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Introduction

Let 1 be an odd prime, and let k be a number field which contains MI,
the group of 1-th roots of unity. Let W be the group of ln-th roots of unity,
1 ~ n  00. Then if K = k(W), we know that K/k is Galois and that
r = Gal (Klk) - Zl. Corresponding to the subgroups 0393n ~ Inzz, there is
a unique tower of fields

such that ~~n=1 kn = K and G(kn/kn - 1) ~ Z/lZ.
Let An be the 1-primary subgroup of the ideal class group of kn and

define en to be the integer such that the order of An is zen. Then Iwasawa
[6] has proven :

THEOREM: There exist integers 03BCc, Àe, v, depending only on k and l such
that en = 03BCcln + 03BBcn + 03C5c for sufficiently large n.

By Steinitz’s theorem, the ideal class group of a finite extension of

Q may be identified with the reducedk, of its ring of algebraic integers
[8]. We are then led to consider the behavior of the K2 of the ring of in-
tegers in the tower (1). Garland [3] has shown that these groups are finite.
Let Bn = K2 On where (9n is the ring of integers of kn and define dn to be
the integer so that the order of Bn is ldn. Coates [1] has shown:

THEOREM: There exist another set of integers J-lR’ ÂR, v,, depending
only on k and l so that dn = 03BCRln + 03BBRn + 03C5R for sufficiently large n.

This theorem is proven in [1] for the tame kernel, which we denote

R2 kn rather than for K2 (9n, but, by a recent theorem of Quillen [9], these
two groups are canonically isomorphic for finite extensions of Q. We
will also deal directly with the tame kernel.

In this paper we will stgdy the invariants Àe, Mc, ÂR 03BCR. It can be
shown that 03BCc = MR (a result of little interest since both are conjectured
to be 0). It is also known that 03BBR ~ 03BBc, and we give in this paper a class of
fields for which this inequality is strict. In the special case in which there is
only one prime of K above 1, it turns out that Âc = 03BBR, a result which has
been known for some time.



90

It is natural to make a further restriction on k, namely (J), to assume
that k is a totally imaginary quadratic extension of a totally real field,
which we call k+. This implies directly that the same holds for kn for all n.
This additional assumption implies that there is an action of complex
conjugation, which we denote by 6, on the groups An and R2 kn, and that
the action is independent of the embedding of k in C. If we set An -
(1 + 03C3)An and A; = (1 - 03C3)An, noting that l is odd, we get An A’ n ~ A-n.
Similarly we have R2 kn = (R2 kn)+ EB (R2 kn)-. These decompositions
give rise to invariants 03BCc+, À:, 03BCR, 03BBR, etc. It is shown in [1] that we always
have Àc- = 03BB+R and 03BB+c ~ Â-
Much of this paper is devoted to the study of À: and Â (Entirely

different techniques have been used for 03BB-c and 03BB+R, cf. [2]). We obtain a
lower bound for ÂR which yields many examples of fields for which
À; &#x3E; 0. By contrast, it has been conjectured that Àc! is always 0. [4]. We
have been able to verify this conjecture for a number of fields. For exam-
ple, let l = 3 and k = Q(d, 3) for d &#x3E; 0 and d ~ 2 (mod 3). Let e be
the fundamental unit of k’ Q(d). Let A+ and A - be the 3-primary
subgroups of the ideal class groups of Q(d) and Q( 3d) respectively.
Then we obtain

THEOREM: Assume that (1) A- is cyclic, (2) A+ has exponent 3, and (3)
k(303B5) is not embeddable in a Z3-extension of k. Then À: = 03BC+c = Â- R

J.1R = 0.

A similar result has been obtained independently by R. Greenberg [4].
This theorem is useful in practice because we show how (3) can be decid ed
by computations with norm residue symbols. This fact, although long
known in principle, has not been referred to explicitly in the literature
(Greenberg [4] uses a more ad hoc procedure). In this connection, it is
interesting to note that we have found, apparently for the first time,
examples of fields (e.g. k = Q(J254, 3) for which (1) and (2) are
satisfied with both A + and A - non-trivial, but for which (3) fails. For these
fields it remains an open problem to decide whether 03BB+c = 03BC+c = 0.

Finally, we use our general methods to obtain some information con-
cerning the size of the 3-primary subgroup of the tame kernel of a quadra-
tic field and, in fact, compute the order of the 3-primary part of the tame
kernel of all imaginary quadratic fields with descriminant d satisfying
Idl  200, except d = -107.

The index of the wild kernel

Let F be a number field, [F : Q]  oo, and let X’ c K2 F be the inter-
section of the kernels of the Hilbert symbols at all primes of F. Let X be
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the intersection of the kernels of all tame symbols. We then have the fol-
lowing commutative diagram:

where 1 = lm (Àwild) and T = Im (03BBtame)· In all cases T = 03A303C5k03C5 where k,
is the residue class field of F at v and v ranges over all non-archimedean

primes of F. For each non-archimedean prime v of F, let yv be the group
of roots of unity in the completion F03C5. Let p§ = /lv(p) where p is the unique
rational prime such that vlp. For v real, let 03BC’03C5 = (± 1).

Using Moore’s theorem, we have

By (1) we have X/X’ ~ Ker a. From (2) we get the exact sequence

Thus

Let no be the smallest integer such that K/kno is totally ramified at all
primes dividing 1. Let s be the number of divisors of l in kno (hence in K)
and let s+ be the number of divisors of l in k+n0.
LEMMA 1: Let P be a prime ofkt dividing 1. Let 03B2 be a prime of kn lying

above 03B2 ( for any n). Then P splits in the extension k/k+ if and only if 03B2
splits in kn/k+n.

PROOF : We have, for all n, kn = k+n(03BCl). Then P splits in k/k+ if and only
if 03BCl c (k+)P, and 03B2 splits in kn/kn if and only if JIz c (k+n)03B2. Clearly, if
03BCl c (k+)P, then 03BCl c (k+n)03B2, so one implication is obvious. On the other
hand, since ,ul c k and [k : k+] = 2, we have [(k+)P(03BCl) : (k+)P] divides 2.
Suppose 03BCl c (k+n)03B2. Since [k+n : k+] = ln, we have [(k+n)03B2 : (k+)P] dividesln.
Then, since (k+)P ~ (k+)P(03BCl) ~ (k+n)03B2 we have (k+)P(03BCl) = (k+)P and
03BCl ~ (k+)P.

Let R2kn be the l-primary part of the wild kernel for kn . Then the maps
in,m:R2kn ~ R2km induce maps in,m:R2kn/R2kn ~ R 2 km/R2km.
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PROPOSITION 2: For m ~ n ~ no, the map im, n is injective.

PROOF : Let P be a prime dividing l in kn and let 03B2 be the unique prime
lying above P in km . Since n &#x3E; no we have |03BC’P| = lq + n and |03BC’03B2| = lq + m.
Let 03BB03B2:K2km ~ 03BC03B2 and 03BBp:K2kn ~ 03BCp be the Hilbert symbols. Let
j : 03BCp ~ 03BC03B2 be the inclusion and r : 03BC03B2 ~ 03BCP be the homomorphism given
by raising elements to the power lm - n. By a lemma proved by Tate, the
following diagram commutes :

where ~n, m 03BF r =joN and N is the norm map from 03BC03B2 to 03BCp. We notice

immediately that on 03BC03B2 we have N = r. Let 03BE ~ R2kn, 03BE ~ R2kn. Then for
some prime P of kn, dividing l, we have 03BBp(03BE) ~ 1. Suppose 03BB03B2(in, m(03BE)) = 1.
Then ~n, m(03BBp(03BE)) = 1. Let 03B8 ~ 03BC03B2 so that r(0) = 03BBp(03BE). Then ~n, m 03BF r(0) = 1,
hence j o N(0) = 1 and N(0) = r(0) = 03BBp(03BE) = 1. This is a contradiction.

PROPOSITION 3 : For n ~ n0, |R2kn/R2kn| = (lq + n)s - 1 and

|(R2kn)-/(R2kn)-| = (lq + n)s + -1.
PROOF : We have |R2kn/R2kn| = (1/03BC(kn)(l)|)03A0si=1 |03BCpi|. Since n ~ no,

for each i we have |03BC’Pi| = lq + n. Thus, since |03BC(kn)(l)| = lq + n, we have
|R2kn/R2kn| = (lq + n)s - 1.
Now, in k+n we first observe that k+n/k+n0 is totally ramified at all primes

dividing 1. Thus the number of primes dividing l in k+n is also s+. Let

03B21,···, 03B2t be the primes above l in k+n which split in kn and let 03B2t + 1,···,
03B2s + be those which do not. Then 03BCq+n c (k+n)03B2i for i = 1,···, t and

flz cf:. (k+n)03B2i for i = t + 1,···, s+. The number of primes of kn lying above 1 is
then (s+) + t. Then we have IR2 kn/ ffae 2 knl = (lq + n)(s+) + t - 1. (R2 kn)+/(R2 kn)+
is isomorphic to R2(k+n)/R2(k+n) which is isomorphic to

so its order is (lq + n)t and the conclusion follows.
We may define the group R2K/R2K = limR2knjf//2kn using the maps

PROPOSITION 4: (R2K)/R2K) ~ (Ql/Zl)s-1 and

PROOF : From the exact sequence
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since the map a : 03A0p|03BC’P ~ 03BC(kn)(l) is given by a(x1,···, xs) = x1 ··· Xs,
we see that R2kn/R2kn is isomorphic to (Z/ln + qZ)s - 1 and, from similar
considerations, that (R2kn)-/(R2kn)- is isomorphic to (Z/ln + qZ)s + -1.
The fact that the maps in, m are injective yields the desired result.

If k is also Galois over Q, our assumption (J) is equivalent to the fact
that k+ is also Galois. Then the same holds for kn and k:, so that either
s = s+ or s = 2s+, the former if the primes of k+ do not split in k, the
latter if they do.

COROLLARY 1: If k/Q is Galois and the primes of k+ dividing l split in k,
then for n ~ no

COROLLARY 2 : If k/Q is Galois and the primes of k+ dividing l do not

split in k, then for n ~ no

If we consider the Iwasawa invariants of the extension K/k, we get the
following:

THEOREM 1: 03BBR ~ s+ - 1.

PROOF: This is clear from the fact that |(R2kn)-/(R2kn)-| = (ln + q)s+ - 1
for n ~ n0.

COROLLARY 1 : Let F be a Galois field satisfying (J), [F : Q]  oo, such

that F/Q is unramified at 1. Let d + be the number of primes of F+ which
divide 1. Let k = F(J1z) and let Klk be the cyclotomic ZI-extension. Then
(R2K)-/(R2K)- ~ (Ql/Zl)d+-1 and 03BB-R ~ d+ -1.

PROOF : Since l is unramified in F, we have kIF completely ramified at
all primes over 1, and [k : F] = l - 1. Let P be a prime of F + which divides
1. Then if fi splits in F we find that 6 does not fix either of the primes above
fi in F. Then certainly Y cannot split in k+/F+ . Thus k+/F+ must be
totally ramified at P and k/k+ split at the prime above P. On the other
hand, if fi fails to split in F/F+, since P is totally ramified in k/F, we find
that Y fails to split in k/F+. In either case, there is a unique prime above Y
in k + . Since k/Q has ramification 1 - 1 at primes dividing 1, we have
03BCl2 ~ k2fJ for any prime Y dividing 1, so the extension Klk is totally ramified
at all primes above 1 (i.e. no = 0). Thus d+ = s+ and the result follows.
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COROLLARY 2: If F is a real quadratic field in which l splits, then
(R2K)-/(R2K)- ~ Ql/Zl and 03BB-R ~ 1.

The invariants 03BC+c and A:

In this section we will describe some classes of fields for which 03BB+c =
f.lc+ = 0, including some examples for which AR &#x3E; 0. Let F be a totally
real field, [F : Q]  oo, and let S be the set of primes of F dividing 1. Let
K be the cyclotomic Zl-extension of F and M be the maximal abelian
l-ramified l-extension of F. Let J be the group of ideles of F and A and

As the l-primary subgroups of the ideal class group and l-ideal class
group of F respectively.
We define JS = {I ~ J : (I)03C5 = 1 for 03C5 ~ S, (I)03BD ~ U03C5 for 03C5 ~ S} (there is no

requirement on (I)03C5 for v archimedean). Then, by class field theory, we
have G(M/k) ~ J/FJS(l) and

The term on the left is isomorphic to OVES F v/O s(l) where Us is the group
of S-units of F, embedded diagonally in OVES F03C5. Let Ul = OVES Uv’
Then we have

PROPOSITION 5: Assume that l does not divide the class number of F,
that /ll ~ F03C5 for any v E S, and that the fundamental units of F are linearly
independent in Ul/(Ul)l. Then M = K.

PROOF : If the class number of F is prime to l, we have As = 0, hence
G(M/F) ~ 03A003C5~S F03C5/US(l), and also that 03A003C5~S F03C5/US1 ~ Ul/U1 where U is
the group of units of F, embedded in Ul. Let n = [F : Q]. Since F is totally
real, we have U = (:t 1) x U’ where U’ is free on n - 1 generators 03B51,···,
8n - 1. Since 03BCl ~ Fv for all v E S, we know that Ui has no l-torsion. From
the exact sequence

we deduce that if 03B51,···, 8n-l are linearly independent in Ul/(Ul)l, then
Ul/U has no 1-torsion. Since Ul(l) is a free Zl-module of rank n, and since
rank (U) = n -1, we have Ul/U ~ Zl. Hence G(M/F) ~ Z, and, since
K ~ M, we have K = M.
We note that if the class number of F(03BCl) is also prime to l, then we must

have {03B51,···, 03B5n-1} linearly independent in Ul/(Ul)l. Otherwise, suppose
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Then F(03BCl) (Zf73) gives an unramified extension of F(03BCl) which cannot
exist.

Let F = k0 ~ kl c - - - c K be the intermediate fields in the Zl-exten-
sion K/F. Let An be the l-primary part of the ideal class group of kn. Then

THEOREM 2 : Under the hypothesis of Proposition 5, Aj = (0) for all j.

PROOF : Since the class number of F is prime to and [kl : F] = l, kl/F
must ramify at some prime above l(K/F is l-ramified). Then K/F is totally
ramified at that prime P1. Let Lj be the maximal abelian unramified
l-extension of kj, and let L’j be the maximal subfield of Lj which is abelian
over F. Then kj c L’j c Lj. Since L’j must be l-ramified over F, we have
L’j ~ M. But, by Proposition 1, M = K, so L’j c K. Then Ejlkj must be
both unramified and totally ramified at the prime of kj lying over P1,
so Ej = kj. Let y be a generator of G(kj/F). We then have G(Lj/kj) ~ Aj
and G(L’j/kj) ~ Aj/(03B3 - 1)Aj. Since L’j = kj, we have Aj = (03B3 - 1)Aj, so
Aj = (0).

COROLLARY 1: If F = Q, the class number of kn is prime to 1 when l is
odd. (This result was first proven by Iwasawa) [5].

PROOF : Since l is odd, we have /11 cf- Ql.The other hypotheses of
proposition 5 are verified trivially for Q.

COROLLARY 2 : Let F be a real quadratic field. Let s be the fundamental
unit of F and assume that 03B5~(F03C5)l for some v dividing l, and that if l = 3, the
discriminant d ~- 3 (mod 9). Assume that the class number of F is prime
to 1. Then An = (0) for all n.

PROOF : For l &#x3E; 3, we have 03BCl ~ F03C5 for 03C5|l. For l = 3, the condition

d =1= - 3 (mod 9) guarantees that 03BC3 ~ F v for 03C5|3. The rest of the hypotheses
of Theorem 2 are assumed, hence the result follows.
We remark that if l = 3 and k = F(03BC3), then k+ = F, so we have shown

that /1: = À: = 0.
We note that if F = Q(d), then F(03BC3) = Q(d, -3). Then

AF(03BC3) ~ AF EB AQ(-3d),
so if both Q(d) and Q(-3d) have class numbers prime to 3, then we
have 03B5 ~ (F03C5)3 for some v dividing 3. We note that if F = Q(7) (d = 28),
s = 8 + 37. Q(7) has class number 1 and we verify either directly or
by noting that 3 does not divide the class number of Q( - 21), that

03B5 ~ (F03C5)3 for v13. We conclude that /1: = À: = 0 for this field. On the other
hand, we have shown in Theorem 1 that 03BB-R ~ 1.
We will now investigate a special situation, when l = 3 and k =

Q(d, - 3) where d is a positive square-free integer &#x3E; 1, and there is
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only one prime of k dividing 3. It is easy to see that this happens exactly
when d - 2 (mod 3) or d = 3(3m + 1) for some positive integer m. We have
k+ = Q(d) and we let k- = Q(-3d). Let Ari, Aü, and Ao be the
3-primary parts of the ideal class groups of k+, k- and k respectively.
Then let a and i be the non-trivial elements of G(k/k+) and G(k/k - )
respectively. Let K be the cyclotomic Z3-extension of k and F be the ex-
tension obtained from K by adjoining all 3"-th roots of 3-units of k
(1 ~ n  oo ). Let Fo be the maximal abelian extension of k contained in
F, Po the compositiumof all Z3-extensions of k, and Mo the maximal
abelian 3-ramified 3-extension of k.

REMARK: Since l is odd, we see that the natural maps

are all isomorphisms and, since the class number of Q( 3) is 1 and

R2Q(-3) = 0 for all l[11], we see that, in fact

Since G(k/Q) acts on G( F o/k), G(Po/k) and G(Mo/k) in a natural
way and T2 == 1, we can decompose these groups into eigenspaces.
We will write X = X+ ~ X- where X+ will denote the eigenspace
X(03C4+I) and X - the space X(03C4-I). Let F-0, P-0, M. be the fixed fields of
G(F0/k)+, G(P0/k)+ and G(M0/k)+ respectively. Then we have G(Po /k) =
G(Po/k) - and G(M-0/k) = G(Mo/k) - . Clearly we have P-0 ~ Mû. It

follows from Iwasawa’s work [7] that we also have P-0 ~ F-0.

PROPOSITION 6: Let 03B2 be a representative of a class of order 3 in Ari.
Let 03B23 - (a), ce E k + . Then 03B2 becomes principal in knfor some n if and only if
l1E(Fo)3.
PROOF: First let 03B2 ~ F0 be such that p3 = a. Then K(03B2) = K(3k) for

some 3-unit x of K. Then p3 = 03BA03B33 for some y E K. Choose n large enough
so that K, y E kn . Then, in kn, we have a = 03B2 = xy3, so in An, we have
i0, n(03B2’) is trivial. Since An = A’n, 03B2 becomes principal in kn .

Conversely, suppose 13 becomes principal in kn. Then, in kn we have
i0, n(03B2)3 = (11) = (y)3. Then ax = y3 for some unit x of kn . But K ~ (F)3
hence a E (F)3. Since k(§)/k is an abelian extension, we have a E (F0)3.
We remark that Greenberg [3] has proved that under our assumptions,

a necessary and sufficient condition so that Il: = 2: = 0 is that the map
i: A+0 ~ A be the zero map. Using this fact we get :
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COROLLARY : Suppose Ari has exponent 3. Let 03B21,···, 13, be representa-
tive for a set of independent generators of Ari and let oc,, as be elements
o, f ’ k+ so that (03B2i)3 = (ai) for i = 1, ..., s. Then 03BC+c = À: = 0 if and only if
ai E (F0)3 for all i.

Let J and J 1 be the idele groups of k and k - respectively. In any subfield
of K, there is only one prime dividing 3 and we will use S to denote the one
point set containing that prime in a given field. We then have the exact
sequence

and the isomorphism k-(J1)s/k-JS1 ~ k-P’/US where US is the group of
S-units of k - and P’ is the prime above 3 in k - . When d ~ 2 (mod 3) we
have k-P, = Q3(3) and when d = 3(3m+ 1) we have k-P, = Q3(2). In
either case US = (± 1)3&#x3E; and k-P’/US(3) is torsion free, hence isomorphic
to Z3 ~ Z3.
We remark that since the unique prime P dividing 3 in k is principal,

we have A’0 = A0, hence (A’0)- = (Ao)-. Let 03B21,···, ’l3s be a set of repre-
sentatives for independent generators of (A+0)3, and U1,···, Ut a set of
representatives for independent generators of (AÜ)3’ Then there are
elements a1,···, l1sEk+, 03B21,···, 03B2t ~ k- so that 03B23i = (ai) and u3j = (03B2j)
for all i and j. Any cubic extension of k is of the form k(3x) for some
x E k. Clearly the extension depends only on the residue class of x in
kjk3. Let

Let e be the fundamental unit of k+ and 03B6 be a primitive cube root of
unity. Then the classes of the elements {03B6 3, 8, a1,···, as, 03B21,···, 03B2t} form
a Z/3Z basis of N. By observing the action of i on the Kummer pairing
N x G(M0/k) ~ M3, we see that the classes of {03B6, e, oc,, as} form a basis
for N-.

PROPOSITION 7: s ~ t ~ s + 2.

PROOF: Let X = G(Mô /k), Y = k CTS(3). Then we have X ~ Z2 (f) T,
where T is a finite 3-group. Using the snake lemma on the commutative
diagram obtained from the cubing of (*), we obtain the exact sequence of
Z/3Z vector spaces
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because Y is torsion free. X/X3 is the Galois group of the maximal sub-
field of M. of type (3, 3,···, 3). Then we have

Since X/X3 ~ (Zl3Z)2 Q TjT3, we have diMZ/3Z(T/T3) = s. The in-

jectivity of f shows that s ~ t and the surjectivity of g shows that 2 + s ~ t.

(This result was originally obtained by Scholz [10] in 1932, using a slightly
different method.)

COROLLARY: If Aû is cyclic, then Aô is cyclic.

PROOF: If Aü is cyclic then t = 1. Hence s ~ 1 and Ari is cyclic too.

THEOREM 3: Suppose Aû is cyclic and that Ari has exponent 3. If k(303B5)
is not embeddable in a Z3-extension of k, then 03BC+c = À: = 0.

PROOF : We note that, by the above corollary, At is cyclic of order 3.
Since k(303B5) is not embeddable in a Z3-extension of k, we know that E is
not orthogonal to T in the Kummer pairing. Since k(303B6) c K, we know
that 03B6 is orthogonal to T. The only possibility is that there is an element
a ~ k+ so that (a) = 03B23, the class of 13 generates At, and a is orthogonal
to T. Hence k(3a) c Po - FJ. Thus oc E (F0)3 and 11: = Â+ = 0.

Let L be the maximal unramified abelian 3-extension of k. Then
G(L/k) ~ Ao = A’0. Hence every unramified cubic extension of k splits
completely at Y. When Ag is cyclic, there is a unique unramified cubic
extension of k lying in Mû. Then there is a subgroup N* c N- such that
IN*l = 3 and satisfying xk3 ~ N* if and only if xk3 ~ N- and x ~ (kp)3,
that is, that the extension k(3 x) c Mo is completely split at P.

PROPOSITION 8: Assume Aû is cyclic. Let xk3 E N*. Then k(3x) is em-
beddable in a Z3-extension of k if and only if I TI  IAû 1.

PROOF: Since y is torsion free, we know that T injects into Aû. Since

k(VX) is the unique unramified cubic extension of k in Mô, we have
G(k3x)/k) ~ Aû j(Aü)3, and this isomorphism is compatible with the
exact sequence (*). Thus Im (T) c (A-0)3 if and only if |T|  |A-0| 1, hence a
generator of T fixes 3x if and only if |T|  JAO 1. Thus x is orthogonal to
T if and orily if 1 TI  IAû and the result follows.

COROLLARY : If E E (kP)3, then k(303B5) is embeddable in a Z3-extension of
k if and only if |T|  |A-0|.

Before giving some examples of how one computes whether k(303B5) is
embeddable in a Z3-extension of k, we make the following remark.
When, as in this case, there is only one prime above 1 in a cyclotomic
Zl-extension K/k, we have the isomorphism R2K~F~A[1] and,
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observing the action of complex conjugation on Y, we have (J.1:, Â’) =
(03BC-R, 03BB-R), so in the preceding cases we have also shown that 03BC-R = 03BB-R = 0.
We will now describe how to determine whether k(303B5) is embeddable

in a Z3-extension of k and will give the result of this determination for
some fields. We are considering fields Q (a, -3) in which there is only
one prime above 3, and such that the class number of k+ = Q(J a) is
divisible by 3 (otherwise 03BC+c = 03BB+c = 0 by Greenberg). There are six

such fields for a ~ 500 and they are a = 254, 257, 326, 359, 443, and 473.
We also consider the values a = 761, 1223, and 1367 since they fall

easily within the scope of these calculations. In five of these fields, when
a = 257, 326, 359, 1223, and 1367, we have IAt | = |A-0| = 3 and 8 E (kç;)3
where Y is the prime above 3. Since T is non-trivial (c.f. Prop. 7) and
injects in A-0, we have 1 TI = 3, and, by Proposition 8, k(303B5) is not

embeddable in a Z3-extension of k. Then for these fields 03BC+c = 03BB+c = 0.
The values of e are tabulated below

In the rest of the cases we proceed as follows: Suppose |T| = 3r, and
IAü = 3".Then r ~ u because T injects into A-0, ànd since T ~ (A-0)3r,
we find that the map Y/Y3r~X/X3r is injective. Let T be an ideal which
represents a generator of the cyclic group Ag, and for convenience,
choose 03B2 so that only one prime divides it. Let 03B2 ~ k- be an element
so that (03B2) = 03B23u, and let Nk-/Q(03B2) = qb for some rational prime q.

Clearly we may assume that 3 does not divide b. Consider the ideles I.
and I1 of k - given by

By class field theory, we have the isomorphism X ~ J1/k- JS1 (3).
Making this identification, and, identifying T with its image in J1/k-JS1
we see the following:

Io maps to the class of 03B2 in Ag and I1 represents a non-trivial class
in Y Also, I1 I03u ~ k-JS1, so the class of I1I03u is trivial in X. Since the
class of I1 is then in Y n X3u, hence in Y n X3r, it must be in Y3r; hence
03B2 must be in (k-)3rp’ and r is necessarily the largest integer u for which
this is true. Let y pll3r in k-p’ and let I2 be given by (I2)p’ = y, (I2)03C5 =
q3u rb for 03C5|03B2 and (I2)03C5 = 1 for all other v. Then (I2)3r = Il(jo)3u in X
and it is clear that the class of I2 generates T.
To decide whether V8 is embeddable in a Z3-extension of k, we must

decide whether T (considered as a subgroup of X) fixes V8, since the
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fixed field of T is the compositum of the Z3-extensions of k contained
in Mô. To make matters simpler, we will perform our calculations in

G(M0/k) ~ J/kJs (3), identifying JI with its image under tlle canonical
map J1 ~ J. Then using class field theory the Kummer pairing

translates into the 3-symbol N x J/kJs J3 ~ M3 given by

v

Explicitly we must evaluate

where v is the unique prime of k - dividing 03B2. Then 303B5 is embeddable in
a Z3-extension of k if and only if it is orthogonal to T in the sense that
(03B5, I2)3 given above is 1.

To compute (8, 03B3)mp/3p we note that it certainly suffices to approximate
by 8 and y modulo U3 where U is the group of units in kp. We have
k1) = Q3(-3, 2) and a basis for the Z/3Z-vector space UjU3 is given
by {1 + -6,1 + -3, 1+32, 4, 1+3-3}. We note that 8 and y
will always be units taken from the subfields Q3(2) and Q3(-6) and
that they will not both be in the same subfield.

LEMMA 9 : Let x be a unit in Q3(2) and y be a unit in Q3(-6). Then
(x, y)mp/3p = 03B6~(x)03C8(y) where cp(x) and 03C8(y) are the coefficients of 1+32 and
1 + -6 respectively in the expansions of x and y with respect to the above
basis of U/U3.

PROOF: Since x ~ Q3(2), we may write x(modulo U3) as (1 + 32)x1
(4)x2, and since y~Q3(-6), we may write y (modulo U3) as (1 + -6)y1
(4)Y2. Then
(x, y)p = (1 + 32). 1 + -6)x1y1p(1 + 32, 4)x1y2p(4, 1 + -6)x2y1p(4, 4)x2y2p.
We then raise to the power mp/3 and see immediately that (4, 4)mp/3p = 1.
Furthermore, since 113 is not contained in either Q3(2) or Q3(-6),
we have
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We check directly that (1 + 32, 1 + -6)mp/3p = 03B6 where

and note that x, = ~(x) andy, = 03C8(y).
To compute cp(x) and 03C8(y) we note the following: If x - 1 (mod 3) we

may write x = 1 + 3(a + bfl) and then cp(x) = b (mod 3). In general, we
may adjust x by a cube without changing cp(x). We note that x4 ~ ± 1
(mod 3). Let x - a + bJ2 (mod 9). Then

x4 = (a4 + 12a2b2 + 4b4 - 2(4a3b + 8ab3))(mod 9)
and, since x4 - + 1 (mod 3), we have 3|(4a3b + 8ab’) and a4 + 12a2b2 + 4b4
== ± 1 (mod 3). Then we have

For y, we must have y ~ + 1 mod p’, the maximal ideal in Q3(-6).
In Q3(-6) we have the isomorphism logp’ : U(l) - p’ which exists
because 03BC3 ~ Q3(-6). Since -1 is a cube, we may assume y ~ 1

(mod P’). Let y = 1 + z, z ~ p’. Then log y = 03A3~n=1(-1)n+1Zn/n. We
note that 03C5p(zn/n) &#x3E; 1 when n = 2 or n &#x3E; 3, hence that log y = z + z3/3
(mod 3). Let z = a(R)+3b. Then

Returning to our example, we must compute (s, 03B3)mp/3p. Assume that

(k+)3 = Q3(2) (Otherwise (k-)3 = Q3(J2) and the calculation is

similar.) Then we have

We must write s in Q3(2) by expressing Q7 in terms of J2. We use the
convention a/2 ~ 1 (mod 3). We compute the following congruences
(mod 9) for a when a = x (mod 9)

We have y = 03B21/3r, so log y = 1/3r log 03B2. For example, let a = 443. Then
|A-0| = 9 and 03B29 = (fi) = (99037 + 774-3 · 443) where 03B2 is a prime
ideal dividing 13 in k- . We have logp, 03B2 ~ -9-6-27 (mod (p)7),
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hence 03B2 e U9 and r = 2. Logp, y = 1 9 logp, 03B2 - - -6 (mod 3), so 03C8(03B3) = 1.
We have 03B5 = 442 + 21443 ~ 1 + 32(mod9),so ~ (03B5) = 1. Thus (03B5, 03B3)mp/3
= 03B6. Finally we calculate straightforwardly the tame symbol (03B5, 13)m13/303B2.
We observe that 13 splits completely in k, so m13 = 12, and thet 82 = -1
(mod 13). Hence (03B5, 13)403B2 = 1 and we have (03B5, I2) = 03B6. Then k(303B5) is not
embeddable in a Z3-extension of k and 11: = À: = 0. Tabulated below
is the relevant information for the other fields.

We conclude that when k = Q(a, -3) and a = 443 or 761, k(03B5) is not
embeddable in a Z3-extension of k, so 03BC+c = 03BB+c = 0 for these fields. For
the cases a = 254 and a = 473, k(303B5) is embeddable in a Z3-extension.
We note that when a = 443 and 761, the elements a = 10 + 443 and
(27 + J76f)/2 have the property that 03B23 = (a) and 13 represents a genera-
tor of the 3-primary part of the ideal class group of Q(a). In these cases
we check directly that k(3a03B5-1) for a = 443 and k(3a03B5) for a = 761 are
embeddable in Z3-extensions of k.

Computation of the order of (R2 k)3 for quadratic fields

Let k = Q(d, -3) where d is a square-free positive integer &#x3E; 1.

Then k+ = k n R = Q(d) and we define k- = Q(vf- 3d). G(k/Q) is

generated by automorphisms 6 and i where 6 fixes k+ and i fixes k -
and 62 = r2 = 1. Clearly, if F is any quadratic number field, then unless
F = Q( 3) for which R2 F = (0) [12], F( 3) is a field of the form k.
When F is real, we have F = k+ and when F is imaginary we have F = k -.
Tate [ 13] has shown that when M3 c k, the map a : k/k3 ~ (K2 k)3 given
by a(x mod k3) = {x, 03B6}, where 03B6 is a primitive cube root of unity, is sur-
jective. Then we have the exact sequence

where X = Ker a. Let k be an algebraic closure of k (we may take k ~ C),
Gk = G(k/k) and 1 = lim 03BC3n. Then from the exact sequence
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we obtain the following sequence by taking Galois cohomology with
continuous cochains

Since M3 c k, Gk acts trivially on 03BC3, we may identify H1(Gk, M3 ~ 03BC3)
with Hom (Gk, 03BC3) (as groups). We then construct the following diagram

where (03B2(x Q 03B6)(03C3) = 03C3(x1/3)/x1/3 for a c- Gk . Tate [12], [13] has shown
the existence of the isomorphism h:(K2k)3 ~ [H2(Gk, F 0 F)]3 so that
the above diagram commutes. Then

and since Hl(Gk, f:J- ~ F) is isomorphic to B EB Zr2(k)3 where B is a cyclic
group of order

we have X ~ (Z/3Z)1 + r2(k)[10].
Recall that R2 k is the 3-primary part of the tame kernel of k. Then,

since R2 k = (R2k)+ ~ (R2k)-, we have (R2k)3 = (R2k)+3 ~ (R2k)-3.
Suppose k’ is a quadratic subextension of k. Then let Gk, = G(k’/k’) =
G(k/k’). We have Gk c Gk, and |Gk’/Gk|=[k:k’]=2. Since F is a

pro-3 group, we have

But H1(Gk’, F ~ F) ~ B’ ~ Z32(k’) where B’ is a cyclic group of order
wk. [10]. Thus, since Gk’/Gk ~ G(klk’) and 3|w’k’ for any k’, we have

Thus if k’ = k-, we have r2(k’) = 1, so dimZ/3Z(X03C4) = 2, and if k’ = k+,
r2(k’) = 0, so dimZ/3Z(X03C3) = 1. Since (R2k+)3 ~ (R2 k)03C33 and (R 2 k-)3
(R2 k)3 we may now determine the orders of (R2 k+)3 and (R2 k-)3.

Notation : If T is an abelian group of exponent 3, we will write d(T) =
dimZ/3Z(T). Let Y = {y ~ k ~ 03BC3 : a(y) ~ (R2k)3}. We have a ~ 03B6 ~ Y if

and only if v,(a) is divisible by 3 for all éP not dividing 3. We have the
exact sequence
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where the maps are compatible with the action of G(k/Q), so to determine
(R2 k)03C33 and (R2 k)03C43 we need only determine Y6 and Y03C4.

Let A be the 3-prlmary part of the ideal class group of k
A’ be the 3-primary part of the 3-ideal class group of k
B be the subgroup of A generated by the classes of the ideals divid-

ing 3 in k.
Then A’ = A/B and we have the exact sequence

Case 1 : There is only one prime dividing 3 in k.

In this case, if P is the prime above 3 in k, we have Y -3), so
B = 0 and 03C0 : A3 ~ A’3 is an isomorphism. Let 03B21,···, 03B2r be representa-
tives of independent generators of A 3 . For each i, let ai E k be so that

03B23i = (ai). Since A3 ~ (A+)3 ~ (A-)3, we may choose the elements ai so
that a1,···, as ~ k+ where s = d(A+3), and as + 1,···, as + t ~ k- where

t = d(A-3) and s + t = r. Suppose a ~ 03B6 ~ Y Then (a) = (-3)03A003C5i|3 Vei
Since a 0 C ~ Y, we may write ei = 3fi for each i, and we observe that

fl (03C5fii)3 is principal, hence in A

and we have

Then

where y is a unit in k. Thus

Let U be the group of units in k. Then U Q M3 is generated by G ~ 03B6
and ( ~ 03B6 where G is the fundamental unit of k+. Thus Y is generated by

It is clear that these elements are linearly independent so we have d(Y)
= 3+r = 3+s+t.
Let Yl be the subgroup of Y generated by {ai (D 03B6}si=1

Y2 be the subgroup of Y generated by {ai ~ 03B6}ri=s+1.
LEMMA 10 : For y E Yl , we have i( y) = y, 03C3(y) = y-1. For y E Y2, we have

6(y) = y and 03C4(y) 
= 

y-1. Furthermore, i(E ~ C) = (e (D C) and 6(E (D () =
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(800’’; 03C3(03B6 ~ 03B6) = 03C4(03B6 ~ 03B6) = 03B6 ~ 03B6; and 03C3(-3 ~ 03B6) = 03C4(-3 ~ 03B6)
= (-3 Q9 ,)-1. 
PROOF: First we have 8 = E6 and 03B503C4 = + 03B5-1. 03B603C3 = 03B603C4 = 03B6-1 and

(-3)03C3 = (J=3y = -R. From this we conclude, since -1 is a cube,
that 03C4(03B5 ~ ,) = (e ~ 03B6), 6(E ~ 03B6) = (e Q9 ,)-1; 03C3(03B6 ~ 03B6) = 03C4(03B6 ~ 03B6) = (03B6 ~ 03B6);
and G( 3 Q9 03B6) = I( 3 ~ 03B6) = (-3 ~ 03B6)-1.
Now, consider {ai ~ (j for 1 ~ i ~ s. Then ai c- k so ai = l1f and

(J(l1i Q9 0 = (ai ~ 03B6)-1. Also, we have T (ai), so (aia03C4i) = (03B2i03B203C4i)3 = (A)3
where d is an ideal of Q. Then ai = x3 for some X ~ Q. From this it
follows that i(ai Q9 ,) ai Q9 03B6. Similarly, if s + 1 ~ i ~ r, we have 03B103C4i = l1i,
so 03C4(ai Q9 ,) = (l1i Q9 03B6)-1 and l1il1f = y3, y E Q. Hence 6(ai ~ 03B6) = (Yi Q9 03B6).
We observe that, since (R2 k)03C303C4 = R2(Q(J-- 3)) = (0), we have 03B6 ~ 03B6 ~ X

and -3 ~ 03B6 ~ X. By the above lemma, we have d(Y03C4) = 2 + s and
d( Y6) = 1 + t. Since d(X03C4) = 2 and d(X03C3) = 1 (in fact X03C3 is generated by
’Q9 0, we have d(R2k)03C43 = d(R2k-)3 = s and d(R2k)03C33 = d(R2k+)3 = t.
That finishes Case 1.

Suppose there are two ideals above 3 in k. Then 3 must split in either
k+ or k - . Let P and Y’ be the primes above 3 in k. Then PP’ = (-3),
so P’ = P-1 in the ideal class group of k. Furthermore P’ = P03C4 or P03C3
when 3 splits in k+ or k - respectively. Let c be the order of Y in the ideal
class group of k.

Case 2: 3 does not divide c.
In this case we have B = 0, so again 03C0:A3 ~ A’3 is an isomorphism.

Let 03B21,···, 03B2r be representatives for a set of independent generators of
A 3 . We may assume that 03B21,···, 03B2r are relatively prime to P and 9’.
Let ai E k be so that (ai) = 03B23i. Again, if s = d(A+3) and t = d(A-3), we may
choose Oc as ~ k+ and as+1,···, ar ~ k-. Now let a ~ 03B6 ~ Y Then

03C513

Again we have ei = 3bi for each i and, since f!Jf!J’ = ( 3), we have

Raising to the power c, we have (aC) = (y) 03A003C513 (03C5c03B4ii)3 where y is a 3-unit
in k. Then 03A003C53 (03C5c03B4ii)3 is principal, so we conclude that

and hence that
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where z is a 3-unit in k. Thus, if Y’ is the subgroup of Y generated by
(ai 0 03B6}ri=1 and U is the group of 3-units of k, we have

and, since 3  c,

The Galois action on Y’ is described in Case 1. To determine the struc-

ture and Galois action on U (D J13, we observe the following. Let Y’ = (y).
If 3 splits in k+, we have (yy’) = (-3)c. Then yy" = u(-3)c where u is
a unit in k. Replacing y with y2 if necessary, we may assume 03B3 ~ k+. Let
x = y2yL. We then have the following:

U (8) J13is generated by {03B6 (8) (, 8 (D 03B6, J=3 (8) (, x Q 03B6} where 8 is the
fundamental unit of k+. The Galois action on the first three is given in
Case 1. Since xG = x and xx03C4 = (yyL)3, we have i(x Q 03B6) = x (8) ( and
a(x Q 03B6) = (x Q 03B6)-1. We observe finally that

is linearly independent, so we have d(Y03C4) = s + 3 and d(Y03C3) = t + 1. Then

we conclude that d(R2k+)3 = d(R2k)03C33 = t and d(R2k-)3 = d(R2k)03C43 =
s + 1. By an analogous argument, if 3 splits in k-, we let x = y2yu and
conclude that d(R2k+)3 = t + 1 and d(R2k-)3 = s.

Case 3: 3 divides c, but the class of Y is not a cube.

Let c = 3"c’ where 3  c’. Then B is cyclic, generated by Pc’, and B3 is
generated by f!lJ3n-lc’. In the exact sequence (**), we now have B q-’ A3,
so g is injective. Then f is zero and we get

Let 03B2’1,···, 03B2’r be independent generators of A’3. Then they may each be
lifted to classes A3 , which may be represented by ideals 03B21,···, 03B2r
which are relatively prime to P and P’. Let l1i E k be such that 03B23i = (ai).
Suppose 3 splits in k+. Then we may assume a1,···, as - 1 ~ k+ where
s = d(A+3). (The extra term is accounted for by the fact that B3 ~ A+3),
and as,···, rirEk- where t = r - s + 1 = d(A=-3). We note that s = d(A+3)
= 1 + d(A’3)+ and t = d(A-3) = d(A’3)-.
Now let a ~ 03B6 e JI: Then

as in Case 2. In the ideal class group, we must then have
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Hence we may write

where y is a 3-unit in k. Again a ~ 03B6 E (Y’)(U ~ Jl3) with Y’ and U defined
as in Case 2. Again let Pc = (y). Then U Q Jl3 is generated by {03B6 Q 03B6,
E ~ 03B6, -3 ~ 03B6, 03B3 ~ 03B6}. Replacing y by y2 if necessary, we may assume
03B3 ~ k+. Then y6 - y and 03B303B303C4 = (-3)c is a cube because 3|c. Hence
6(y Q 03B6) = (y ~ 03B6)-1 and i(y ~ 0 = y ~ 03B6. Again the given generators of
Y’ together with those of U Q Jl3 are linearly independent and the Galois
action on the other generators has already been described. Putting it all
together, we have d(Y’t) = s + 2 = d(A’3)+ + 3, and d(Y03C3) = t + 1 = d(A’3)
+ 1, so d(R2k+)3 = t = d(A’3)- and d(R2 k-)3 = s = 1 + d(A’3)+. By an
exactly analogous argument, if 3 splits in k- rather than k+, we get
d(R2k+3) = 1 + d(A’3)- and d(R2 k-)3 = d(A’3)+.
Case 4 : 3 divides c and the class of P is a cube.

Again we write c = 3nc’ where 3  c’ and again B is cyclic, generated
by the class of f!JJc’, and B3 is generated by the class of P3n-1c’. This time
we have B c A3, so in (**) the map g:B/B3 ~ A/A3 is zero. Then f is
surjective and we have 0 ~ B3 ~ A3 ~03C0 (A’)3 ~ B/B3 ~ 0, hence n(A3)
has index 3 in A’3. Again assume 3 splits in k+. Then we may write P03B23 = 1
in A for some ideal 03B2. Let (/3) = P03B23. We may choose 03B2 ~ k+. Then let
03B2’2,···, 03B2’r be independent generators of 03C0(A3) in A’3. These may be lifted
to classes in A3, represented by ideals 03B22,···, 03B2r, relatively prime to P
and P’. Choose a2,···, as in k+ and as+1,···, ar ~ k- so that (ai) = 03B23i,
where s = d(A’3)+ = d(A3)+ and r - s = t = d(A’3)- = d(A3)-. Let a ~ 03B6
e 1’: Then we have

In the ideal class group,

Then we conclude that

where y is a 3-unit in k. Finally we have
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i=2

where z is a 3-unit in k. Let Y’ be the subgroup of Y generated by
{ai ~ 03B6}ri=2. Let Y" = U Q M3 and Y"’ be generated by 03B2 Q Ç. Again, if
Y’ (y), then Y" is generated by {03B6 Q 03B6, ~ (8) 03B6, 3 O 03B6, 03B3 ~ 03B6} with
Galois action previously described. The given set of generators of Y’,
Y", and Y"’ taken together are linearly independent. To get a more con-
venient Galois action on Y"’, we let a 1 = 03B2203B203C4. We have a03C31 = a 1 and
a1a03C41 ~ k3. Since (03B203B203C4) = PP03C403B23(03B203C4)3 = (3x3) for some x ~ k, we see
that the group generated by {-3 Q 03B6, 03B2 Q 03B6} is the same as that

generated by ( 3 ~ 03B6, a 1 (8) 03B6}. Then we have i(a 1 (8) 03B6) = a 1 (8) ( and
03C3(a1 ~ 03B6) = (a1 ~ 03B6)-1. Putting it all together and counting, we find
d(Y03C4) = s + 3 and d(Y03C3) = t + 1. Then d(R2k+)3 = t and d(R2k-)3 = s + 1.
Again, an analogous argument shows that if 3 splits in k-, we have
d(R2k+)3 = t + 1 and d(R2k-)3 = s. We now collect the results of this
discussion as follows: For any field F, let d F = {x 03B5  : 3Iv(x) for all non-
archimedean valuations v not dividing 3}. Then É3 c 1.1 F’ Let YF = AFI É3.
THEOREM 4: There are surjective homomorphism p + : Yk + (R2 k-)3 and

03C1_: Yk- - (R2 k+)3given by 03C1 + (a) = Trk/k - ({a, 03B6}) and 03C1_(a) = Trk/k+({a, 03B6})
where ii is the class of a in Yk + or Yk-. Furthermore Ker (p -) is of order 3
and is generated b y the class of 3 in Yk - . Ker ( p +) is of order 9 and contains
the class of 3 in Yk+.

PROOF: We need only remark that for any field we have an exact
sequence

where UF is the group of 3-units of F and A’F is the 3-ideal class group of
F. Then d( YF) = d(UF/U3F) + d(A’F)3. But d(Uk + /U3k+) = 1 + n where n is
the number of primes above 3 in k +, and d( Uk - / Uk - ) = m, the number of
primes above 3 in k - . Let s = d(A’)+3 and t = d(A’)-3. We have d(Yk+) =
1 + s + n and d(Yk-) = t + m. The previous discussion shows that in all
cases p + and p - are surjective and that

We conclude that d(Ker 03C1+) = 2 and d(Ker p -) = 1. Finally we observe
that {3, 03B6} = 1 in R2 k completing the proof.

COROLLARY : Let 03B2’1,···, 03B2’u be independent generators of 03C0(A3)- in
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(A’)3’ Let 03B21,···, 03B2u be representative of classes in A3 with 03C0(03B2i) = 03B2’i.
Let a1,···, au be elements of k- with (03B2i)3 = (ai). Then the elements

{ai, 03B6) are linearly independent in (R2k)+3. Furthermore, they form a basis
for (R2k)+3 unless 3 splits in k-.

We will now compute the order of (R2 k)3 for all fields k = Q(d)
where d is the discriminant of k and |d| ~ 200. We observe that (R2 k)3
= (1) if and only if R2k = (1) and |(R2k)3| = 3 if and only if R2k is a non-
trivial cyclic group. When d  0, we have |(R2k)3| = 3s - 1 + n where n is
the number of primes dividing 3 in k+ = Q(3d) and s = d(A’):.
where (A’)+ is the 3-primary part of the 3-ideal class group of k + . We find
that the only value of d, 0 &#x3E; d ~ - 200 for which s ~ 0 is d = -107 for
which s = 1. We note that n = 2 when d = 3(3m -1) for an integer
m  0 and n = 1 otherwise. Then we conclude that for 0 &#x3E; d ~ - 200

PROPOSITION 11: Let d = 3(3m-1) for an integer m  0. Suppose the
field Q(d) has class number prime to 3. Then R2 Q(d) is cyclic of order 3
generated b y TrQ(d, -3)/Q(d){03B5, 03B6) where E is the fundamental unit of the
real field Q(-d/3), and R2Q(d) = 1.

PROOF : First we note that there are two primes P and P’ dividing 3
in k+ - Q(- d/3). Let M be the maximal 3-ramified abelian 3-extension
of k+ and (A’)+ be the 3-primary part of the 3-ideal class group of k+.
Then we have the exact sequence

We know that G(M/k+) ~ Z3 Q T where T is a finite group and, by the
methods of the previous section, we establish that for fields of this type,
d(T jT3) = d(A - l(A -)3) where A- is the 3-primary part of the ideal class
group of Q(d). Then in this case T = 0, hence M is the cyclotomic
Z3-extension of k+. Thus M is totally ramified at all primes above 3, so
(A’)+ = 0: We know that R2 Q(d) is cyclic and that IR2 Q(d)/R2 Q(d)|
= 3 (cf. proposition 4). The completion of Q(d) at the prime above 3 is
Q3(N) and a direct calculation shows that in Q3(-3), we have
(3, 03B6)3 = 1 and (4, 03B6) ~ 1. We now consider TrQ(d, -3,/Qd){03B5, CI E
R2 Q(d). Any unit in Q3 may be written as (4)rx3, so in order for {03B5, 03B6} to
be locally trivial at the prime above 3, it would be necessary for 8 to embed
locally as a cube at both of those primes. Then there would be an un-
ramified cubic extension of Q(d) which contradicts the hypothesis that
the class number of Q(d) is prime to 3. Hence TrQ(d, -3)/Q(d){03B5, 03B6} ~
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R2 Q(d), so we conclude that R2 Q(d) is cyclic of order 3 and A2 Q(d)
= 1.

The hypotheses of the above proposition are verified for d = - 39,
- 84, -111, -120, and -183, hence R2 Q(,Id) is determined for those
fields. For d = -107, we know that R2 Q(d) = R2 Q(d). a non-trivial
cyclic group,
When 0  d ~ 200, we have IR2 Q(d)3| = 3t - 1 +m where m is the

number of primes above 3 in k - - Q(-3d) and t = d(A’)-3, where
(A’) - is the 3-primary part of the 3-ideal class group of k - . There are ten
positive values of d ~ 200 for which t = 1, and those are d = 29, 77, 85,
93,109,113,137,172,173, and 181. For all other cases, t = 0. Again m = 2
when d = 3(3u - 1) for a positive integer u and m = 1 otherwise. The values
of d of the form 3(3u -1) are d = 24, 33, 60, 69, 105, 141, 168, 177. Hence
we have j(R2 Q(d)3| = 3 and R2 Q(d) = !Yl2 Q(d) when d = 29, 77,
85, 93, 109, 113, 137, 172, 173, 181 (Coates and Lichtenbaum have de-
termined that the order of R2 F is the power of 3 dividing 03C92(F)03B6F(-1)
for these fields [2]). |R2Q(d)3| = 3 and |R2Q(d)/R2Q(d)| = 3 when
d = 24, 33, 60, 69, 105, 141, 161, 177. R2 Q(d) = 1 for all others.

In each of the eight fields where d = 3(3u - 1), let Y be one of the ideals
above 3 in k - . Let c be the order of Y in the ideal class group of k- and

let Y’ = (y), y E k-. Then, by checking the local symbols (y, 03B6) at the ideals
above 3 in Q(d, -3), we determine that for d = 24, 33, 60, 69 and 177,
R2 Q(d) is cyclic of order 3. For d = 105, 141, 168, we find

hence R2 Q(d) is cyclic of order divisible by 9. This is consistent with the
conjecture that the order of R2Q(d) is the power of 3 dividing
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