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A NUMERICAL CRITERION FOR THE
PERMISSIBILITY OF A BLOWING-UP

Balwant Singh

Introduction

Let O be a noetherian local ring and p a proper ideal of @. The concept
of the permissibility of p in @ (more precisely, of Spec (0/p) in Spec O
at the closed point) as a center for blowing-up was introduced by
Hironaka in his paper [3] on the resolution of singularities. If the center
of a blowing-up ¢ — @' is permissible in @ then the singularity of ¢’ is
no worse than that of . Here, as a measure of singularity, we may take
either the characters v*, t* defined by Hironaka in [3] in case O is given
as the quotient of a regular local ring, or the Hilbert functions of @ and ¢’
(See [1], [4], [6])- In this note we give a numerical criterion for the
permissibility of a blowing-up, i.e. of its center (Theorem 1) and study
the effect of an arbitrary blowing-up on the Hilbert function of a local
ring (Theorems 2 and 3). As a corollary to Theorem 1, we get yet another
criterion for the permissibility of a blowing-up (Corollary (1.4)). The
criterion in Theorem 1 leads to the definition of a numerical function
D, such that p is permissible in O if and only if D, = 0. (See Remark 2.)
A significance of this function D, is that it appears explicitly in a com-
parison between the Hilbert functions of ¢ and (', where O — ¢’ is a
blowing-up of @ with center p. (See Theorems 2 and 3.) In Remark 3
below we indicate how the criterion in Theorem 1 compares with a
numerical criterion for normal flatness given by Bennett [1].

In order to state our results more precisely, we need some notation.
By a numerical function H we mean a map H:Z* - Z*. If H is a
numerical function, we get from H a sequence {H"},, of numerical
functions by successive ‘integration’ as follows: H” = H and, for r 2 1,

HOn) = Y HO (i),
i=0
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If H,, H, are numerical functions, then by H, = H, we shall always
mean the total order inequality, ie. H,(n) = H,(n) for every neZ™.

Let O be a noetherian local ring. For a proper ideal p of ¢ we define
a numerical function H, by

H,(n) = dimg, p"/mp",

where m is the maximal ideal of @. This gives us a sequence {HY}, .,
of numerical functions. We write HY for H?, so that {H{’},., is the
usual sequence of the Hilbert functions of @. B

We denote by dim ¢ the Krull dimension of ¢ and by emdim ¢ the
embedding dimension of 0, i.e. emdim O = H{X1).

Recall that a proper ideal p of O is said to be permissible in O (as a
center for a blowing-up) if the following two conditions are satisfied:

(i) regularity: O/p is regular
(i) normal flatness: O is normally flat along p, i.e. the graded ¢/p-algebra
gr,(0) = @, ,p"/p" ! is O/p-flat.

THEOREM 1: Let O be a noetherian local ring and p a proper ideal of 0.
Let d = dim O/p and e = emdim O/p. Then we have HY’ < HY. Further,
the following three conditions are equivalent:

(i) p is permissible in O
(i) O/p is regular and HY’ = HY
(iii) B = HO.

We prove this theorem in § 1.

Remark 1: For the implication (i) = (ii), cf. [3, Chapter II, Proposi-
tion 1].

REMARK 2: For a proper ideal p of ¢, let us define D, = HY — HY,
where ¢ = emdim ¢. Theorem 1 shows that D, i1s a numerical function,
and p is permissible in ¢ if and only if D, = 0. We may therefore call
D, the permissibility defect of p. Another justification for the use of this
term is provided by Theorem 2, which states, roughly, that if @ — ¢’
is a blowing-up of O with center p, then HY’ —H{) = —D,, where &
is the residue transcendence degree of ¢’ over ¢. In the case when p is
permissible in ¢, the inequality HY'—HY) > 0 is already known [6].
One can thus say that under a blowing-up the singularity of ¢ can
become worse only to the extent that the blowing-up is non-permissible,
this non-permissibility being measured by the numerical function D,.



[3] Numerical criterion for the permissibility of a blowing-up 17

REMARK 3: Bennett has given a numerical criterion for the permissi-
bility of p in O in the case when ¢/p is regular [1, Theorem (3) and
0(2.1.2)]. He has shown that if O/p is regular of dimension d then p is
permissible in O if and only if H® = H®. Let us compare this criterion
with the one given in Theorem 1 above. Suppose that O is excellent.
Then we have H“” < HY, where d = dim O/p. (See [1, Theorem (2)]
and [6, page 202]. ) In this case, therefore, the difference D, = HY - H“')
is a numerical function, and p is permissible in @ if and only if D, = 0
However, the definition of this measure D, of the deviation of p from
being permissible requires, in the first place, that p be a prime ideal.
Even then it is apparently defined (i.e. is non-negative) only for ¢
excellent, it being not known whether the inequality H' g‘; < H{ holds for
non-excellent 0. Moreover, in order that D, = 0 imply the permissibility
of p in ¢, we have to assume already that ¢/p is regular. Finally, D,
does not seem to intervene directly in a formula for the difference
HY—H) as D, does. (Here O — (' is a blowing-up as in Remark 2.)
It is interesting, however to note that if O i is excellent and O/p is regular
of dimension d then we have

d 0 d
*) Hg) < HY < HY

and one of these inequalities is an equality if and only if the other is.
One may therefore ask: What is the relationship, in this case, between
D, = H®—HY and D, = HEUO’—Hg‘:?

REMARK 4: The inequalities (*) of Remark 3 yield another interesting
criterion for the permissibility of p in @. (See Corollary (1.4) in § 1.)

REMARK 5: With the notation of Theorem 1, we do not, in general,
have the inequality H”’ < HY. Example: Let € be a non-regular Cohen-
Macaulay local ring of dimension 1 (e.g., 0 = k[[X, Y]]J(Y*-X?),
where k is a field). Choose any non-zero divisor x in the maximal ideal
of 0,and let p = Ox. Thend = 0, H”(n) = 1 for every n, but HPX(1) = 2.

REMARK 6: With the notation of Theorem 1, the equality Hy) = HY
alone does not imply that p is permissible in @. Example: Let O be a
regular local ring of dimension 1. Let x be any non-zero element in the
square of the maximal ideal of @ and let p = x0.

We now proceed to state Theorems 2 and 3. Let O — ¢’ be a blowing-up
of O with center a proper ideal p of . Let e = emdim /p. Choose
t,,...t, in the maximal ideal m of O such that m = p+)¢_ 1,0. Let
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to€p be such that pO¢’ =t @'. For such a choice of t =(t,,¢t,,...,1t,)
we define, for every i, 0 < i < e, a sequence {q, ,(n)},-, of ideals of ¢’
as follows:

i—1
a, (n)={feOfem™ + ) 1,0},
j=0
where m’ is the maximal ideal of @'. Clearly, a, (n) > m™+Y ~ 1,0’
foreveryiandn.Let L, ,0 < i < e, be the numerical functions defined by

b

i—1
L, (n) = lengthya, (n)/(m"+ Y. t,0).
j=0

THEOREM 2: Let p be a proper ideal of a noetherian local ring O and let
e = emdim O/p. Let O — O’ be a blowing-up of O with center p and let J
be the residue transcendence degree of O’ over O. Then, for any choice of
t = (tytys..1,) as above, we have

e
HO—HY > Y I$9-D > —D

i=0

o
In particular, if p is permissible in O, then

e
0) _ g© (i+9)
HY-HY 2 Y 1879 > 0.

i=0

In the case when @ — (' is residually rational, we can give a more
precise formula for the difference H”’ — HY. As above, let ¢, € p be such
that p@’ = t,¢’. Then ¢’ is obtained as a localization of the subring
{f/t§ln =2 0, f ep"} of O, . We define a sequence {b, (n)},, of ideals of
0 by

b,(1) = {f ep'lf/them™ 1m0},

where m,mt’ are the maximal ideals of O, (', respectively. Clearly,
b, (n) > mp" for every n. Let L, be the numerical function defined by

L, (n) = length, b, (n)/mp".
THEOREM 3: Let the notation be as in Theorem 2. Assume, moreover,

that © — O' is residually rational. Then for any choice of t = (t,, t,,.. ., t,)
as above, we have
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e
HY - = 1+ 3 10-D,
i=0
In particular, if p is permissible in O, then

13

HY —HY = 19+ Y 19,
i=0
Theorems 2 and 3 are proved in § 2.

1. Proof of Theorem 1

(1.1) Let @ be a noetherian local ring with maximal ideal m. For any
ideal p of O we define

,u(p) = dlmg /mp/ mp,

so that u(p) is the cardinality of a minimal set of generators of p. Note that,
if p is a proper ideal of @, then u(p") = H(n) for every n.
\
(1.2) LEMMA:
(1) Let a, 1 < i <, be ideals of O such that p(} ;) = Y u(a,). If S,
is a minimal set of generators of a,, then| );S; is a minimal set of generators
of Y..a;. In particular, for every j, 1 < j < r, we have

S;n(m(Y a)+ ) a) =9
i i#j
(2) Let p, q be proper ideals of O and let a = p+q. Let e = u(q). Then
H® < HO,
a ="y
(3) With the notation of (2), suppose that H® = HY. Then, for every
m,n = 0, we have

-1
@u = (")
o
() p(p™q") = pu(P™)u(a")
(© m@** ") = p(@"* ')+ pu(a"p).

Proor: (1) is immediate. To prove (2) and (3), we have only to observe
the following easily verified facts:

() pa™) < Y ue" e £ Y pe" Hug).
=0

i=0 i
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(i) u(q") < ("*"'1).
e—1

(iti) For any numerical function H = H® we have

HOMm) = 3 <”Z—11> HOn—i)

i=0

(1.3) LemMA : (Bennett). Let O be a noetherian local ring and p an ideal
of O such that O/p is regular. Let d = dim O/p. Then p is permissible in O
if and only if H® = Hg’g.

For a proof of this lemma, see [1, Theorem (3) and 0(2.1.2)].

Before coming to the proof of Theorem 1, we note the following
corollary to Theorem 1:

(1.4) COROLLARY : Suppose O is excellent' and O/p is regular. Then p
is permissible in O if and only if p(p") = u(p"0,) for every n = 0.

PrOOF: As mentioned in Remark 3 of the Introduction, we have
d 0 d
Hf%’ < HP < H;’.

(The second inequality follows from Theorem 1 and the first from
[1, Theorem (2)] and [6, page 202].) By Theorem 1, H>’ = HY if and
only if p is permissible in ¢. By Lemma (1.3), p is permissible in O if
and only if H“‘) = H{). Therefore, p is permissible in ¢ if and only if
H(‘” = HY. Now, clearly, HY = HY if and only if H(O’ = H{). This
proves the corollary, since u(pp") = ;Ol(n) and p(p"0,) = “”(n)

PrOOF OF THEOREM 1: Let m be the maximal ideal of ¢ and let k = O/m.
Since e = emdim (//p, there exists an ideal g of @ such that m = p+q
and p(q) = e. Therefore, the inequality HY’ < HY follows from Lemma

(1.2)(2).

! It was pointed out by W. Vogel that the proof of this corollary goes through also for
non-excellent 0. For it follows, from Lemma 1 of [A. Ljungstrom, “An inequality between
Hilbert functions of certain prime ideals one of which is immediately included in the other”,
Preprint, University of Stockholm, 1975] that HY> < H( for arbitrary 0O if O/p is regular
of dimension d. It was precisely for this 1nequa11¥y that we assumed the excellence of O.
For a more direct proof of this corollary, see [R. Achilles, P. Schenzel and W. Vogel,
“Einige Anwendungen der normalen Flachheit”, Preprint, Martin-Luther-Universitit,
1975].
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We now proceed to show that conditions (i), (ii) and (iii) of Theorem 1
are equivalent.

(i) = (ii). Since p is permissible in @), we have d = e, and for every
n=0,p"p"t! is O/p-flat, hence O/p-free. Therefore, we have

H{(n) = dim,p"/mp”
= dimp"/p" ! ® g,k
= rank,, p"/p"*!
= dimg 0 $"0,/p"*10,
= Hf;;’(n).

Thus H” = H fy‘l’, so that HY = Hf,;’; = HY), the last equality by Lemma
(1.3).

(ii) = (iii). Since O/p is regular, we have d = e.

(iii) = (ii). We have only to show that O/p is regular. Choose
ty,...t, €m such that their canonical images t,,...,t, in 0 = O/p form
a (necessarily minimal) set of generators of i = m/p. Let q = Y ¢_,#,0.
Then m = p+q and e = u(q). Therefore, the assumption Hy’ = HY
implies, by Lemma (1.2)(3), that we have

-1
waq") = <n+e >
e—1

pm"* ) = pq™* )+ p(m"p)

*)

for every n = 0. Let S, = {¢*||a| = n}. (Here we have used the standard
notation: t* = ¢t}'...t% and |¢| = o, + ... +a, fora = (ay,...,a,)€(ZF))
It follows from (*) and Lemma (1.2)(1) that the following two statements
are true for every n = 0.
(1), S, is a minimal set of generators of q".
(2), If T, is any minimal set of generators of m"p, then T, U S, is a
minimal set of generators of m"*1,

Suppose now that ¢/p is not regular. Then there exists re Z* and

a=(a,...,a)€e(Z") with |a| = r such that

e Y PO+m Tt
181=r
Bt

This means that
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e Yy xO+m*lip.

xeS,—{t%}

We can therefore write t* = y+p with pep and

ye Y xO+mrti,
xeS, — {t*}
If p# 0, let seZ* be such that pe m®p—m**p. Then there exists a
minimal set T of generators of m®p such that pe T. If p = 0, we put
s = 00. Now consider the three cases s+1 <r,s+1 =rand s+1 > r.

Case (1). s+1 < r. Then p = *—yem” = m** 2. This contradicts (2),
since we may take T, = T, so that pe T,

Case (2). s+1 = r. In this case we have

*=y+pe Y xO+pO+m+?
xSy, — {t*}
which again contradicts (2),, by taking T, = T.

r+1

Case (3). s+1 > r. In this case pe m®p < m"" ', so that we have

*=y+pe Y xO+m*
xeS, — {t*}
which contradicts (2),_,.
This shows that @/p is regular and d = e, which proves (ii).
(ii) = (i). We prove this implication by induction on d. The case d = 0
is trivial. We shall now prove:
(A) The implication (ii) = (i) for d = 1.
(B) The inductive step from d—1 to d, assuming (A).
We first prove (B). Let d =1 and let ¢,,...,t;em be such that
=p+yd 0. Let n= p+Y9-3t0. Then m = n+t,0. Therefore
H(O) < H{, by Lemma (1.2)(2). Also H” < H¢~", by Lemma (1.2)(2).
Therefore HY < HP < HP.Since HY = HY, we get HYY = H"). Now
O/n is regular of dimension 1. Therefore, by (A), HY”’ = H'" implies that
1 is permissible in ¢. Hence

) HY = HY)

by Lemma (1.3). Thus Hg = H®, which gives H — H@~ Y. This
implies that H‘O’ = HY~ ”, since pu(p"0,) < p(p") for every n On the
other hand, by Lemma (1 2)(2), we have H(O) < HY D, since

d—1
N(Qn = p@"+ Z ti(On

i=1
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Thus H) = Hyy, . This implies, by induction hypothesis, that p0, is
perm1551ble in (9 , since O, /p0, is regular of dimension d— 1. Therefore
H(” b= H“’) by Lemma (1.3). This gives H“’) = H(” = HY, by (¥).
Therefore by Lemma (1.3), p is permissible in 0, and (B) is proved.

We now turn to the proof of (A). We are given that ¢/p is a discrete
valuation ring and HY’ = H{". We have to show that gr (0) is ¢/p-flat
or, equivalently, that p"/p"*! is ()/p-free for every n = 0. Choose tem
such that its image t in @/p is a uniformising parameter for O/p. It is
then enough to show that ¢ is a non-zero divisor in p"/p"*?! for every
n=0.

By the choice of ¢, we have m = p+1t0. Therefore the equality
HY = H" implies, by Lemma (1.2)(3), that u(f"p") = u(p") for all
m,n 2 0, so that y(m") = Y7_ u(t'p" ).

Suppose now that there exists n = 0 such that f is a zero-divisor in
p"/p"* 1. Then there exists p € p"—p"*! such that tp e p"* 1. We consider
the two cases p ¢ mp” and p e mp”.

Case (1). p¢ mp”. In this case p can be completed to a minimal set,
say S, of generators of p”. Then ¢S = {tx|xe S} is a minimal set of
generators of tp”, since u(tp”) = u(p"), as noted above. But this is a
contradiction, by Lemma (1.2)(1), of the equality

n+1

'u(anr 1) — Z ﬂ(tipn+1—i),

i=0

since tpetS N p"* 1,

Case (2)®> pemp”. Since mp" = (p+tO)p" = p"*! +tp”, we can write
p=¢q,.,+t*° 'p, with ¢, ep"*’, p,ep" and ®, an integer = 2.
Since pép"*', we may choose ¢, o, and p, to be such that
p,ep"—mp" Now tp = tq,,,+t°p, Put q,,, =1p, =tp—iq,,,.
Then g,,, €p"*'. Suppose q,,, emp"*! = p"*24+tp"*1. Then we can
write g, = q,,,—t"'p,,, With q,,,€p"*? o, =1 and p,,, ep"*’.
Now, if g, , ¢ p"*2, we may assume (by choosing g, ,, %, p, , , Suitably)
that p,, ep"" ' —mp"* 1 If ¢,,,ep""% then we put q,,, = q,,
Py.q = 0andoa, =, +1. Wegetq,,, = t*p,+t"p, . Proceeding thus,
we write

(**) qn+r+1 = taopn+talpn+1+ e +turpn+r’

? The author wishes to express his thanks to the referee for pointing out a correction in
the proof of this case.
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whereq, ,, ., €p"*""andforeveryi,0 < i < r,eitherp,,, e p"ti—mp"*

anda; 2 1 or p,,; = 0 and o; = &, + 1. Now suppose we have obtained
d,+,+ for a given r 2 0. For this r, let
a = inf{og, a, +1,...,0,+r}
and let
J={j0<j<rand a=a,+j}

Then J is not empty, a; = a—j for every j in J and from (**) we get

(***)

Y.t 7Ip,, (mod m"*e* ),

JjeJ

qn+r+1

Now, since p,, ;e p"*/—mp"*/ for every jeJ, we can complete p,, ;
to a minimal set of generators of p"*J. Therefore, since we have

n+a

HmE) = 3 (e ),
i=0

we see by Lemma (1.2) that the set {t*~’p, , |j€ J} can be completed to a
minimal set of generators of m"*®. In particular, ) , t*~p,, . is not in
m"***1 since J is non-empty. Therefore, by (***),g, . ,, , isnotinm"**+1,
Therefore, since gq,,,,, €p"*"!, we conclude that n+r+1 < n+a+1,
so that r < a < a,,

This shows that the process of generating the g, ,,, cannot go on
indefinitely, i.e. we must eventually come to an r for which g, , ., is not
in mp"***! For this r,q,,,,, can be completed to a minimal set of
generators of p"*"*! and hence of m"*"*! by Lemma (1.2), since by

hypothesis

n+r+1
#(mn+r+1) — Z ﬂ(tipn+r+1—i).
i=0

Now if a > r+1 then (***) shows that g,,,,, em"" "2, which is a
contradiction. If « = r+1 then, by Lemma (1.2), the set

{qn+r+1} v {ta_jpn+jlie‘]}

can be completed to a minimal set of generators of m"** This contra-
dicts (*¥**).

Thus (A) is proved, and the proof of the theorem is complete.
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2. Proof of Theorems 2 and 3

(2.1) The proof of Theorems 2 and 3 is contained essentially in the
proof of the Main Theorem in [6]. What is needed is elaboration of
certain points. We do this in the proof below, referring frequently to [6].

(2.2) We have the following situation: p is a proper ideal of @, and
050 isa blowing-up of @ with center p. We have e = emdim O/p
and ¢ = tr.deg, k', where k — k' is the residue field extension induced by
h. We are given t = (ty, t,,...,t,) with t,ep such that p@0’ = t,0" and
t;em, 1 < i < e, such that m = p+)¢_,1,0. The ideals a, (n) of ¢’ and
b, (n) of O and the numerical functions L, ;, 1 < i < e, and L ., are defined
as in the Introduction. Let 0" = 0'/m0'.

With the notation of (2.2) we shall prove the following three lemmas:

(2.3) LEMMA:
H(O) H(e+ 1) _ Z E:? -
(24) Lemma: If k = k' then H® = HO+L, .
(2.5) Lemma: HY =2 H3. "2,
Assume these three lemmas for the moment. Then we get an immediate
PROOF OF THEOREMS 2 AND 3: Since D, = HY — H{”), we have
HY—HY = HY—HY)—D

= HO—HE 194 Y [ D, (Lemma (2.3)
i=0

Z LY — (Lemma (2.5)).
This proves Theorem 2. Now, if k = k/, then

HY—HY = HO—HG Y+ 2 L), —D, (as above, since 6 = 0)

i=0

=I194+Y 1D _p (Lemma (2.4)).
to t,i P
i=0

This proves Theorem 3.
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ProOF oF LEMMA (2.3): Since (0" = @’/Zie:oti(ﬁ’, the lemma follows
from [6, Theorem 1] and a straightforward induction on e.

ProoF OF LEMMA (2.4): Let m” be the maximal ideal of 0. It is enough
to show that there exists an exact sequence

*) 0 - b, (m)/mp" > p"/mp" 5 O"/m""* ! - 0
of k-vector spaces. For we have
HO®n) = dim,p"/mp",  H®(n) = dim, 0"/m"*!
and
L, (n) = length, b, (n)/mp" = dim, b, (n)/mp".

To show the existence of (*) we have only to define ¢ suitably. Since
p0’ = t,0', we can identify ¢’ with a localization of the subring
{f/tsln 2 0, fe p"} of 0,,- Define yr:p" — 0" by Y(f) = n(f/tg), where
n: 0" — @" is the canonical homomorphism. Then { induces a k-homo-
morphism : p"/mp” — (¢0”. We define ¢ to be the composite of i and
the canonical homomorphism ¢ — ¢/m""*1 1t was proved in [6, (3.3),
Proof of Lemma 2] that ¢ is surjective if k = k. Also, it is clear from the
definition of b, (n) that ker ¢ = b, (n)/mp". Thus (*) is exact and the
lemma is proved.

PROOF OF LEMMA (2.5): By Lemma (2.4), we already have the
inequality H > H{*® in the case k = k'. The inequality in the general
case can now be proved by a standard inductive procedure used in [1],
[4] and [6]. What we do is the following: Choose an element « € k' —k.
If 6 = 1, we assume that « is transcendantal. If § = 0, we assume that
o is either separable or purely inseparable. Let f(Z)ek[Z] be the
minimal monic polynomial of « over k. (If « is transcendental, we take
f(Z) = 0. Let f(Z)e O[Z] be a monic lift of f(Z) such that, for every
i = 0, if the coefficient of Z' in f(Z) is 0 then the coefficient of Z' in f(Z)
is also 0. Let @ be the localization of O[Z]/f(Z)@[Z] at the prime ideal
n = (m[Z]+ f(Z)0[Z])/ f(Z2)0[Z], where m is the maximal ideal of 0.
Let : © — 0 be the canonical homomorphism. Let a be a lift of « to ¢’
and let & be the localization of O'[Z]/f(Z)¢'[Z] at the maximal ideal

W = (W[Z]+(Z -0 [Z2]) f(2)0Z],
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where m’ is the maximal ideal of @'. Let #': ¢’ » {' be the canonical
homomorphism. Then there exists a commutative diagram

h 4
—_—

Q) ——a
N —=

3
—_

such that

(i) & is a blowing-up of & with center p = p{;

(ii) the residue field extension induced by  is the k-inclusion k() — k'.
(See [6,(4.3),(4.6)]) Let & = trdeg,, k. If 621, then §=6—1. If
0 = 0, then [k': k(a)] < [k': k]. Therefore, by an obvious induction, we
may assume that H(;O) > HY? whered” = @'/, it being the maximal
ideal of . Now, in order to complete the proof of the lemma, it is clearly
enough to prove the following three statements:

(1) Hy = Hy.

QHY ZHQ if §=6=0.

3) H%?? =HY if §=06-1.

PrOOF OF (1): Let k = k(o) be the residue field of @. For every n = 0,
we have H%o)(n) = dimg p" ®zk = dimg p" ®, k, since, & being O-flat,
we have §" = p" ®,0. Now p" ®, k = (p" ®@, k) ®, k. Therefore,

dim; p" ®  k = dim, p" @,k = HO(n).

PRrOOF OF (2) AND (3): Let m” be the maximal ideal of (¢”. Then
0" = 0wl = 0md = (0'[Z])/f(2)0"[Z]),, where

" = m"[Z]+(Z—-a)0"[Z)) f(2)0"[Z].

Now, if § = §—1, then « is transcendental and f(Z) = 0. Therefore the
equality Hfg(,’,’ = H() is clear in this case. This proves (3). If 6 = 0 and «
is separable then f(Z) being a separable polynomial, 0" — 0" is etale,
so that in this case we have, in fact, HS,),) = H{?). Now suppose 6 = 0
and « is purely inseparable. Then f(Z) = Z?—f, where q is a power
of char k and B = a?e k. This implies that f(Z) = Z%—b, where be O
is some lift of B. Let b be the canonical image of b in ¢”. Since
O0’[Z]/(Z*—Db)0"[Z] is already a local ring, we have

b = 0'[Z])(22-B)0"[Z].
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Let a be the canonical image of a in ¢ and let t = b—a% Then tem”.
Let Y = Z—a. Then 0" = ¢0"[Y]/(Y*—1)0"[Y]. Now, the inequality
HY) = HY follows from [6, Lemma (4.5)]. This proves (2).
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