :

where in (10) and (11) the supremum is taken over all n ~ 1 and all f E S*.

PROOF: Consider the necessity. That (9) is necessary is trivial. Let us
show that (11) is necessary - the necessity of ( 10) may be shown by similar
reasoning. Define Tn(x) = 03A3 AnkXk, the series converging for each n and
all x e wp(X). By the Banach-Steinhaus theorem each T" is a continuous
linear operator on wp(X) into Y, whence for each triple (m, n, h) of positive
integers the set

is closed. Hence E(h), the intersection over all (m, n), is closed, and wl(X)
is the union of the E(h). Since w,(X) is of the second category a standard
type of argument yields the existence of an absolute constant H such that
sUPm,n ~(Tn - Tm)(x)~ ~ H~x~1/p for all x ~ wp(X).
Now let s be a positive integer, 0 the zero of X and consider only those

sequences x such that xk = 0 for k ~ 2s + 1. Also, write Bnk = Ank - Ak’
Then, using (9), but letting m ~ oo, we obtain

so that, for every f E Y*,

Next we determine ~znk~ ~ 1 such that ~B*nk f~ ~ 21Cf; BnkZnk)l. Then by
suitable choice of a complex sequence (ak), with wp norm equal 1 (see
[4, p. 173]) we have (ak Znk) e wp(X), so from (12) we get
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whence

for every f E Y*, which implies (11).
Conversely, let (9), (10) and (11) hold. Let Rnm be given by (1) and write

R. for the mth tail of the sequence (Ak). By the argument used to prove
that (5) implied (7), we see that (11) implies

Also, (10) implies

Now let xk ~ l(wp(X)). Then by (10) and the argument of the suff’iciency
part of Lemma 1, 

for each e &#x3E; 0, for all (n, s) and all sufficiently large m. Letting n - oo in
(15) we get

Hence by (16),

so by (13) and (14) we see that 03A3 Akxk converges for each x ~ wp(X).
Is is now a simple matter to show that (9), (13) and (14) are sufficient

for A to be in (l~(X), c(Y)), and that for such A,

for each x- e l~(X). We remark that (9), (13) and (14) are also necessary for
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A to be in (1.(X), c(Y)), but the proof is not completely trivial, and we do
not require the necessity for our present purpose.

Finally, let us write

for every x ~ wp(X). This proves the theorem.
Next we give the generalization of Kuttner’s theorem.
THEOREM 3: Let 0  p  1 and let T be a fixed non-zero element of

B(X, Y). Suppose that A = (Ank) is as in Theorem 1. Then there is a se-
quence in wp(X) which is not summable A.

PROOF: Suppose, if possible, that A ~ (wp(X), c(Y)). Take x E X such
that T(x) ~ 03B8. Then by (18) we have limn ¿ Ankx, But (3) implies
limn ¿ Ank x = T(x) and (2) implies Y Ak x = 0, whence T(x) = 0, contrary
to the choice of x.

5.

We now briefly consider the case 1 ~ p  oo. The norm

makes wp(X) into a Banach space.
The analogue of Lemma 1 is:

LEMMA 2: Let 1 ~ p  oo and (Bk) E B(X, Y). Then 03A3 Bkxk converges,
whenever x EWp(X) if and only if

(19) E Bk converges,

where 1/p + 1/q = 1, the supremum is taken over f E S* and Lr denotes a
sum over 2r ~ k  2r + 1. The case p = 1 of (20) is interpreted as (5) with
p = 1.

We remark that (19) and (20) are independent. For example, in the
space of complex numbers, if bk = ( -1 )k/k then (19) holds but
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so that (20) fails. On the other hand, let X = Y = {x ~ wp:xk ~ 0(wp)}.
Then by [3, p. 290], f ~ X* if and only if f(x) = 03A3 akxk where a is such
that

Let us define Bk : X - X by Bkx = (0, 0,···, x1, 0, 0,···) with xi in the
kth place. Then (B*k f, x) = ( f, Bk x) = akx1, so that ~B*k f~ = |ak|. Hence
(21) implies

for each f E X*. Thus, by the argument immediately following (8) we see
that (20) holds. Now take x = (1, 0, 0, ... ) and write y(n) = 03A3nk=1 Bk x.
Then z ~ y(2r+1 - 1) - y(2r - 1) is a sequence such that zk = 1 for

2r ~ k  2r+1 and Zk = 0 otherwise. Hence ~z~ = 1, so that LBkx
diverges, which means that (19) fails.

Finally, using arguments similar to those in the proof of Theorem 2
we can establish

THEOREM 4: Let 1 ~ p  oo. Then A ~ (wp(X), c( Y)) if and only if : There
exists

the suprema being over all n ~ 1 and all f E S*.
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