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1. Introduction

The purpose of this paper is to investigate some linear topological
properties of the Banach spaces Cp, 1  p  oo, consisting of all compact
operators x on the separable infinite dimensional Hilbert space l2 for
which llxllp = (trace (x* x)pI2)1Ip  oo. Our main interest is in comparing
the properties of these spaces with some known results concerning the
structure of the function spaces L p = L p(o, 1).

In section 2, we make some preliminary observations (which follow
directly from known results) concerning projections in Cp. We discuss
in particular the subspace Tp of Cp of those operators whose matrix
representation with respect to a fixed orthonormal basis is triangular
(the role of Tp in Cp is quite analogue to that of the Hardy space HP in Lp).
We mention an analogy between the Haar basis in Lp and an uncondi-
tional Schauder decomposition of Cp and single out a subspace Sp of Cp
which plays a central role in the study of Cp. The space Spis the direct sum

where Cp denotes the space of all operators x on the n-dimensional
Hilbert space l2 with llxll = (trace (x* X)pl2)llp.

In section 3 we study basic sequences in Cp. For 2  p  oo the

situation is simple and very similar to that in Lp (as presented in [10]).
Every normalized basic sequence has a subsequence equivalent either
to the unit vector basis in l2 or lp. It turns out that the same result is valid
(but the proof somewhat less simple) also for 1  p  2. This is in marked

contrast to the situation in Lp, 1  p  2, where the structure of basic

* The contribution of the first named author,is part of his Ph.D. thesis prepared at the
Hebrew University of Jerusalem under the supervision of the second named author.
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sequences is known to be far more involved (and interesting).
In section 4 we study the structure of ’small’ subspaces of Cp . The

situation is analogous to that discussed by Johnson and Odell [9] in
the case of Lp. For oo &#x3E; p &#x3E; 2 we show that a subspace of Cp which
does not contain a subspace isomorphic to l2 is isomorphic to a subspace
of Sp . For 1  p  2 this is no longer true. The ’right’ result for 1  p  2

turns out to be the following. A subspace X of Cp embeds into Sp if and
only if every normalized basic sequence in X has a subsequence which
is K-equivalent to the unit vector basis of lp (where the constant K
depends only on X). This result is more complete than the analogue
obtained in [9] for Lp. 

In section 5 we study subspaces of Cp which contain a copy of Sp .
These spaces are characterized by their local structure.

In section 6 we classify up to isomorphism all the ’obvious’ com-

plemented subspaces of Cp, by showing the non-existence of certain
embeddings. In this connection we also prove that for 1  p  oo

p = 2, Lp cannot be isomorphically embedded in Cp .
The main point in the study we present here is in the comparison

between the properties of Cp and the other two familiar spaces associated
with the index p, i.e., the sequence space lp and the function space Lp 
The space Cp can be viewed as the natural matrix space associated to p
and as in the case of Lp its structure is governed by an interplay between
l2 and 1 p . From the results proved here combined with known results
(several of those will be quoted in this and in the next section) there
emerges what we think is a quite interesting picture. These results should
motivate on the one hand a deeper study of the structure of Cp and on
the other hand a careful study of matrix spaces associated to other
symmetric sequence spaces (e.g. Orlicz spaces lM)’ The results proved
in the present paper depend on properties which are well known to

characterize lp among sequence spaces (perfectly homogeneous bases
for example) and thus their analogues for e.g. lM are false. What we have
in mind when we speak of the study of more general matrix spaces is
the study in the context of matrices of questions which are usually
considered in the sequence space or function space settings. Here is one
such example. Can two matrix spaces associated e.g. with Orlicz spaces
lMl and lM2 be isomorphic without being identical? It is known that for
sequence spaces this happens quite often while known partial results
suggest that for function spaces this cannot happen. For a background
to the comments made in this paragraph and for a general reference
to the terminology of Banach space theory we refer to [13].
The basic properties of Cp as a Banach space are presented in [1],

[4] and [15]. Let us recall that C2 is the space of Hilbert Schmidt
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operators. As a Banach space it is isometric to l2 and so its structure
is simple and well known. Therefore the case p = 2 will often be excluded
from the discussion below. The space C 1 is the space of nuclear operators
on l2 and is also called the space of the trace class operators. We shall
use the notation Coo to denote the space of all compact operators on l2
with the usual operator norm. Most of our attention will be given to
the spaces Cp with 1  p  oo and p + 2. It is well known that if 1  p _ o0
and p -1 + q - 1 = 1 then C* p is isometric to Cq , the pairing between these
spaces is given by X, y) = trace (y*x). The space Cp is reflexive iff

1  p  00.
Here are some known results concerning the structure of Cp which

we shall need in the future.

(i) The spaces Cp are uniformly convex for 1  p  oo and their

modulus of convexity is up to a bounded factor the same as that for

Lp (cf. [15] and [16]). More precisely there are positive constants ap
and f3p so that

Closely related to (1.2) and (1.3) is the behaviour of terms of the form
’average over all choices of signs of [[£J=i Ix)l, {Xj}j= 1 E Cp’. The
following inequalities concerning these expressions are proved in [15]
and [16] : For 1  p  oc there is a constant Kp such that for every
integer n and every choice of {Xj}j=l in Cp

where the rit) denote the Rademacher functions.
(ii) The spaces Cp, p + 2, have no local unconditional structure (cf. [6]).

We do not need here the definition of this notion but only the following
consequence of the result of [6]. There is a sequence ,(p, n) with
limn-+ 00 À(p, n) = oc for p =1= 2 so that if X is Banach space with an un-
conditional basis (with unconditional constant equal to 1) if T : C" p --+ X
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is an isomorphism into and if P is a projection from X onto TCp then

(iii) The space Cp is not isomorphic to a subspace of Lp if 1  p  00,

p + 2. This fact is due to McCarthy [15] (for p &#x3E; 2 the proof given by
McCarthy is complete. For 1  p  2 his basic idea works but some

details have to be changed. Another proof for the case 1  p  2 which

gives also more precise information is given in [6]).

2. Preliminary observations

In this section we make some essentially known preliminary observa-
tions concerning some projections in Cp and their ranges.
The elements of Cp are by definition operators on 12. We shall often

work with the matrix representation of these elements with respect to a
fixed orthonormal basis eilî = 1 of l2 . The matrix x(i, j) representing the
element xe Cp is defined by x(i, j) = (xei, ej) 1  i, j  00. We shall often

use the elements Ui, j E C p defined by

i.e., ui, is the operator whose matrix has only one non-zero entry and
this is 1 in the (i, j)th place. We mention in passing that in a suitable
ordering the {Ui,j}rj=l form a Schauder basis of Cp (cf. [3], [11]).
The first projection we consider is the triangular projection PT defined

by

This projection is known (cf. [14] and for a much simpler proof
[5, pp. 118-120]) to be bounded in Cp if 1  p  ce and not bounded in

Ci 1 and Coo (actually for p = 1 or p = oc (2.2) is defined only for x
belonging to the linear span of the ui, j and since P, is not bounded
there it cannot be extended to the whole space). The range P, Cp of the
projection P, is denoted by Tp . More precisely (in order to take into
account also p = 1, oo) we denote by Tp the subspace of Cp consisting
of those x for which x(i, j) = 0 for j &#x3E; i.

Another important projection, actually a whole class of projections,
in Cp is obtained as follows. Let {Ak}= 1 and {Bk}= 1 be two collections
(n is finite or oo ) of subsets of the integers such that Ak m Ai = Bk n B, = (9
if k + 1. Corresponding to these families of subsets of the integers we
define a projection as follows:
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It is trivial to check that for every 1  p  and every choice of {Ak}
and {Bk} the projection P( {Ak}, {Bk}) has norm 1. It is also evident that

where x,(i, j) = x(i, j) if (i, j) E Ak x Bk and = 0 otherwise. (If p = o0
the sum in the right hand side will be replaced by supkllxkll. We shall use
the same convention in the future without mentioning it specifically.
Whenever we use lp in the context of p = ce we shall mean the space co .
Also direct sums in the lp sense will mean in case p = oc direct sums in
the sense of co.) In particular if Ak = Bk = {k} for k = 1, 2, ... then
P( {Ak}, {Bk}) is equal to the projection of a matrix onto its diagonal,
and its range is isometric to lp . 

PROPOSITION 1: The space Cp is isomorphic to its subspace Tp if and
only if 1  p  oo.

PROOF: Assume that 1  p  oo. Since P, is bounded we have

It is clear that (I - PT)Cp is isometric to Tp, and hence (z denotes iso-
morphism)

Let now {Ak}= 1 be a sequence of disjoint infinite subsets of the integers.
By (2.4), P( {Ak}, {Ak} )Tp is isometric to (Tp C Tp © ...)i , i.e.,

It follows from (2.6) that Tp ,: Tp (3 Tp and thus by (2.5) Cp  Tp.
If p = 1 or p = oc the space C p is not isomorphic to Tp since C p does

not have an unconditional Schauder decomposition into finite dimen-
sional spaces (cf. [11]) while Tp has such a decomposition. In fact for every
1  p _ oo we have Tp = If=l EB Ej where Ej. = span {Ui,j, 1  i j}
and the unconditional constant of this decomposition is evidently equal
to 1.
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Let us make some remarks concerning the notion of finite-dimensional
Schauder decompositions which entered into the proof of Proposition 1.
In [11] it was shown that Cp (or more generally a symmetric matrix space
in the terminology of [11]) has an unconditional finite-dimensional
Schauder decomposition if and only if the triangular projection is

bounded. The ’if part follows also from the argument of Proposition 1.
The interesting part is the ’only if part. Its proofin [11] actually shows
somewhat more which we would like to point out here (in view of the
analogy with the Haar basis in Lp cf. [12]).

DEFINITION : 

(i) A Schauder decomposition X = Ln (9 En is said to be equivalent
to a Schauder decomposition Y = Q+ Fn if there is an isomorphism T
from X onto Y so that TEn = Fn for all n.

(ii) If X = E (B En is a Schauder decomposition of X, if

n = 1  n2  n3  ... is an increasing sequence of integers and

then the {Fj}.i= 1 are called a block decomposition of {En}:= 1. (The
{Fj}.i= 1 form a Schauder decomposition of their closed linear span.)

(iii) A finite dimensional Schauder decomposition X = L (B En is said
to be reproducible if whenever X c Y and Y has a finite dimensional
Schauder decomposition E (9 Fn then the {En}:= 1 are equivalent to a
block decomposition of the {Fn}:= 1. *
We introduced here this definition of a reproducible decomposition

since the matrix spaces provide natural examples for such decompositions
which are not already bases.
For every integer n let Pn be the projection on Cp defined by

Observe that Pn is a special case of the family of projections defined in
(2.3) (take A = B = {1, 2, - - -, nl) and that Pn Cp is isometric to the space
we denoted in section 1 by Cn P*

PROPOSITION 2: 

(i) For 1  p  oc the decomposition
reproducible.

(ii) For 1  p  oo the decomposition
reproducible.
This proposition is actually valid in the more general context of
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symmetric matrix spaces. The proof of (i) is essentially given in [11 J and
we shall not repeat it here. The proof of (ii) is similar and even simpler.
Observe that the decomposition in (i) is unconditional only if 1  p  00.

The decomposition in (ii) is exactly the decomposition which appeared
in the proof of Proposition 1 and it is unconditional for every p.
The ranges of the projections (2.3) will be classified in section 6. We

deal here only with one special case dealing with the space Sp which
plays a central role in section 4.

PROPOSITION 3 : Let 1  p  00 and let {nk}r= 1 and {mk}r= 1 be sequences
of integers so that supk (min (nk, mk)) = 00. Let {Ak} and {Bk} be families
of disjoint subsets of the integers so that IAkl = nk and IBkl = mk for
every k. Then P( { Ak}, {Bk})C p is isomorphic to Sp = (1 @ Cp)p.

PROOF: Let X = P({Ak}, {Bk})Cp. Let h  kh be a one to one map of
the integers into themselves so that h  min (nkh, mkh). Let Ah and Bh be
subsets of Akh and Bkh respectively so that [A[[ = [B[[ = h. Then

P((Ag) , {B})X is a complemented subspace of X which is isometric to Sp’
Hence X Sp EB Y for some space 1: A similar remark shows that

Sp  X EB W and Sp  (Sp 0 Sp © ...) 0 Z for some spaces W and Z.
A simple application of the decomposition method shows that Sp  X.

Observe in particular that Proposition 3 implies that Sp is isomorphic
to (Sp EB Sp EB .. ’)p.
Another projection which will be of great use in the sequel is the

projection En, n = 1 ... defined by

The projection En is the sum of two projections of the type (2.3) and thus
in particular IIEnl1  2. Its use in classifying subspaces of Cp is demon-
strated in

PROPOSITION 4:

(i) A subspace X of Cp, 1  p:5:- oo p =1= 2 is isomorphic to 12 if and
only if the restriction Enlx of En to X is an isomorphism for some n.
Consequently every subspace of Cp which is isomorphic to 12 is comple-
mented in Cp . 

(ii) If X is subspace of Cp such that Enlx fails to be an isomorphism
for every n, then for every B &#x3E; 0 there is a subspace Z of X such that
d(Z, lp)  1 + e and there is a projection of norm  1 + e from Cp onto Z.
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In particular every subspace X of Cp has a subspace which is isomorphic
either to 12 or to lp .

This proposition was observed by several mathematicians indepen-
dently. A proof of it is given in [2] (and in [8] for p = 1, oc) and will
not be given here.

3. Basic sequences

This section is devoted to the proof of the following theorem.

THEOREM 1: Let {Xn}:= 1 be a normalized basic sequence in Cp,
1  p  00. Then there is a subsequence {Xnk}= 1 of {Xn} which is equiv-
alent to the unit vector basis in 12 or in lp . Moreover the subsequence may be
chosen so that the span of {xnk} is complemented in Cp .

PROOF : The following three cases 2  p  oo, 1  p  2, and p = 1
will be discussed separately.

Consider first the reflexive case i.e., 1  p  oo. The sequence {xn}
tends weakly to 0 and thus by a standard perturbation argument (and
passing to a subsequence if necessary) we may assume that there is a
sequence of integers ml  m2  ... so that

and thus in particular (since X = E Et) (Pm + 1- Pm)X is an unconditional
decomposition) that the sequence {xn} is an unconditional basic sequence.
Assume now that 2  p  oo. If there is an integer m, a subsequence

{nk} of the integers and a &#x3E; 0 so that

holds then {Xnk} is equivalent to the unit vector basis in l2. Indeed,
since the projections Em and Pl commute, the sequence {Emxnk}r= 1 is
an unconditional semi-normalized basic sequence in Em Cp which is

isomorphic to a Hilbert space. Hence there is a p &#x3E; 0 such that for every
choice of {Àk}

On the other hand by (1.5) and the fact that {xnk} is unconditional we
get that
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for some R. The span of {xnk} is complemented in C, by the general fact
that every isomorph of l2 is complemented in Cp (see Proposition 4).

If (3.2) does not hold then limnoollEmxnll = 0 for every m. A standard
argument shows now that for every given sequence Bk of positive numbers
there is a subsequence {xnk} of {xn}’ vectors {Yk} in Cp and a sequence tk
of integers so that for k = 1, 2, ...

Hence for every choice of {Âk}, IlL ÂkYk11 = (LkIÂkIP)l/p (this is a special
case of (2.4)) and there is a projection of norm 1 from Cp onto span {Yk}’
By the usual perturbation argument it follows that if the {Bk} are small
enough the sequence {xnk} is equivalent to the unit vector basis in lp
and its span is complemented in Cp’
We pass now to the case 1  p  2. If there is a ô &#x3E; 0 such that for

every m there is an n with

then there is a subsequence of {xn} which is equivalent to the unit vector
basis in lp. Indeed, if (3.5) holds we can in view of (3.1) find increasing
sequences of integers {nk} and {tk} so that IIQkXnk11 &#x3E; b for every k and
QkXnz = 0 if k 1 where Qk = (l-Etk-JPtk’ The projection LkQk is a
projection of norm 1 in Cp (it is a projection of the type (2.3)) and hence
for every choice of {Âk} we have

On the other hand since {xnk} is an unconditional normalized basic

sequence it follows from (1.4) that

for some R. The relations (3.6) and (3.7) show that {xnk} is equivalent to
the unit vector basis in lp. The operator P defined by

where is, as can be easily checked,
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a bounded linear projection from Cp onto span {xnk}’
We turn now to the case where (3.5) fails, i.e.,

uniformly in n

and show that in this case there is a subsequence of {xn} which is

equivalent to the unit vector basis in l2 (as before, 1  p  2). In this case
the proof is a little less trivial and requires the following lemma.

LEMMA 1: Let 1  p  oo, let m be an integer and let {Yn}:= 1 be a

normalized basic sequence in EmCp. Then there is a subsequence {y nk}
of {y n} so that for all {Àk}

The point in the lemma is the fact that in spite of the fact that
d(Em Cp, l2) tends to infinity with m the constants in (3.10) are independent
of m.

PROOF OF THE LEMMA : There is no loss of generality to assume that

YnE(Ptn+l-Ptn)Cp for some increasing sequence of integers. We shall
assume in addition that yn(i, j) = 0 if i &#x3E; m and prove that in this case

(3.10) holds with 4 replaced by 2. This will prove (3.10) in the general case
since each yn E Em Cp has a natural decomposition of the form yn = yn + yn
with y’(i, j) = 0 if j &#x3E; m and yri (i, j) = 0 if i &#x3E; m. From our assumptions
it follows that Yn*Yk = 0 if n k and that Yn(ei) = 0 if i &#x3E; m. For every n
let u, be a unitary operator in l2 such that Un(ei) = ei for 1  i  m and

unYn(eJ c span {ej}J 1 for 1  1  m (and thus for all i). By the com-
pactness of the unit ball in C2m there is a sequence of integers {nk} so that
unkYnk converges in norm to some operator xo . Assume for the moment
that unkYnk = Xo for all k. Then for all scalars {Àk}

and hence

If instead of unk ynk = xo we have only IlunkYnk - xo [ [  Bk with Bk sufficiently
small we get instead of (3.11) the relation (3.10) with 2 say, instead of 4.
We return to the proof of Theorem 1. Let {Bk} r= 1 be any sequence of

positive numbers. By (3.9) there is an integer tl 1 such that
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By Lemma 1 there is a subsequence of the integers so that

By (3.1) and (3.9) we can choose an integer t2 so that

By Lemma 1 there is a subsequence so that

We continue inductively to construct an increasing sequence of integers
{tk}= 1 and sequences {ni}= 1 of integers so that {ni + 1 }= 1 is for every l
a subsequence of {nkk 1 and

Let nk = nk be the diagonal sequence. We claim that {xnk} is equivalent
to the unit vector basis in 12, Indeed, we have (with Eto = 0) by (3.16) and
(3.17) that

An estimate of from below (to show that it is greater than
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p(kI kI Z)2 for some p &#x3E; 0) can be obtained either by using the fact that

{Xnk}= 1 is an unconditional basic sequence and (1.4) or by using the
left hand side inequality of (3.13) which combined with computation in

It remains to consider the case p = 1. If the sequence {xn} satisfies (3.1)
then the proof works just as in the case 1  p  2. The only difference
between the case 1  p  2 and p = 1 is that the sequence {xn} need not
be an unconditional basic sequence. However the use of unconditionality
can be avoided in the two places it was used, since (3.7) is trivial for
p = 1,and as we have just observed the use of the left hand inequality
of (3.13) avoids the use of unconditionality at the end of the proof. A
general normalized basic sequence {xn} = 1 in C1 has a subsequence of
the form xnk = y + znk where znk -&#x3E; 0 in the w* topology of C1 and

Ilznkll ~ b &#x3E; 0 for all k and some ô. By the preceding observation we may
assume also that {znk} is equivalent either to the unit vector basis in ll
and then the same is true for {xnk} or to the unit vector basis in l2 and
then (since xnk is a basic sequence) y must be equal to 0. This concludes
the proof of the theorem for all 1  p  oo .

REMARK: Instead of assuming in the statement of Theorem 1 that

{xn} is a normalized basic sequence we could assume of course that

Xn  0 weakly (w* if p = 1) and that Ilxnll - 0.

4. Subspaces of Sp

The first theorem in this section deals with subspaces of Cp 2  p  o0

which embeds into Sp . The theorem and its proof is an adaptation of
the work of Johnson and Odell [9] to the setting of Cp .

THEOREM 2: A subspace X of Cp, 2  p  00, is isomorphic to a subspace
of Sp if and only if X has no subspace isomorphic to 12 -

PROOF : The ’only if part is obvious. In order to prove the ’if part we
observe first that by our assumption

Indeed, if (4.1) fails it follows easily that there is a sequence {Xn}:=l in X
which tends weakly to 0 but for which infnltEmxnl1 &#x3E; 0 for some m. By
the proof of Theorem 1 such a sequence has a subsequence which is
equivalent to the unit vector basis in 12 contradicting our assumption.
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Let 03B4 &#x3E; 0 be given. In view of (4.1) there is a sequence of integers
{nk}= 1 so that

Put Rk=Pnk+l-Pnk and Qk=Rk(I-Enk-J for k = 0, 1, 2, ... (where
Pno = 0, Eno = En-l = 0). Observe that if 1 k - hl &#x3E; 1, then Qk and Qh map
into disjoint rectangles, i.e., there are sets {Ak} and {Bk} of integers so that
Qkx(i,j) = 0 unless (i, j) E Ak x Bk and Ak n Ah = Bk n Bh = y) iflk-hl &#x3E; 1.

Let us consider first the odd indices. We have by (2.4) and the preceding
remark for every x e Cp

and by (4.2) for

Hence for ,

A similar computation shows that

and working with the even indices we get similarly

Combining (4.5) and (4.7) we get for


