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1

Let f be a polynomial with integer coefficients and at least two
distinct roots. Denote by P [n ] the greatest prime factor of the integer
n. Siegel [12] generalised earlier results of Stf2jrmer, Thue and Pôlya by
proving that P[f(n)] ~ ~ if n ~ ~. This result has been improved to

(1) P[f(n )] » log log n.

Here the constant implied by &#x3E; depends only on f. Nagell, Mahler and
Chowla proved (1) for certain polynomials of the form Ax2 + B,
Ax3 + B. Schinzel [8] proved (1) for all polynomials f of degree 2 by
using Gelfond’s work on a p-adic measure of irrationality of the ratio
of two logarithms of algebraic numbers. It follows from the results of
Keates [4], proved with the help of Baker’s estimate on solutions of the
equation y2 = ax3 + bx2 + cx + d, that (1) holds for all polynomials f of
degree 3. Finally Sprindzuk [13] and Kotov [5] established (1) for all
(irreducible) polynomials f of degree at least 4. Their method makes
use of a p-adic analogue of the inequalities of Baker and Stark on linear
forms in the logarithms of algebraic numbers. (In fact Sprindzuk
proved such a result for binary forms f (x, y)). The inequality (1) has
been applied by Schinzel and the second named author [9] in their

investigations on the diophantine equation ym = f (x ). In this paper, we
give a proof of (1) for all polynomials f. Our proof does not make use of
p-adic techniques. Moreover, we prove the following generalisation.
(We write log2 x for log log x and 1093 X for log log log x.)

* Dedicated to Professor Th. Schneider on his 65th birthday.
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THEOREM 1: Let f(x) be a polynomial of degree n with rational
integer coefficients and at least two distinct zeros. Let B &#x3E; 0. Then for
any natural numbers X(&#x3E; eee ) and Y with

there exists an effectively computable number E &#x3E; 0 depending only on
B and f such that

The type of this theorem seems to be new. Erdôs [2] has given a
lower bound for P [03A0Xi =1 f (i )]. See also Hooley [15]. Several authors gave
lower bounds for P[03A0Yi=1 (X + i)]. See [7, 11]. On applying Theorem 1 to
f(x) = 2x (2x ± 1), we obtain the following

COROLLARY: For all natural numbers X &#x3E; e ee and Y satisfying

we have

where ~1 &#x3E; 0 is a constant depending only on B.

Recently Langevin [6] obtained (3) for fixed Y with El = (8 + 03B4)-1,
8 &#x3E; 0. Erdôs and Shorey [3] have proved (3) for Y« (log2 X)B. For
larger values of Y, this result is an improvement of earlier published
results, see [10].
Theorem 1 is an immediate consequence of the following result.

THEOREM 2: Let f (x) be a polynomial with rational integer coeffi-
cients and at least two distinct roots. Let A &#x3E; 0. Then there exists an

effectively computable number E2 &#x3E; 0 depending only on A and f such
that if

then

where 03C9(Y) denotes the number of distinct prime divisors of Y.

The proof of Theorem 2 depends on an inequality on linear forms in
the logarithms of algebraic numbers. Let n &#x3E; 1 be an integer. Let



189

03B11, . . ., an be non-zero algebraic numbers of heights at most A1, . . ., An,
where each Ai ~ ee. Let 03B21,. . . ,/03B2n-l denote algebraic numbers of

heights at most B (&#x3E; ee ). Suppose that 03B11,..., an and /31,..., /3n-1 all lie
in a field of degree D over rationals. Put

LEMMA: For every E &#x3E; 0, there exists an effectively computable
number C &#x3E; 0 depending only on E such that

either vanishes or exceeds

This is the main theorem of [11]. We have assumed that the

logarithms have their principal values. We remark that the arguments
that we shall use for deriving Theorem 2 from the Lemma are well
known. The crucial point in the Lemma is the explicit and good
dependence of the lower bound on both n and D. The following simple
consequence illustrates the usefulness of such a result. Let a and b be

positive integers, a  b. Put r = w (ab) and p = P (ab ). Then

where C’ &#x3E; 0 is an absolute constant. This result can be compared with
[14, Theorems 1, 3]. The inequality (5) appears to be better with respect
to r.

2. Proof of Theorem 2

Denote the distinct roots of f by 03B11, ..., 03B1d. By the hypothesis of the
theorem, d ~ 2. It is no loss of generality to assume that f is monic.
Indeed, if ao is the leading coefficient of f and N is the degree of f, then
the polynomial g defined by g (aox ) = a0N  f (X) is monic and it suffices to
prove the theorem for g. Also we may assume that X ~ Xo where Xo is
some large positive constant depending only on A and f. Indeed, in doing
so we omit at most Xo values of X and, at the end of the proof, we can
decrease E2 in such a way that the statement of Theorem 2 is also valid
for these finitely many values of X. We suppose that the inequality (4)
and the inequality
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for any E2 with 0  E2  1 are satisfied. We shall arrive at a contradic-

tion for a certain value of E2 depending only on A and f.
We first prove the special case that f has at least two distinct rational

zeros, a 1 and a2 say. Let

Then

Hence

On the other hand, by the Lemma, applied with B = 2 log X, n =
s + t ~ 2m, 039B ~ (log2 X)2Am and E ~ (log2 X)2@ it follows that

where C &#x3E; 1 is a large constant depending only on A and f. Thus

This is false for E2 = (2C)-1. This gives the proof in our special case.
We now turn to the proof of the general case. If f (x ) is reducible,

then it has either two distinct rational roots or an irreducible factor of

degree at least 2. It now suffices to prove the theorem for this

irreducible factor. Hence we may assume, without loss of generality,
that f is irreducible. Denote by K the field generated by 03B11, . . ., 03B1d over

the field of rationals. Let n be the degree of K over the field of
rationals and h the class number of K. Let the prime decomposition of
f (X) be given by

and the prime ideal decomposition of the ideal [X 2014 03B11] in K by

We shall say that a prime ideal p sits over a rational prime p if

p ~ Z = (p ). Here Z denotes the ring of rational integers. If we take the
norm on both sides of equality (8), it follows from (7) that every prime
ideal pj sits over some rational prime pi. Further for every rational

prime pi, there are at most n prime ideals of K that can sit over pi. Thus
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It further follows that

where CI and the subsequent symbols c2, C3, ... denote positive
constants depending only on A and f. From (8), we get the ideal

equation

where u1, . . ., u, are integers of K with [ui,] = ph. Thus we have

where E is a unit of K. Since [ui ] = phi and pi sits over some pj, it

follows from (4) that

We suppose that there are r1 real and 2r2 complex conjugate fields to
K and that they are chosen in the usual manner: if a is in K then a (i) is
real for 1 ~ i ~ ri, and 03B1(i+r2) = 03B1(i) for r1 + 1 ~ i ~ r1 + r2. Put r =

ri + r2 - 1. Let ’YJ 1, ..., qr be a system of fundamental units for K. It is

well known (see Baker [1, p. 39]) that there exist integers v1, . . ., vs of
K which are associates of u1,. . ., Un respectively, and satisfy

We denote the height of vi by H0(vi). Since

we obtain

We have

where E is a unit of K. Put

where d,, ..., dr are integers and p is a root of unity of K. Putting
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we obtain

Hence, we have for j = 1,..., r,

Observe that

Hence, in view of (14), (12), (10) and (9)

It follows that the right hand side of (13) does not exceed

On solving the coefficients from the system of linear equations (13),
the determinant of which is a non zero constant, we obtain

Rewriting the expression for (X - 03B11)h, we have

Similarly, we put

where p’ is a root of unity of K. Further t, e1, . . ., en b;,..., b t and
wl, ..., wt satisfy, respectively, the inequalities corresponding to those
((9), (15), (10), (12)) for s, d1, . . ., dr, b1, ..., bs and Vl, - - ., vs.

Suppose that (X - a1)h = (X - 03B12)h. Since 03B11 ~ a2 (d 2:: 2), we have
h &#x3E; 1 and there exists an integer g with 0  g  h such that

Thus

which is not possible if we take Xo &#x3E; c7. Thus we can assume that
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(X - 03B11)h ~ (X - 03B12)h. From (16) and (17), it follows that

where M with IMI cg(log X)2 is an integer. Here we have taken the
principal branch of the logarithms. By the lemma, applied with B =

C9(10g X)2, n = r + s + t + 2 ~ 3m, 039B ~ (log2 X)3Am and E ~ (1092 X)2,
it follows that the left hand side of the above inequality exceeds

where CI &#x3E; 1 is a large constant depending only on A and f. Thus

This is false for E2 = (2 C1)-1. This completes the proof of Theorem 2.

3. Proof of Theorem 1

We can assume that X 2:: Xo where Xo is a large positive constant
depending only on B and f. Indeed, in doing so we omit a number of
pairs (X, Y) which is bounded in terms of B and f. At the end of the
proof we can decrease E in such a way that the statement of Theorem 1
is also valid for these values of X and Y. Put

If log P [R ] 2’: (log, X)2B, then the theorem follows immediately from
(2). Thus we can assume that

Then

It follows, from Theorem 2, that there exists a constant E3 &#x3E; 0

depending only on B and f such that

Thus

However, for any prime p, a congruence f(x ) = 0(mod p) has at
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most n solutions which are incongruent mod p. Hence,

where c10&#x3E; 0 is an absolute constant. Hence, by (2),

if X ~ Xo. By prime number theory, it follows that

for some positive E = E (B, f ). This completes the proof of Theorem 2.

REMARK: In the same way, one can obtain a slightly more general
result. Let 0  a1  · · ·  aY ~ Z be positive integers where Z «
Y log2 X /(log3 X)3. Then under the conditions of Theorem 1, we have

where E4 &#x3E; 0 is a constant.

REFERENCES

[1] A. BAKER: Transcendental Number Theory, Cambridge University Press (1975).
[2] P. ERDÖS: On the greatest prime factor of 03A0xk=1 f(k). J. London Math. Soc. 27

(1952) 379-384.
[3] P. ERDÖS and T. N. SHOREY: On the greatest prime factor of 2p - 1 for a prime p

and other expressions. (To appear in Acta Arith.).
[4] M. KEATES: On the greatest prime factor of a polynomial. Proc. Edinb. Math. Soc.

(2) 16 (1969) 301-303.
[5] S. V. KOTOV: Greatest prime factor of a polynomial. Mat. Zametki 13 (1973)

515-522; Math. Notes 13 (1973) 313-317.

[6] M. LANGEVIN: Plus grand facteur premier d’entiers consecutifs. C. R. Acad. Sc.
Paris 280A (1975) 1567-1570.

[7] K. RAMACHANDRA and T. N. SHOREY: On gaps between numbers with a large
prime factor. Acta Arith. 24 (1973) 99-111.

[8] A. SCHINZEL: On two theorems of Gelfond and some of their applications. Acta
Arith. 13 (1967) 177-236.



195

[9] A. SCHINZEL and R. TIJDEMAN: On the equation ym = P(x ). (To appear in Acta
Arith.).

[10] T. N. SHOREY: On gaps between numbers with a large prime factor II. Acta Arith.
25 (1974) 365-373.

[11] T. N. SHOREY: On linear forms in the logarithms of algebraic numbers. (To appear
in Acta Arith.).

[12] C. L. SIEGEL: Approximation algebraischer Zahlen. Math. Z. 10 (1921) 173-213.
[13] V. G. SPRIND017DUK: The greatest prime divisor of a binary form. Dokl. Akad. Nauk

BSSR 15 (1971) 389-391.
[14] R. TIJDEMAN: On integers with many small prime factors. Compositio Math. 26

(1973) 319-330.
[15] C. HOOLEY: On the greatest prime factor of quadratic polynomials, Acta Math. 117

(1976) 281-299.

(Oblatum 1-VIII-1975) T. N. Shorey
Tata Institute of Fundamental Research

Bombay-5, India

R. Tijdeman
Mathematical Institute,
R. U. Leiden, Netherlands


