
COMPOSITIO MATHEMATICA

BRUCE BENNETT
Normalization theorems for certain modular
discriminantal loci
Compositio Mathematica, tome 32, no 1 (1976), p. 13-32
<http://www.numdam.org/item?id=CM_1976__32_1_13_0>

© Foundation Compositio Mathematica, 1976, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation
commerciale ou impression systématique est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1976__32_1_13_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


13
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0. Introduction

Let X be an affine variety over an arbitrary field k; suppose X has an
isolated singular point x, with x(x) = k.1 We then have the’versal formal
deformation’ n : X ~ S of X ([3], [4]). We will regard S = Spec (R),
R a complete local k-algebra, and X is a subscheme of As. The closed
fibre of 03C0 is X, and any deformation of X over the spectrum T of a

complete local k-algebra is induced by a k-morphism T ~ S. Thus the
family X/S contains all singularities which are ’nearby to X, x’.
Now for any integer j &#x3E; 1, we have a subscheme Ni of X defined as

follows : 2 Ni is the intersection of the components through x of the flat
strata of the sheaves p;/s, v ~ j, and is a closed in X. In characteristic 0,
Ni can be described as the locus of points in X which, when viewed in
their fibre over S by n, have a Hilbert-Samuel function which agrees
with that of X at x through at least the first j values. In characteristic p
this is false; the basic reason is illustrated by the fact that the sheaf Pv Is can
have high rank at a point where the fibre over S is regular but not smooth.
In general, we have Nj ~ Nj+1; N 00 is called the ’normally flat locus’.

Let Sj denote the image of Ni in S; Sj is closed in S and 03C0 : Ni ~ Sj is
a finite morphism. Consider for example the case when X is a hyper-
surface in Amk: Here the total space X is smooth over- k, and N1, S 1 are
the critical and discriminant loci respectively of the mapping n : X - S.
This latter identification is false in the non-hypersurface case.

* Research supported in part by NSF GP 33045.
1 K(x) denotes the residue field at x.
2 For details on the N, and the deformation theory that is associated to them, the reader

is referred to [5]. PvX/S denotes the sheaf of relative jets of order v of 1 over S.
3 This means that the tangent cone to X at x is a complete intersection; it implies local

complete intersection in the ordinary sense. A hypersurface is a strict complete intersection
at any point.
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In [5], it is shown that when X is a ’strict complete intersection at x’ 3
the Ni are smooth over k. This paper is devoted to the proof of the following
theorem:

(0.1) THEOREM : With the notations as above, suppose X is a strict

complete intersection at x. Then for all j ~ 1, if char. (k) = 0, Ni is the
normalization of Si, and if char. (k) = p, Ni is a purely inseparable cover
of the normalization of Si .

This result is known in the complex-analytic case (k = C) when X
is a hypersurface ([6] II, 2.5). Note that for hypersurfaces, the result for
j = 1 means simply that thé critical locus is the normalization of the
discriminant locus.

As far as generalizations of (0.1) are concerned, the situation is to the
best of my knowledge completely open. We have no reason to expect
that, for general X, x (even for general complete intersections), the Ni
are smooth. However 1 would guess that they are normal for a large class
of singularities, although 1 don’t know at this moment what form a
general proof of this might take. Moreover, aside from the normality
properties of the Ni, for general singularities it is unlikely that Nj ~ Si
is ’generically radicial’ (i.e. either birational or purely inseparable).
For example, one should be able to find an isolated singularity which
deforms to a variety with two distinct rigid singularities. From the
arguments of Section 4 we can deduce at least that

(0.2) If X is an arbitrary complete intersection then Nj ~ Si is generically
radicial for all j ~ 1 ; this is also true for C - D, the critical and dis-
criminant loci of X ~ S.

This basic idea of the proof of (0.2) is very simple: Suppose the fibre
XQ above a point Q in Si contained n ~ 2 distinct points of Nj. Then
we can find a deformation of XQ which leaves one of the points alone,
and smooths away the others. This deformation must be contained in the

family X/S, in virtue of the ’local completeness of the versal family’
(sometimes referred to as the ’openness of versality’; we will discuss
this in more detail in Section 3). Thus, intuitively, the point Q cannot be
generic in Si*
To make this into a rigorous proof, however, requires some work. In

practice, since we are working in Spec (R), the point Q will be the generic
point of a subscheme U of Si. Suppose that generically in U, say over an
open set U’ of U, Ni is an n-sheeted cover of U’ (or is a purely inseparable
cover of such an n-sheeted cover); thus the fibre XQ contains one point
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P of Nj (set theoretically), and the separable degree of K(P) over K(Q) is n.
Then one must first split this extension into n distinct points before
smoothing away n - 1 of them. This job is done by a ’norm variety’:
there is a variety V’ containing U’ as its most singular stratum, with the
following property: There is a retraction r : V’ ~ U’ such that r-1(Q)
is the norm variety (Section 2) of a field extension K(Q) - L, where L
splits the extension x(P)/x(Q). This means geometrically that the pull-back
N)v’ x v’ V’, generically over V’, is just n copies of V’ (or a purely insepa-
rable cover thereof). The whole structure XU’ x v’ V’ can then be deformed,
say in terms of a parameter t, to eliminate n -1 of the copies.

One must be careful that the equations which work generically on
V’ to carry out such a deformation also make sense over all of V’ (for
only then can we view everything as a deformation of XQ’ and apply
the completeness theorem as above). The technical solution of this
problem is contained in Section 1; it amounts to showing that if a variety
X over a field k has n distinct non-smooth points (with arbitrary residue
fields), then there is a k-deformation of X in a parameter t, whose

equations have a particularly simple form, and which smooths away
n - 1 of the points, leaving the remaining one alone. In fact the equations
can be chosen to involve only the first power of the parameter t, with

polynomial coefficient ((1.2)). This is sufficient to carry out the proof of
the main theorem, which is done in Section 4. Of course, we formulate
everything in terms of local rings. 1 like to remark here that the proof of
(1.2) is based in part on an idea contained in Hironaka’s t, r-index
theorems ([7]), although our situation differs from his in certain respects.
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In Section 5 we give three examples which illustrate the difference
between our situation in characteristic 0, and characteristic p.
One feels that the significance of the norm varieties in deformation

theory transcends that of a technical tool for the proof of this type of
theorem. In fact, the proof itself strongly suggests that the norm varieties
play the role of one type of building block of discriminant loci, and in
this sense promise to give, ultimately, a good algebraic handle on their
stratification and topology. Of course, the norm varieties have an

intrinsic interest as abstract algebraico-geometric (or arithmetic) objects,
and the basic facts in Section 2 are presented from this point of view;
it is my pleasure to recall that many of the ideas here arose in conversa-
tions several years ago with B. Mazur and J.-L. Verdier.

1 thank M. Schlessinger for our many discussions of questions related
to the contents of this paper; also Isolde Field for the generous commit-

ment of her time to type this manuscript.
Bruce Bennett

1. Some results on the ’selective’ smoothing of points on complète inter-
sections in arbitrary characteristic

Suppose X is a complete intersection in Amk, say

Then, if char. (k) = 0, it is well known that

(*) For generic b 1, ..., br , the variety X b : fl - b 1 = ... = fr-br = 0
is smooth.

Equivalently, Xb is smooth over the field k(b) (or k((b)), the field of formal-
rational functions in b1,..., br). In analysis, this follows from ’Sard’s
theorem’ ; in algebraic geometry it follows from one of the ’strong forms’
of Bertini’s theorem, which asserts that a linear system without base
points cannot have a moving singularity. This latter result is false in

characteristic p, and indeed it is easy to find counterexamples to (*)
in this case.1 For example, we can let X : f = b, where f = x2 - y3
and p = 2. Here Xb is non-smooth at x = %%, y = 0.

It is not hard, however, to see that

1 However Xb will still be ’regular’, as is easily seen via Zariski’s ’mixed Jacobian’
criterion.
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(1.1) For arbitrary k, for generic choice of aij, bi E k (i = 1,..., r,
j = 1,..., m) the variety

is smooth; in particular the family

(over say k[[t]]) deforms X to a smooth variety.

Since 1 can find no explicit reference for this in the literature, we give
a proof hère : First, consider the variety Z:fi+wi = 0, i = 1, ..., r;
Z is an m-dimensional variety in Am+rk, where the coordinates are
zl , ..., zm, wl , ..., wr . Moreover Z is smooth, since ~fi/~wi = 1. Now we
can apply a ’weak’ Bertini theorem (see e.g. Lang [1], ) which holds
in any characteristic, and which says : the generic hyperplane section of a
smooth variety is smooth. Thus, if Ni denotes the generic hyperplane

Z n H1 is smooth.
By induction, if H1,..., Hr are independently generic hyperplanes,

where

(1 = 1,..., r), then also Z n H 1 n ... n Hl is smooth. Now since in

particular the v(l)i are independently generic (so that det (v(l)i) ~ 0) the
equations defining the Hl are equivalent, by Cramer’s Rule, to a system

where the Li are linear polynomials in z 1, ..., zn with coefficients in

k[u(l)j, v(l)i, c(l), 1/det (v(l)i)], say
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Thus Z n H, n ... n Hr is defined by the equations obtained by elim-
inating w (via (~)) in the original equations for Z, i.e. by

Since Z n H1 n ... n Hr is smooth, the proof is done.
We now consider an affine variety X over some field k (not necessarily

algebraically closed) which has precisely n distinct non-smooth points
P1, ..., Pn . As above, we suppose X is a complete intersection

fi = ... - fr = 0 in Amk. We want to show that we can find a deformation
D of X in Ar¡:, say over a one-dimensional smooth base with parameter t,
whose generic fibre has only one non-smooth point, and which is formally
trivial locally at P1. In other words, D eliminates the singularities
P2 , ..., Pn but does not affect Pi. Moreover, for our later application
in Section 4, we will need to find such a D whose equations have a
particularly simple form ; for we will have to specialize D over a certain
’norm variety’ (Section 2), and then fit this whole structure into the moduli
of some original singular variety Xo, which is our object of study. The
precise statement about D is as follows :

(1.2) THEOREM : Let k be arbitrary, and let X : f1 = ... = fr = 0 be a
complete intersection in Ar, with only isolated non-smoothpoints Pl, ..., Pn.
Let z1,..., zm denote the coordinate functions. Then for some polynomials

and linear polynomials L1, ..., Lr E k[z], the deformation

of X over k[[t]] is trivial locally at Pl. Moreover the generic fibre of D
has only one non-smooth point.

(1.3) REMARK: The L 1, ..., Lr in the statement of the theorem are the
ones that work to smooth all of X as in (1.1). The point is that we can
modify these with suitable gi to have the desired effects. For our later
application, all we need to know is that there exist some polynomials
Ql(z), . - ., Qr(z) so that the deformation
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has the properties of the D in the theorem.
We now prove (1.2). To begin, let Ti/k denote the k vector space of

lst order k-deformations ofX([2], [3]); All these can be realized in Amk.
T1X/k has a natural OX-module structure; in this sense it is of finite length,
supported only at the non-smooth points P1,...,Pn of X. In fact, as
OX-module

where T1XPi/k denotes the local contribution of Pi : it is the space of lst
order k-deformations of Spec (OX,Pi), or equivalently, of the formal
singularity X, Pi (the hat denotes completion with respect to the maximal
ideal). Let A = k[z]. We can view T1X/k as a quotient of ~rA; we think
of A as the affine ring of Amk. Similarly, T1XPi/k is a quotient of ~rRi,
where Ri is the ambient local ring at Pi, or its completion. An element
(h1,..., hr) e Eer A (resp. ~rRi) corresponds to the lst order deformation
f1+th1,..., fr+thr over k[[t]]/t2. We will use the following notation:
If (h1,..., hr) is in ~rA or ~rRi, (h1,..., nr) denotes its class in T1X/k or
T1XPi/k.
Now, given our variety X as in the statement of the theorem, in view

of (1.1) we can find linear functions L1(z),..., Lr(z) such that the family
defined by f1+tL1,...,fr+tLr over say k[[t]] is generically smooth.
Viewing this for the moment as a lst order deformation (i.e. mod t2)
it corresponds to (L1,..., Lr) in T1X/k as above. In view of the decomposi-
tion (1.3), it is immediate that

(1.4) There exists (gr,...,gr) in ~rA such that (g1,...,gr) induces

(o, ..., 0) in T1XPi/k for i ~ 2, and induces (-L1,..., - Lr) in T1XP1/k.
Moreover

(1.5) Let M1 denote the maximal ideal of the point Pi in Ak, and let Ri
be the corresponding local ring AM1. Then given an integer v we can choose
(g1,...,gr) as in (1.4) above, with the additional property : each gi+Li
is in Mv1R1. Namely, in the noetherian decomposition of the submodule
ker (~r A ~ T1X/k) in ~r A, we can just replace the Mi-primary factor
U by Mv1 U, and apply the Chinese Remainder theorem in this new
situation.

Let 1 denote the ideal of X in A, i.e. 1 = ( fl , ..., fr)A. T1XPi/k is the

quotient of ~r Ri by the submodule generated by the 



20

and I ~r Ri; the analogous statement with ED r A is true for TXlk . Let s
be an integer such that Mi Rl annihilates Tlpl/k’ and let v be any integer
~ 2s. Then 

(1.6) ~r Mv1R1 is contained in the submodule of ~r Ri generated by
Mi R1 êfl lôzj E9 ... Et) Mi R1 êflêzj j = 1,..., m and Ms1 I ffl" Rl.

Now choose (gl,..., gr) in ~r A as in (1.5) with v ~ 2s. It then follows
from (1.6) that

(1.7) There exist a(1)1,..., a(1)m in Ms1R1, and b(1)1,...,b(1)r in Ms1 IR 1

such that, for each i = 1,..., r

1 claim that these gi+Li work to give the theorem. We first want
to show that under the conditions (1.7) the deformation D given by
(f1+t(g1+L1),..., fr+t(gr+Lr)) over k[[t]] is trivial locally at P1.
For this, first note that given any a1,..., am in R 1, we can view f (z + at)
(z = (zl , ..., Zm), a = (al’ ..., am)) as an element of R1[[t]], and in this
sense

with hic in (al’ ..., amYRl; this is of course just formal Taylor expansion.
Hence, in view of (1.7), we get:

where the a)l), b(1)i are as in (1.7), and the hi,c are in (a(1)1,..., a(1)m)cR1.
Note that since c ~ 2, the hi, c are themselves in M2s1R1.
Now again by Taylor expansion, it is clear that

with B E (aBl), ..., a(1)m)2Ri[[t]] ~ M2sR,[[t]]. Moreover, since the bi are
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themselves in M1 7Ri, a(1)j~bi/~zj is in M2s1R1 + M1IR1. Thus from (1.8)
we get

with h(2)ic in M2’Rl, and b(2)i in Ms1 I R 1. The reader can check, by iteration
of this process, that for each integer d there exist a(d)j E Ms1 R 1, and b(d)i in
Ms1IR1, such that,

Now consider the k[[t]] homomorphism u : k[z][[t]] ~ Rl[[tJJ
defined by u(zj) = Wj. Note that for any q in k[z], u(q) is a power series in
t with constant term q. It follows that if q is not in Ml, u(q) is invertible
in R1[[t]], so that u induces a homomorphism

which is an isomorphism as is easily seen. Moreover it is clear from (1.10)
that

Now it is not hard to see that since the b(d)i are in 7Ri, the ideal generated
by the fi + 03A3db(d)itd in R1[[t]] is the same as IR1[[t]]. Thus if we let I’
denote the ideal of R1[[t]] generated by the !ï + t(gi + Li), u’ identifies
IR1[[t]] with l’. Since I’ defines the deformation D, this shows that D
is trivial locally at P 1. Note that nowhere in the above argument do we
encounter any difficulties due to the possibility that P1 is not a k-rational
point of Amk ; the argument does not require any reference to the explicit
structure of the local ring R as k-algebra, to any choice of parameters,
or field of representatives. Indeed for our application in Section 4,
k(P1) will be a purely inseparable extension of k.
To complete the proof of Theorem (1.2), we still have to show that the

deformation D : f1+t(g1+L1) = ... = fr+t(gr+Lr) above smooths away
the singularities P2,...,Pn of X. For this, choose one of the Pi, say P2 .
We know by (1.4) that (gl , ..., gr) is in the submodule of ~r R2 generated
by the (8fl/8zj, ..., ~fr~zj), j = 1,..., m and I ~r R2. Now again by the
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Chinese Remainder Theorem, we could have chosen (gl , ..., gr) so that,
in addition to the property (1.5) which we needed for the local triviality
at P1, we have (g1,..., gr) in M2S ~r R2, where s’ is an integer such that
M2 annihilates T1XP2/k. Then, as before, it follows that we even have:

with a i , ..., am in Ms’2R2, and bi in Ms’2IR2. Again, by a suitable coordinate
change

we can eliminate gi from fi+t(gi+Li), replacing it with terms in positive
powers of t with coefficients in IR1. For our purpose here, however,
we only want to carry out this procedure through degree N in t, where
N » 0, say larger than m - r. In other words, there are elements a(d)j
in R2 (j = 1,...,m,d = 1,...,N) and b(d)i in IR2(i = 1,...,r,d = 1,...,N)
such that

where Fi(w, t) is a priori in R2[[t]]. However, Fi(w, t) is a polynomial
(over k) in t, the a)d) and the derivatives of f , b(d)i, and Li. Since there are
only a finite number of these, we can find a polynomial q(z) in k[z]
so that all the terms of the equation (1.11) are in k[z, 1/q(z)][[t]].
Now again, since the b(d)i are in IK[z, 1/q(z)], the ideal in k[z, 1 /q(z)] [[t]]

generated by the

is the same as that generated by fi(w) + tLi(w) + tN+1Fi(w, t). The Jacobian
matrix of these last equations, viewed as functions on Ak«t» - H where
H : q(z) = 0, differs from that of the system f + tLi only by the appearance
of terms of degree &#x3E; N in t (and of course the symbol z has been replaced
by w). Therefore, since the minors of this matrix all have dimension less
than N, their determinants - in the case of the original system f + thi -
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involve at most tN -1; the contribution of the tN+1Fi(W, t) cannot cancel
with anything coming from the original system. Hence, since the original
Jacobian has maximal rank (by (1.1) (this is of course true à fortiori on

Ank((t)) - H), the same is true for our altered system.
We find: there exists an open set S = X - H of X containing P2

so that the deformation D contains a deformation of S in which the

generic fibre is smooth. This of course means that there are no points
in the generic fibre of D which specialize to P2 . A similar argument works
(after suitable choice of (gl, ..., gr)) for P3, ..., Pn, and the proof of (1.2)
is complete.

2. Norm varieties

Let L/x be a finite separable extension, say d = [L : k]. Once we
choose a K-basis for L, we can identify L with the set of K-rational points
of Adk, i.e. L = Kd c /Ef .

(2.1) The norm function N : L - K can be expressed, in terms of the
coordinate functions xo , ..., xd- 1 of K d, as a form of degree d with
coefficients in K, say ~(x0,..., xd-1).

This is easily seen, for example, if we suppose that L = x(a), and we
identify L with K d via the basis 1, a, ..., ad-1. Let 03C3i, i = 1,..., d be
the distinct embeddings of L in an algebraic closure of K. Then

Here, the coefficient of the monomial xn00 ... xnd-1d-1 in

is that symmetric function of the 03C3i(03B1) where precisely nj terms in each
summand appear with degree j; in particular the coefficients are in K.
ç is called the norm form of L over 03BA; it is well defined only up to GL(d, K).

(2.2) DEFINITION : The norm variety of L over x is the variety in /Ef
defined by 9(x) = 0, where 9 is any norm form as above (the norm
variety is also defined only up to GL(d, K).
Note that the only K-rational point of the norm variety is the origin,

since 0 is the only element of L with norm 0. Henceforth we will assume:
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L/K is Galois with G = G(L/K). We will let V denote the norm variety.

REMARK: Let V03BC(03BC ~ 1) be the locus of points of V whose local rings
in V have multiplicity /l. As is well known, V03BC is a locally closed subset
of V for the Zariski topology; in fact ~03BC’~03BCV03BC’ is closed in h It can be
shown that V03BC is a disjoint union of irreducible components, each of
which, as an abstract K-variety, is isomorphic to Ad-03BCF, where F is a field
between x and L. The number and configuration of these components is
intimately related to the structure of G, but we will not pursue this here.
In fact, for the purposes of this paper, we will need only the following
result :

(2.3) THEOREM : Vis irreducible, and Vl (the regular locus of V - see the
remark above) is isomorphic as an abstract x-variety to a Zariski open set
in A f - l. 1 n particular the algebraic closure of K in the rational function
field of V is isomorphic to L.

PROOF : First note that ~ splits over L into a product of linear factors,
as is evident by (2.1.1). Thus, if we let VL = V Q9K L, VL is a union of d
hyperplanes in AdL:

(These hyperplanes are in general position, since by (2.1.1 ) the determinant
of their coefficients is a Vandermonde determinant.) Let VL,03BC (p ~ 1)
denote the locus of points of VL which lie in precisely y of these
hyperplanes, i.e. at which VL has multiplicity p. Thus VL, Il is a disjoint
union of irreducible components; these are the distinct p-fold inter-
sections of the Hi (from which the 03BC+1-fold intersections have been
deleted).
Now V = VL/G, and the projection p : VL ~ V is étale of degree d;

in particular VL,03BC = p-1(V03BC) since multiplicity is preserved by étale
morphisms. For J1 = 1, hL,1 consists of the d hyperplanes minus their
intersections, i.e. VL, 1 - H’ u ... u Hd, where Ht is Hi minus some
linear subspaces of dimension d - 2. We now observe that G acts transi-
tively on the set {H1,...,Hd}. In fact this set is (non-cononically)
isomorphic to G in such a way that the effect of G in permuting the
components of vL looks like the action of G on itself by left translation;
this also shows that no subvariety of VL,1 is invariant under any non-
trivial element of G. It follows that V1 = p(VL,1) has only one component,
which is isomorphic by p to any of the H’i.
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3. Remarks on the completeness of the Versal family

Let X be a variety over k with isolated singularities (or more generally
any geometric object with a finite dimensional local deformation theory).
Let n : X ~ S be the versal local k-deformation of X. The theorem of the

completeness of the versal family states intuitively that if s is any point of
S, the every deformation of the fibre Xs is contained in the family X/S
in a suitable sense. This is of course true for the special point so of S by
definition,
The theorem has been studied in various contexts by different authors.

Our reference is Artin’s paper [8]. He treats the theorem in a very general
setting, using techniques of algebrization. In our situation, which
Artin’s treatment comprehends, S = Spec (R), R a complete local

k-algebra, and we are concerned only with isolated singularities. In a
certain sense Artin’s approach seems the most natural, although it is

possible - and quite instructive - to give a direct proof in this case without
appealing to algebrization (as far as 1 know, such a treatment is not
available in the literature).
We will be interested in the completeness of X/S at non-closed points

s in S, and in stating the theorem one must be careful about the role of
the residue field 03BA(s): it turns out that the family is complete at s only
’over k’, i.e. certain moduli of the singularity Xs can be realized in X/S
only by certain k-automorphisms of 03BA(s) acting of Xs. This phenomenon,
although not so significant for our application in this paper, would
seem to be of considerable independent interest, for example as a tool
in the study of ’generic singularities’.
We will state and use the completeness theorem in the following form:

(3.1) THEOREM: Given 03C0 : X ~ S, the versal k-deformation of a k-variety
X with isolated singularities, where S = Spec (R), R local, Let s in S

correspond to a prime ideal p of R. Let G denote the category of Artin
local k-algebras (N.B. not K(s)-algebras) with residue field K(s). Let A
in G:, and let Z be a flat family over Spec (A) with special fibre Xs. Then
Z is induced from X by some k-homomorphism Rp ~ A.

Note that the theorem remains valid if we enlarge G to include all
complete local k-algebras with residue field x(s).

4. Proof of the normalization theorems

As in the introduction, we suppose X is a k-variety with an isolated


