Compositio Mathematica

Paul M. Weichsel

On Engel-like congruences

Compositio Mathematica, tome 29, no 1 (1974), p. 67-73
http://www.numdam.org/item?id=CM_1974_29_1_67_0
© Foundation Compositio Mathematica, 1974, tous droits réservés.
L'accès aux archives de la revue «Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ON ENGEL-LIKE CONGRUENCES

Paul M. Weichsel

1. Introduction

In this note we investigate the commutator-subgroup structure of groups that satisfy congruences and laws that are similar to Engel laws. We begin with the necessary notation. If G is a group and α a positive integer, th ${ }^{\mathrm{n}}(G)^{\alpha}$ is the subgroup generated by $\left\{g^{\alpha} \mid g \in G\right\}$. A left-normed commutator ($\mathrm{x}_{1}, \cdots, x_{n}$) of weight n on x_{1}, \cdots, x_{n} is defined inductively for $n \geqq 2$ by $\left(x_{1}, x_{2}\right)=x_{1}^{-1} x_{2}^{-1} x_{1} x_{2}$ and $\left(x_{1}, \cdots, x_{n}\right)=\left(\left(x_{1}, \cdots, x_{n-1}\right), x_{n}\right)$. The r th term of the lower central series of a group G, denoted by G_{r} is the subgroup of G generated by commutators of the form $\left(x_{1}, \cdots, x_{r}\right)$, all $x_{i} \in G, G_{1}=G$. The terms of the derived series are defined by $G^{(0)}=G$, $G^{(1)}=G_{2}$ and $G^{(l)}=\left(G^{(l-1)}\right)_{2}$. A group G is called metabelian if $G^{(2)}=1$. If A_{1}, \cdots, A_{s} are normal subgroups of $G, s \geqq 2$, then $\left(A_{1}, \cdots, A_{s}\right)$ is the subgroup of G generated by $\left\{\left(a_{1}, \cdots, a_{s}\right) \mid a_{i} \in A_{i}, i=1, \cdots, s\right\}$. If $w=$ $\left(x_{\alpha_{1}}, \cdots, x_{\alpha}\right)$ with $x_{\alpha_{i}} \in\left\{x_{1}, \cdots, x_{\alpha}\right\}$, then $w(G)$ is the subgroup generated by $\left\{\left(g_{\alpha_{1}}, \cdots, g_{\alpha_{r}}\right) \mid g_{\alpha_{i}} \in G, i=1, \cdots, r\right\}\left(\alpha_{i}\right.$ may be equal to α_{j} for some pairs $i, j, i \neq j$). If G is a group, then $\operatorname{var} G$ is the variety generated by G, i.e., the intersection of all varieties containing G.

Definition: Let $w\left(x_{1}, \cdots, x_{n}\right)$ be a left-normed commutator of weight d on x_{1}, \cdots, x_{n}. The group G is said to satisfy the w-congruence if $w\left(g_{1}\right.$, $\left.\cdots, g_{n}\right) \in G_{d+1}$ for all $g_{i} \in G, i=1, \cdots, n$. G is said to satisfy the strong w congruence if $w\left(g_{1}, \cdots, g_{n}\right) \in A_{d+1}$, with A the subgroup generated by $\left\{g_{1}, \cdots, g_{n}\right\}$ for each set $\left\{g_{1}, \cdots, g_{n}\right\}$ and corresponding subgroup A. w is said to be a law of G if $w(G)=1$. An important example of a w-congruence is the Engel congruence: $w=(x, y, y, \cdots, y)$.

The main theorem of this note (2.5) shows that in a group which satisfies a w-congruence the descending central series and the derived series are linked in a special way. Two consequences are derived. The first (3.3) states that a p-group G satisfying a strong w-congruence, w of weight $d<p$ is nilpotent of class at most $(d-1)^{l-1}$ if i_{i} is solvable of derived length at most l. The second (4.1) characterizes those finite p-groups of class $c<p$,satisfying the c-weight Engel law.

The proof of the main theorem depends on the observation that a
result of Gupta and Newman [1. Theorem] on metabelian groups can be modified to apply to a much larger class of groups.

2. The main theorem

We begin by quoting a weakened version of the theorem of Gupta and Newman.

Proposition: Let w be a left-normed commutator of weight d. If G is metabelian and $w(G)=1$, then
$\left(G_{d+1}\right)^{\alpha}=1$ with α an integer whose prime divisors are less than d, and
$\left(G_{d} / G_{d+1}\right)^{\beta}=1$ with β an integer whose prime divisors are less than $d+1$.
The proof of this theorem depends on a number of properties of commutators in metabelian groups. They are:
(i) $\left(b, a_{1}, \cdots, a_{t}\right)=\left(b, a_{\sigma 1}, \cdots, a_{\sigma t}\right)$ for $b \in G_{2}, a_{1}, \cdots, a_{t} \in G$ and σ an arbitrary permutation on the set $\{1, \cdots, t\}$.
(ii) $\left(b^{i}, a\right)=(b, a)^{i}$ for every integer i, whenever $b \in G_{2}$, and $a \in G$.

On the other hand, once the weight of w is given, then the only commutators which actually occur in the proof are those of weight d or greater. Thus if the weight of w is d, and G is any group, then the theorem will hold for the group $\bar{G}=G / \bigcup_{r, s}\left(G_{r}, G_{s}\right), r+s=d$ and $r, s \geqq 2$.

We first verify that properties (i) and (ii) hold in the group \bar{G}.
2.1 Lemma: If G is any group and $i, j \geqq 2$, than

$$
\left(G_{i}, G_{j}, G, \cdots, G\right) \subseteq \bigcup_{r, s}\left(G_{r}, G_{s}\right)
$$

$r+s=i+j+k$, and $r, s \geqq 2$.
Proof: Induction on k. If $k=1$, then the lemma follows from the 3-sub-group-lemma of P. Hall, [3. Theorem 3.4.7], since

$$
\left(G_{i}, G_{j}, G\right) \subseteq\left(G_{j}, G, G_{i}\right)\left(G, G_{i}, G_{j}\right)=\left(G_{j+1}, G_{i}\right)\left(G_{i+1}, G_{j}\right)
$$

We now recall that if $A, B, C \Delta G$, then

$$
(A B, C) \subseteq(A, C)(B, C)
$$

Hence $\left(\bigcup_{r, s}\left(G_{r}, G_{s}\right), G\right) \subseteq \bigcup_{r, s}\left(G_{r}, G_{s}, G\right) \subseteq \bigcup_{u, v}\left(G_{u}, G_{v}\right)$ with $r+s=n$, $r, s \geqq 2$ and $u+v=n+1, u, v \geqq 2$, and the lemma follows by induction.
2.2 Lemma: Let $a \in G_{d}, d \geqq 2$ and $b, c \in G$. Then $(a, b, c) \in(a, c, b)\left(G_{d}, G_{2}\right)$.

Proof: The proof is identical to the usual one for metabelian groups.
2.3 Lemma: Let $a_{i} \in G, i=1, \cdots, n$ and $b \in G_{m}, m \geqq 2$. Then $\left(b, a_{1}, a_{2}, a_{3}, \cdots, a_{n}\right) \in\left(b, a_{2}, a_{1}, a_{3}, \cdots, a_{n}\right) \bigcup_{r, s}\left(G_{r}, G_{s}\right), r+s=n+m$, $r, s \geqq 2$.

Proof

Case I. Let $n=2$. Then $\left(b, a_{1}, a_{2}\right) \in\left(b, a_{2}, a_{1}\right)\left(G_{m}, G_{2}\right)$ by (2.2).
Case II. Let $n>2$ and induct on n. Thus assume the lemma for n and consider $\left(b, a_{1}, a_{2}, a_{3}, \cdots, a_{n+1}\right)$. By induction $\left(b, a_{1}, a_{2}, a_{3}, \cdots, a_{n}\right)=$ $\left(b, a_{2}, a_{1}, a_{3}, \cdots, a_{n}\right) c$, with $c \in \bigcup_{r, s}\left(G_{r}, G_{s}\right), r+s=n+m, r, s \geqq 2$. Hence $\left(b, a_{1}, a_{2}, a_{3}, \cdots, a_{n+1}\right)=\left(\left(b, a_{2}, a_{1}, a_{3}, \cdots, a_{n}\right) c, a_{n+1}\right)=\left(b, a_{2}, a_{3}, \cdots\right.$, $\left.a_{n}, a_{n+1}\right) e f$, with $e \in\left(G_{n+m+1}, G_{2}\right)$ and $f \in\left(G_{n+m}, G_{2}\right)$, both subgroups of $\bigcup_{r, s}\left(G_{r}, G_{s}\right), r+s=n+m+1, r, s \geqq 2$. This completes the proof.

It now follows easily that property (i) holds in the group

$$
\bar{G}=G / \bigcup_{r, s}\left(G_{r}, G_{s}\right), \quad r+s=n, \quad r, s \geqq 2
$$

for commutators of total weight greater than or equal to n.
2.4 Lemma: Let $b \in G_{t}$ and $a \in G$. Then for all integers i,

$$
\left(b^{i}, a\right) \in(b, a)^{i} \bigcup_{r, s}\left(G_{r}, G_{s}\right), \quad r+s=2 t+1, \quad r, s \geqq 2
$$

Proof: If $i=-1$, then $\left(b^{-1}, a\right) \in(b, a)^{-1}\left(G_{r}, G_{s}\right)$, for $r+s=2 t+1$. We now induct on i for $i \geqq 1$. If $i=1$, the result is trivial. If $\left(b^{n}, a\right) \in$ $(b, a)^{n} \bigcup_{r, s}\left(G_{r}, G_{s}\right), r+s=2 t+1, r, s \geqq 2$, then $\left(b^{n+1}, a\right)=\left(b^{n}, a\right)\left(b^{n}, a, b\right)$ $\times(b, a)$ and so $\left(b^{n+1}, a\right) \in(b, a)^{n}(b, a) \bigcup_{r, s}\left(G_{r}, G_{s}\right)=(b, a)^{n+1} \bigcup_{r, s}\left(G_{r}, G_{s}\right)$, $r+s=2 t+1, r, s \geqq 2$.

We will now state the main theorem in two different forms.
2.5 Theorem : Let w be a left-normed commutator of weight d and $G a$ group satisfying the w-congruence. Then

$$
\left(G_{d}\right)^{\alpha} \subseteq \bigcup_{r, s}\left(G_{r}, G_{s}\right) G_{d+1}
$$

with $r+s=d, r, s \geqq 2$ and α an integer whose prime divisors are less than $d+1$. Furthermore, if $\left(G_{d}\right)^{q}=G_{d}$, for every prime $q<d+1$, then

$$
G_{d}=\bigcup_{r, s}\left(G_{r}, G_{s}\right) G_{t} \quad r, s \text { as above }
$$

and t every integer greater than or equal to $d+1$.
Proof: Let $\bar{G}=G / \bigcup_{r, s}\left(G_{r}, G_{s}\right), r+s=d, r, s \geqq 2$. Then commutators of weight d in \bar{G} satisfy conditions (i) and (ii) needed in the proof of the Gupta-Newman Theorem. Now let $\overline{\bar{G}}=\bar{G} / w(\bar{G})$ and since $w(\overline{\bar{G}})=1$, we conclude that $\left(\bar{G}_{d}\right)^{\alpha}=1$ with α as described in the hypothesis. That is, $\left(G_{d}\right)^{\alpha} \subseteq \bigcup_{r, s}\left(G_{r}, G_{s}\right) G_{d+1}, r+s=d, r, s \geqq 2$.

Now if $\left(G_{d}\right)^{q}=G_{d}$ for every prime $q<d+1$ we get

$$
G_{d}=\bigcup_{r, s}\left(G_{r}, G_{s}\right) G_{d+1}
$$

since $\bigcup_{r, s}\left(G_{r}, G_{s}\right) G_{d+1} \subseteq G_{d}$. But this relation remains true if d is replaced by $d+1$ since

$$
\begin{aligned}
& G_{d+1}=\left(G_{d}, G\right)=\left(\bigcup_{r, s}\left(G_{r}, G_{s}\right) G_{d+1}, G\right) \subseteq \bigcup_{r, s}\left(G_{r}, G_{s}, G\right) G_{d+2} \subseteq \\
& \bigcup_{a, b}\left(G_{a}, G_{b}\right) G_{d+2} \subseteq G_{d+1}, \quad r+s=d, \quad a+b=d+a, \quad r, s, a, b \geqq 2 .
\end{aligned}
$$

Thus

$$
G_{d+1}=\bigcup_{a, b}\left(G_{a}, G_{b}\right) G_{d+2}, \quad a+b=d+1, \quad a, b \geqq 2 .
$$

Hence

$$
G_{d}=\bigcup_{r, s}\left(G_{r}, G_{s}\right) \bigcup_{a, b}\left(G_{a}, G_{b}\right) G_{d+2}=\bigcup_{r, s}\left(G_{r}, G_{s}\right) G_{d+2},
$$

$r+s=d, a+b=d+1, r, s, a, b \geqq 2$, and the conclusion follows by induction.
2.6 Theorem : Let w be a left-normed commutator of weight d and G a group satisfying $w(G)=1$. Then $\left(G_{d}\right)^{\alpha} \subseteq \bigcup_{r, s}\left(G_{r}, G_{s}\right), r+s=d, r, s \geqq 2$ and α an integer whose prime divisors are less than $d+1$.
Furthermore if $\left(G_{d}\right)^{q}=G_{d}$, for every prime $q<d+1$, then

$$
G_{d}=\bigcup_{r, s}\left(G_{r}, G_{s}\right), \quad r+s=d, \quad r, s \geqq 2 .
$$

Proof: Since $w(G)=1, w(\bar{G})=1$ with $\bar{G}=G / \bigcup_{r, s}\left(G_{r}, G_{s}\right) r+s=d$, $r, s \geqq 2$. Now applying the conclusions of the Gupta-Newman theorem we get that $\left(\bar{G}_{d+1}\right)^{\gamma}=1$ and $\left(\bar{G}_{d} / \bar{G}_{d+1}\right)^{\beta}=1$ with β, γ integers whose prime divisors are less than $d+1$. Therefore $\left(G_{d+1}\right)^{\gamma} \subseteq \bigcup\left(G_{r}, G_{s}\right), r+s=d$, $r, s \geqq 2$, and $\left(\bar{G}_{d}\right)^{\beta} \subseteq \bar{G}_{d+1}$. Thus $\left(G_{d}\right)^{\beta \gamma} \subseteq\left(G_{d+1}\right)^{\gamma} \subseteq \bigcup_{r, s}\left(G_{r}, G_{s}\right), r+s$ $=d, r, s \geqq 2$ and $\beta \gamma$ satisfies the requirements of α in the theorem.
Now if $\left(G_{d}\right)^{q}=\left(G_{d}\right)$ for all primes $q<d+1$, we get $G_{d}=\bigcup_{r, s}\left(G_{r}, G_{s}\right)$, $r+s=d, r, s \geqq 2$.

3. p-groups satisfying a small congruence

We say that a p-group G satisfies a small congruence if $w(G) \subseteq G_{d+1}$ with w a left-normed commutator of weight $d<p$. In this section we will show that a p-group satisfying a small strong congruence is nilpotent if it is solvable and derive a bound on its nilpotency class in terms of its derived length.
3.1. Lemma: Let G be a group in which the relation $G_{d}=\bigcup_{r, s}\left(G_{r}, G_{s}\right)$, $r+s \doteq d, r, s \geqq 2$ holds for some fixed $d \geqq 4$. Then

$$
G_{r(d-1)+1}=\bigcup_{a_{i}}\left(G_{a_{1}}, \cdots, G_{a_{r+1}}\right), \quad \sum_{i=1}^{r+1} a_{i}=r(d-1)+1
$$

$a_{i} \geqq 2$ all i.
Proof : Induction on r. If $r=1$, the conclusion is the hypothesis. Suppose that

$$
G_{r(d-1)+1}=\bigcup_{a_{i}}\left(G_{a_{1}}, \cdots, G_{a_{r+1}}\right), \quad \sum_{i=1}^{r+1} a_{i}=r(d-1)+1
$$

$a_{i} \geqq 2$ all i. Then

$$
\begin{aligned}
& G_{(r+1)(d-1)+1}=(G_{r(d-1)+1}, \underbrace{G, \cdots, G}_{d-1})=\left(\bigcup_{a_{i}}\left(G_{a_{1}}, \cdots, G_{a_{r+1}}\right),\right. \\
&\underbrace{G, \cdots, G}_{d-1}) \subseteq \bigcup_{b_{i}}\left(G_{b_{1}}, \cdots, G_{b_{r+1}}\right) \subseteq G_{(r+1)(d-1)+1}, \\
& \sum_{i=1}^{r+1} a_{i}=r(d-1)+1, \quad \sum_{i=1}^{r+1} b_{i}=\sum_{i=1}^{r+1} a_{i}+(d-1),
\end{aligned}
$$

$a_{i}, b_{i} \geqq 2$ all i by 2.1 . Hence we have $G_{(r+1)(d-1)+1}=\bigcup_{b_{i}}\left(G_{b_{1}}, \cdots, G_{b_{r+1}}\right)$ and the lemma follows by induction.
3.2 Lemma: Let G be a group in which the relation $H_{d}=\bigcup_{r, s}\left(H_{r}, H_{s}\right)$, $r+s=d, r, s \geqq 2, d$ a fixed integer, $d \geqq 4$ holds for all subgroups H of G. Then

$$
H_{(d-1)^{l}+1} \subseteq H^{(l+1)}
$$

Proof: If $l=1$, then $(d-1)^{l}+1=d$ and by hypothesis

$$
H_{d}=\bigcup_{r, s}\left(H_{r}, H_{s}\right) \subseteq H^{(2)}, \quad r+s=d, \quad r, s \geqq 2
$$

Now suppose that $H_{(d-1)^{l}+1} \subseteq H^{(l+1)}$. Then by replacing H by H^{\prime}, we get $\left(H^{\prime}\right)_{(d-1)^{l}+1} \subseteq H^{(l+2)}$. But according to 3.1
$H_{(d-1)^{(l+1)+1}}=H_{(d-1)^{l}(d-1)+1}=\bigcup_{a_{i}}\left(H_{a_{1}}, \cdots, H_{a_{(d-1)^{l}+1}}\right) \subseteq$
$\subseteq\left(H^{\prime}\right)_{(d-1)^{l}+1} \subseteq H^{(l+2)}$
since $a_{j} \geqq 2$ and $H_{a_{j}} \subseteq H^{\prime}$. Hence $H_{(d-1)^{l+1}+1} \subseteq H^{(l+2)}$ which proves the lemma.
3.3 Theorem: Let w be a left-normed commutator of weight d, and let G be a p-group with $d<p$. If G satisfies the strong w-congruence and G is solvable of derived length l, then G is nilpotent of class at most $(d-1)^{l-1}$.

Proof: We may assume without loss of generality that G is finitely generated and therefore finite. Thus G is nilpotent and we must derive a bound for the nilpotency of G independent of the number of its generators. Since $d<p$ and G is a p-group it follows from 2.5 that every subgroup H of G satisfies

$$
H_{d}=\bigcup_{r, s}\left(H_{r}, H_{s}\right), \quad r+s=d, \quad r, s \geqq 2 .
$$

Thus by 3.2, $G_{(d-1)^{l}+1} \subseteq G^{(l+1)}$, and since G is solvable of length l, H is nilpotent of class at most $(d-1)^{l-1}$. This completes the proof.

Remark: The version of the Gupta-Newman theorem that we have used is a relatively crude version of the original. In particular, the prime divisor properties of the integers α and β are determined not only by the weight of the commutator w but by the multiplicities of the variables which occur in w. In fact, if we know that w involves at least 3 variables, then the bound $d<p$ in the theorem above can be improved to $d \leqq p$. A particularly interesting case of this occurs when G is solvable of derived length l and has exponent p. For then G satisfies the strong $(p-1)$ Engel congruence and Gupta has shown [2. Theorem 7.18] that G is nilpotent of class at most $(p-1)^{l-1}+\cdots+(p-1)+1$.

If on the other hand G is a solvable-of-length- $l p$-group satisfying the strong w-congruence with w of weight p and involving at least 3 variables, then the class of G is at most $(p-1)^{l-1}$.

4. Nilpotent p-groups

In this section we will characterize those nilpotent p-groups of class $c<p$ which satisfy the Engel law of weight c.
4.1 Theorem: Let G be a nilpotent p-group of class $c<p$ and let

$$
w=(x, \underbrace{y, \cdots, y}_{c-1}) .
$$

Then G satisfies the law $w=1$ if and only if $H_{c}=\bigcup_{r, s}\left(H_{r}, H_{s}\right), r+s=c$, $r, s \geqq 2$ for all groups $H \in \operatorname{var} G$.

PRoof: Suppose $w(G)=1$ with

$$
w=(x, \underbrace{y, \cdots, y}_{c-1}) .
$$

Then by 2.6) $G_{c}=\bigcup_{r, s}\left(G_{r}, G_{s}\right), r+s=c, r, s \geqq 2$.
Thus since G satisfies the law $w=1$, every group $H \in \operatorname{var} G$ satisfies it and the theorem follows in one direction.

Now suppose that $H_{c}=\bigcup_{r, s}\left(H_{r}, H_{s}\right), r+s \geqq c, r, s \geqq 2$ for all $H \in \operatorname{var} G$. It follows that this relation holds for the relatively free groups in var G. Thus every group in var G satisfies a law: $\left(x_{1}, \cdots, x_{c}\right)=\prod d_{j}^{\gamma_{j}}$ with each d_{j} an element of $\left(F_{r}, F_{s}\right), F$ the relatively free group generated by $\left\{x_{1}, \cdots\right.$, $\left.x_{c}, \cdots\right\}$. Furthermore we may assume that each factor on the right involves each of the variables x_{1}, \cdots, x_{c}. Now we set $x=x_{1}$ and $y=x_{2}=$ $\cdots=x_{c}$ on both sides of the equation. Thus

$$
\begin{equation*}
w=(x, \underbrace{y, \cdots, y}_{c-1})=\prod_{j} d_{j}^{\gamma_{j}} \tag{*}
\end{equation*}
$$

We now utilize a standard argument based on the facts that each commutator of weight c is a bilinear form and that each non-trivial factor on the right involves at least 2 occurrences of x. Let l be a primitive root of p and replace x by x^{l} in (*). Then we get

$$
w^{l}=\prod d_{j}^{\gamma_{j} l^{r(j)}}
$$

where d_{j} has $r(j)$ occurrences of x. Then raising both sides of $\left(^{*}\right)$ to the power $-l$ and multiplying we get

$$
\begin{equation*}
1=\prod d_{j}^{\gamma_{j}\left(l^{r(j)}-l\right)} \tag{**}
\end{equation*}
$$

We continue this process with $\left({ }^{* *}\right)$ thereby eliminating those factors of $\left({ }^{* *}\right)$ containing the minimum number of occurrences of x. In this way we eventually get a law of the form

$$
1=\left(\prod d_{j}^{\gamma j}\right)^{m}
$$

in which each factor contains the same number of occurrences of x and y, and with m an integer relatively prime to p. Now working backwards we can conclude that

$$
w=(x, \underbrace{y, \cdots, y}_{c-1})=1 .
$$

Thus G satisfies the law $w=1$.

REFERENCES

[1] N. D. Gupta and M. F. Newman: On metabelian groups. J. Australian Math. Soc. VI (1966) 362-368.
[2] D. J. S. Robinson: Finiteness Conditions and Generalized Soluble Groups, Part 2. Springer, Berlin, Heidelberg, New York 1972.
[3] W. R. Scott : Group Theory. Prentice-Hall, Engelwood Cliffs, N. J. (1964).

