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Introduction

Let (9 be a noetherian local ring and p a proper ideal of (9. The concept
of the permissibility of p in (9 (more precisely, of Spec (O/p) in Spec (9
at the closed point) as a center for blowing-up was introduced by
Hironaka in his paper [3] on the resolution of singularities. If the center
of a blowing-up O ~ (!J’ is permissible in (9 then the singularity of (9’ is
no worse than that of (9. Here, as a measure of singularity, we may take
either the characters v*, i* defined by Hironaka in [3] in case (9 is given
as the quotient of a regular local ring, or the Hilbert functions of (9 and (9’
(See [1], [4], [6]). In this note we give a numerical criterion for the
permissibility of a blowing-up, i.e. of its center (Theorem 1) and study
the effect of an arbitrary blowing-up on the Hilbert function of a local
ring (Theorems 2 and 3). As a corollary to Theorem 1, we get yet another
criterion for the permissibility of a blowing-up (Corollary (1.4)). The
criterion in Theorem 1 leads to the definition of a numerical function

D" such that p is permissible in (9 if and only if D = 0. (See Remark 2.)
A significance of this function D" is that it appears explicitly in a com-
parison between the Hilbert functions of (9 and (9’, where (9 -+ (!J’ is a

blowing-up of (9 with center p. (See Theorems 2 and 3.) In Remark 3
below we indicate how the criterion in Theorem 1 compares with a

numerical criterion for normal flatness given by Bennett [1].
In order to state our results more precisely, we need some notation.

By a numerical function H we mean a map H: Z+ ~ Z+. If H is a
numerical function, we get from H a sequence {H(r)}r~0 of numerical
functions by successive ’integration’ as follows: H(0) = H and, for r ~ 1,
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If H1, H2 are numerical functions, then by H1 ~ H2 we shall always
mean the total order inequality, i.e. H1(n) ~ H2(n) for every n ~ Z+.

Let (9 be a noetherian local ring. For a proper ideal p of (9 we define
a numerical function H. by

where m is the maximal ideal of (D. This gives us a sequence {H(r)p}r~0
of numerical functions. We write H(r)O for H(r)m, so that {H(r)O}r~0 is the
usual sequence of the Hilbert functions of (D.
We denote by dim (9 the Krull dimension of (9 and by emdim (9 the

embedding dimension of (D, i.e. emdim (9 = H(0)O(1).
Recall that a proper ideal p of (9 is said to be permissible in (9 (as a

center for a blowing-up) if the following two conditions are satisfied :

(i) regularity : (91p is regular
(ii) normal flatness : (9 is normally flat along p, i.e. the graded (9/p-algebra

THEOREM 1: Let O be a noetherian local ring and p a proper ideal of (!).

Let d = dim O/p and e = emdim O/p. Then we have H(0)O~ H(e)p. Further,
the following three conditions are equivalent :

(i) p is permissible in (!)
(ii) O/p is regular and H(0)O = H(d)p

(iii) H(0)O = H(e)p.

We prove this theorem in § 1.

REMARK 1 : For the implication (i) ~ (ii), cf. [3, Chapter II, Proposi-
tion 1].

REMARK 2 : For a proper ideal p of O, let us define Dv = H(e)p-H(0)O,
where e = emdim 0. Theorem 1 shows that Dv is a numerical function,
and p is permissible in O if and only if Dv = 0. We may therefore call
D v the permissibility defect of p. Another justification for the use of this
term is provided by Theorem 2, which states, roughly, that if O ~ O’
is a blowing-up of O with center p, then H(0)O- H(03B4)O’ ~ - Dp, where 03B4
is the residue transcendence degree of O’ over (!). In the case when p is
permissible in O, the inequality H(0)O-H(03B4)O’ ~ 0 is already known [6].
One can thus say that under a blowing-up the singularity of O can
become worse only to the extent that the blowing-up is non-permissible,
this non-permissibility being measured by the numerical function Dp.
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REMARK 3: Bennett has given a numerical criterion for the permissi-
bility of p in (9 in the case when O/p is regular [1, Theorem (3) and
0(2.1.2)]. He has shown that if (91p is regular of dimension d then p is
permissible in (9 if and only if H(0)O = H(d)O. Let us compare this criterion
with the one given in Theorem 1 abové. Suppose that (9 is excellent.

Then we have H(d)O ~ H(0)O, where d = dim (9/p. (See [1, Theorem (2)]
and [6, page 202].) In this case, therefore, the difference D’ p = H(0)O-H(d)Op
is a numerical function, and p is permissible in (9 if and only if D’ = 0.
However, the definition of this measure D’p of the deviation of p from
being permissible requires, in the first place, that p be a prime ideal.
Even then it is apparently defined (i.e. is non-negative) only for m
excellent, it being not known whether the inequality H(d)Op ~ H(0)O holds for
non-excellent m. Moreover, in order that D’p = 0 imply the permissibility
of p in (9, we have to assume already that O/p is regular. Finally, Dp
does not seem to intervene directly in a formula for the difference

H(0)O-H(03B4)O’ as Dp does. (Here O ~ O’ is a blowing-up as in Remark 2.)
It is interesting, however, to note that if (9 is excellent and m Ip is regular
of dimension d then we have 

and one of these inequalities is an equality if and only if the other is.
One may therefore ask: What is the relationship, in this case, between

Dp = H(d)p-H(0)O and D’ = H(o) - H (d)
REMARK 4: The inequalities (*) of Remark 3 yield another interesting

criterion for the permissibility of p in (9. (See Corollary (1.4) in § 1.)

REMARK 5: With the notation of Theorem 1, we do not, in general,
have the inequality H(0)O ~ H(d)p. Example : Let O be a non-regular Cohen-
Macaulay local ring of dimension 1 (e.g., O = k[[X, Y]]/(Y2 - X3),
where k is a field). Choose any non-zero divisor x in the maximal ideal
of (9, and let p = (9x. Then d = 0, H(0)p(n) = 1 for every n, but H(0)O(1) ~ 2.

REMARK 6: With the notation of Theorem 1, the equality H(0)O = H(d)p
alone does not imply that p is permissible in (9. Example: Let O be a
regular local ring of dimension 1. Let x be any non-zero element in the
square of the maximal ideal of (9 and let p = x(9.

We now proceed to state Theorems 2 and 3. Let O ~ (!J’ be a blowing-up
of (9 with center a proper ideal p of (9. Let e = emdim (91p. Choose

t1, ..., te in the maximal ideal m of U such that m = p + 03A3ei=1 tiO. Let
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to e p be such that p(9’ = te(9’. For such a choice of t = (to, tl, ..., te)
we define, for every i, 0 ~ i ~ e, a sequence {at,i(n)}n~0 of ideals of O’
as follows:

where m’ is the maximal ideal of O’. Clearly, at, i(n) =3 
for every i and n. Let Lt,i’ 0 ~ i ~ e, be the numerical functions defined by

THEOREM 2: Let p be a proper ideal of a noetherian local ring O and let
e = emdim O/p. Let O ~ (9’ be a blowing-up of O with center p and let 03B4
be the residue transcendence degree of (9’ over (9. Then, for any choice of
t = (to, tl, ..., te) as above, we have

in particular, if p is permissible in (9, then

In the case when O ~ O’ is residually rational, we can give a more
precise formula for the différence H(0)0- H(0)O’. As above, let to e p be such
that pO’ = toG’. Then G’ is obtained as a localization of the subring
{f/tn0|n~ 0, f ~ pn} of Ot0. We define a sequence {bt0(n)}n~0 of ideals of
O by

where m, m’ are the maximal ideals of (9, (9’, respectively. Clearly,
bto(n) ~ mpn for every n. Let Lto be the numerical function defined by

THEOREM 3: Let the notation be as in Theorem 2. Assume, moreover,
that O ~ (9’ is residually rational. Then for any choice of t = (to’ tl, ..., te)
as above, we have
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In particular, if p is permissible in (9, then

Theorems 2 and 3 are proved in § 2.

1. Proof of Theorem 1

(1.1) Let (9 be a noetherian local ring with maximal ideal m. For any
ideal p of (9 we define

so that p(p) is the cardinality of a minimal set of generators of p. Note that,
if p is a proper ideal of (9, then 03BC(pn) = H(o)(n) for every n.

(1.2) LEMMA : 
(1) Let ai, 1 ~ i ~ r, be ideals of O such that Jl(Liai) = Zip(ai). If Si

is a minimal set of generators of ai, then U iSi is a minimal set of generators
of Liai. In particular, for every j, 1 ~ j ~ r, we have

(2) Let p, q be proper ideals of O and let a = p + q. Let e = ,u(q). Then
H(0)a~ H(e)p.

(3) With the notation of (2), suppose that H(o) = H(e)p. Then, for every
m, n ~ 0, we have

PROOF: (1) is immediate. To prove (2) and (3), we have only to observe
the following easily verified facts:
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(iii) For any numerical function H = H(0) we have

(1.3) LEMMA : (Bennett). Let O be a noetherian local ring and p an ideal
of O such that O/p is regular. Let d = dim O/p. Then p is permissible in (9
if and only if H(’) = H(’)

For a proof of this lemma, see [1, Theorem (3) and 0(2.1.2)].

Before coming to the proof of Theorem 1, we note the following
corollary to Theorem 1:

(1.4) COROLLARY : Suppose O is excellent 1 and O/p is regular. Then p
is permissible in O if and only if ,(:pn) = 03BC(pnOp) for every n ~ 0.

PROOF : As mentioned in Remark 3 of the Introduction, we have

(The second inequality follows from Theorem 1 and the first from

[1, Theorem (2)] and [6, page 202].) By Theorem 1, H(0)O = H(d)p if and
only if p is permissible in O. By Lemma (1.3), p is permissible in O if
and only if H(d)O = H(0)O. Therefore, p is permissible in (9 if and only if

H(d)Op = H(d)p. Now, clearly, H(d)Op = H(d)p if and only if H(0)Op = H(0)p. This
prôves the corollary, since Jl(pn) = H(0)p(n) and 03BC(pnOp) 

PROOF OF THEOREM 1: Let m be the maximal ideal of O and let k = O/m.
Since e = emdim (91p, there exists an ideal q of O such that m = p + q

and J1(q) = e. Therefore, the inequality H(0)O ~ H(e)p follows from Lemma
(1.2)(2).

1 It was pointed out by W. Vogel that the proof of this corollary goes through also for
non-excellent (9. For it follows, from Lemma 1 of [A. Ljungstrôm, "An inequality between
Hilbert functions of certain prime ideals one of which is immediately included in the other",
Preprint, University of Stockholm, 1975] that H(d)O ~ H(0)O for arbitrary O if O/p is regular
of dimension d. It was precisely for this inequality that we assumed the excellence of (9.
For a more direct proof of this corollary, see [R. Achilles, P. Schenzel and W. Vogel,
"Einige Anwendungen der normalen Flachheit", Preprint, Martin-Luther-Universität,
1975].
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We now proceed to show that conditions (i), (ii) and (iii) of Theorem 1
are equivalent.

(i) ~ (ii). Since p is permissible in (9, we have d = e, and for every
n ~ 0, n/,n + 1 is (9/p-flat, hence O/p-free. Therefore, we have

Thus H(Ü) = H(0)O, so that H(d)p = H(d)Op = H(Ü) the last equality by Lemma
(1.3). 

e:p 

(ii) ~ (iii). Since O/p is regular, we have d = e.
(iii) ~ (ii). We have only to show that (91p is regular. Choose

t 1, ..., te E m such that their canonical images t 1, ..., te in (9 = O/p form
a (necessarily minimal) set of generators of m = m/p. Let q Ee= t (9.
Then m = p + q and e = p(q). Therefore, the assumption H(’) = H(e)p
implies, by Lemma (1.2)(3), that we have

for every n ~ 0. Let Sn = {t03B103B1 = n} . (Here we have used the standard
notation: t" = t03B111 ... t03B1ee and |03B1| = al + + a,, for a = (al, ..., 03B1e) ~ (Z
It follows from (*) and Lemma (1.2)(1) that the following two statements
are true for every n ~ 0.

(1)n Sn is a minimal set of generators of q".
(2)n If Tn is any minimal set of generators of m"p, then Tn ~ Sn+1 is a

minimal set of generators of mn+ 1.

Suppose now that (91p is not regular. Then there exists r ~ Z+ and
a = (03B11, ..., ae) E (Z+)e with a = r such that

This means that
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We can therefore write t’ - y + p with p ~ p and

If p ~ 0, let s ~ Z+ be such that p ~ msp - ms+1p. Then there exists a
minimal set T of generators of msp such that p E T. If p = 0, we put
s = oo. Now consider the three cases s + 1  r, s + 1 = r and s + 1 &#x3E; r.

Case (1). s + 1  r. Then p = t03B1 - y E mr c ms + 2. This contradicts (2)s’
since we may take T = T, so that p E TS.

Case (2). s + 1 = r. In this case we have

which again contradicts (2)s’ by taking TS = T.

Case (3). s + 1 &#x3E; r. In this case p E msp c mr+ l, so that we have

which contradicts (2)r - 1.
This shows that O/p is regular and d = e, which proves (ii).
(ii) ~ (i). We prove this implication by induction on d. The case d = 0

is trivial. We shall now prove:

(A) The implication (ii) ~ (i) for d = 1.
(B) The inductive step from d -1 to d, assuming (A).
We first prove (B). Let d ~ 1 and let tl, ..., td E m be such that

m = p + 03A3di=1tiO. Let n = V + L1:: ;ti(!). Then m = n + t,,(9. Therefore
H(0)O ~ H(1)n, by Lemma (1.2)(2). Also H(0)n ~ H(d-1)p, by Lemma (1.2)(2).
Therefore H(0)O ~ H(1)n ~ H(d)p. Since H(0)O = H(d)p, we get H(0)O = H(1)n. Now
(9lu is regular of dimension 1. Therefore, by (A), H(0)O = H(1)n implies that
n is permissible in (9. Hence

by Lemma (1.3). Thus H(1)On = H(d)p, which gives H(0)On= H(d-1)p. This
implies that H(0)On~ H(d-1)pOn, since 03BC(pnOn) ~ ,u(pn) for every n. On the

other hand, by Lemma (1.2)(2), we have H H, since
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Thus Hôn = H This implies, by induction hypothesis, that p(9,, is
permissible in Utt, since (9.1:p (9. is regular of dimension d - 1. Therefore

H(d-1)Op = H(0)On, by Lemma (1.3). This gives H(d)Op = H(1)On = H(0)O, by (*).
Therefore, by Lemma (1.3), p is permissible in (D, and (B) is proved.
We now turn to the proof of (A). We are given that O/p is a discrete

valuation ring and H(0)O = H(1)p. We have to show that grp(O) is (9/p-flat
or, equivalently, that pn/pn+i is O/p-free for every n ~ 0. Choose t ~ m
such that its image t in O/p is a uniformising parameter for (91P. It is
then enough to show that t is a non-zero divisor in pn/pn+1 for every
n ~ 0.
By the choice of t, we have m = + t(9. Therefore the equality

H(0)O = H(1)p implies, by Lemma (1.2)(3), that 03BC(tmpn) = ,u(pn) for all

m, n ~ 0, so that M(Mn) = 
Suppose now that there exists n ~ 0 such that t is a zero-divisor in

pn/pn+1. Then there exists p E pn - pn + 1 such that tp C:pn+ 1. We consider
the two cases p 0 mpn and p E mpn.

Case (1). p 0 mpn. In this case p can be completed to a minimal set,
say S, of generators of pn. Then tS = {tx|x E SI is a minimal set of

generators of tpn, since ,u(tpn) = p(p"), as noted above. But this is a

contradiction, by Lemma (1.2)(1), of the equality

since tp E tS n pn+1.

Case (2) 2 p ~ mpn. Since mp" = (p + tO)pn = pn+1+tpn, we can write
p = q’n+1 + t03B10-1pn with q’n+1 ~ pn+1, pn ~ pn and ao an integer ~2.
Since p ~ pn+1, we may choose q’n+1, 03B10 and pn to be such that

pn ~ pn - mpn. Now tp = tq’n+1 + t03B1opn. Put qn+1=
Then qn+1 ~ pn+1. Suppose qn+1~mpn+1 = pn+2+tpn+1. Then we can
write qn+1 = qn+2-t03B11pn+1 with qn+2 ~ pn+2, 03B11 ~ 1 and pn+1 ~ pn+1.
Now, if qn+1 ~ pn+ 2, we may assume (by choosing qn+2, 03B11, pn+1 suitably)
that pn+1 ~ pn+1-mpn+1. If qn+1~pn+2, then we put qn+2=qn+1,
pn+1 = 0 and 03B11 = 03B10 + 1. We get qn+2 = t03B10pn 
we write

2 The author wishes to express his thanks to the referee for pointing out a correction in
the proof of this case.
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where qn+r+ 1 E pn+r+ 1 and for every i, 0 ~ i ~ r, either Pn+i E pn+i - mpn+i

and ai ~ 1 or Pn + i = 0 and ai = ao + 1. Now suppose we have obtained

qn+r+1 for a given r ~ 0. For this r, let

and let

Then J is not empty, oci = a - j for every j in J and from (**) we get

Now, since pn+j~pn+j-mpn+j for every j E J, we can complete pn+j
to a minimal set of generators of pn+j. Therefore, since we have

we see by Lemma (1.2) that the set {t03B1-jpn+j|j E J} can be completed to a
minimal set of generators of mn+03B1. In particular,  is not in
mn+03B1+1, since J is non-empty. Therefore, by (***), qn+r+1 is not in mn+03B1+1.
Therefore, since qn+r+1 ~pn+r+1, we conclude that n + r + 1  n+03B1+1,
so that r  03B1 ~ ao.

This shows that the process of generating the qn+r+1 cannot go on
indefinitely, i.e. we must eventually come to an r for which qn + r + 1 is not
in mpn+r+1. For this r, qn+r+1 can be completed to a minimal set of
generators of pn+r+1 and hence of Mn+r+1 by Lemma (1.2), since by
hypothesis

Now if a &#x3E; r + 1 then (***) shows that qn+r+1 ~ mn+r+2, which is a
contradiction. If a = r + 1 then, by Lemma (1.2), the set

can be completed to a minimal set of generators of mn+03B1. This contra-
dicts (***)

Thus (A) is proved, and the proof of the theorem is complete.
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2. Proof of Theorems 2 and 3

(2.1) The proof of Theorems 2 and 3 is contained essentially in the
proof of the Main Theorem in [6]. What is needed is elaboration of
certain points. We do this in the proof below, referring frequently to [6].

(2.2) We have the following situation: p is a proper ideal of U, and
W 1 (9’ is a blowing-up of (9 with center p. We have e = emdim (91p
and ô = tr.degk k’, where k ~ k’ is the residue field extension induced by
h. We are given t = (to, tl, ..., te) with to E p such that p(9’ = t0O’ and
ti ~ m, 1 ~ i ~ e, such that m = p +  The ideals at, i(n) of (9’ and
bto(n) of (9 and the numerical functions Lt, i’ 1 ~ i ~ e, and Lto are defined
as in the Introduction. Let O" = (9’1m(9’.
With the notation of (2.2) we shall prove the following three lemmas:

(2.3) LEMMA: 

LEMMA: 

LEMMA:

Assume these three lemmas for the moment. Then we get an immediate

PROOF oF THEOREMS 2 AND 3 : Since D" = H(e)p - H(0)O, we have

(Lemma (2.3))

(Lemma (2.5)).

This proves Theorem 2. Now, if k = k’, then

This proves Theorem 3.
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PROOF OF LEMMA (2.3): Since O" = O’/ the lemma follows
from [6, Theorem 1] and a straightforward induction on e.

PROOF OF LEMMA (2.4): Let m" be the maximal ideal of (9". It is enough
to show that there exists an exact sequence

of k-vector spaces. For we have

and

To show the existence of (*) we have only to define ç suitably. Since
p(9’ = to(9’, we can identify (9’ with a localization of the subring

0, f e pn} of (9 to. Define t/J: pn ~ O" by 03C8(f) = ~(f/tn0), where
ri : O’ ~ O" is the canonical homomorphism. Then 03C8 induces a k-homo-
morphism 03C8 : pn/mpn ~ O". We define ç to be the composite of 03C8 and
the canonical homomorphism O" ~ (9 "jm"n+ l. It was proved in [6, (3.3),
Proof of Lemma 2] that ç is surjective if k = k’. Also, it is clear from the
definition of ôto(n) that ker ç = bto(n)jmpn. Thus (*) is exact and the

lemma is proved.

PROOF OF LEMMA (2.5): By Lemma (2.4), we already have the

inequality H(0)p ~ H(1+03B4)O" in the case k = k’. The inequality in the general
case can now be proved by a standard inductive procedure used in [1],
[4] and [6]. What we do is the following : Choose an element a E k’ - k.
If 03B4 ~ 1, we assume that a is transcendantal. If 03B4 = 0, we assume that
a is either separable or purely inseparable. Let f(Z) E k[Z] be the
minimal monic polynomial of a over k. (If a is transcendental, we take
f (Z) = 0.) Let f (Z) E (9 [Z] be a monic lift of f(Z) such that, for every
i ~ 0, if the coefficient of Z’ in f(Z) is 0 then the coefficient of Z’ in f (Z)
is also 0. Let  be the localization of O[Z]/f(Z)O[Z] at the prime ideal
n = (m[Z] + f(Z)O[Z])/f(Z)O[Z], where m is the maximal ideal of (9.
Let il: (9 &#x26; be the canonical homomorphism. Let a be a lift of a to O’
and let ’ be the localization of O[Z]/f(Z)O’[Z] at the maximal ideal



27

where m’ is the maximal ideal of U’. Let n’: O’ ~ &#x26;’ be the canonical
homomorphism. Then there exists a commutative diagram

such that

(i)  is a blowing-up of  with center  = p;
(ii) the residue field extension induced by h is the k-inclusion k(03B1) ~ k’.

(See [6, (4.3), (4.6)].) Let  = tr.degk(03B1) k’. If 03B4 ~ 1, then  = 03B4-1. If

03B4 = 0, then [k’: k(03B1)]  [k’: k]. Therefore, by an obvious induction, we
may assume that H(0) ~ H, where" - , mbeingthcmaxima!
ideal of . Now, in order to complete the proof of the lemma, it is clearly
enough to prove the following three statements :
(1) H(0)p = H(0)p.
(2) if  = 03B4 = 0.

PROOF OF (1) : Let  = k(03B1) be the residue field of . For every n ~ 0,
we have H(n) = dim n  = dimk since,  being O-flat,
we have n ~ pn ~O . Now pn ~O  ~ (pn ~O k) (8)k k. Therefore,

PROOF OF (2) AND (3): Let m" be the maximal ideal of (9". Then

Now, if b = b -1, then a is transcendental and f (Z) = 0. Therefore the
equality H(0) = H(1)O" is clear in this case. This proves (3). If b = 0 and a
is separable then 1(Z) being a separable polynomial, O" ~ (9" is etale,
so that in this case we have, in fact, H0 = H Now suppose ô = 0
and a is purely inseparable. Then f (Z) = Zq-03B2, where q is a power
of char k and j8 = aq E k. This implies that f(Z) = Zg - b, where b E (9
is some lift of fi. Let 6 be the canonical image of b in U". Since

O"[Z]/(Zq-b)O"[Z] is already a local ring, we have
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Let à be the canonical image of a in (9" and let t = b - aq. Then t E m".
Let Y = Z-a. Then " = O"[Y]/(Yq-t)O"[Y]. Now, the inequality
 ~ H follows from [6, Lemma (4.5)]. This proves (2).
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