## Compositio Mathematica

S. Kwapień<br>A. PELCZYŃSKi

Some linear topological properties of the hardy spaces $\mathbf{H}^{p}$
Compositio Mathematica, tome 33, no 3 (1976), p. 261-288
[http://www.numdam.org/item?id=CM_1976__33_3_261_0](http://www.numdam.org/item?id=CM_1976__33_3_261_0)
© Foundation Compositio Mathematica, 1976, tous droits réservés.
L'accès aux archives de la revue «Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

## Numdam

# SOME LINEAR TOPOLOGICAL PROPERTIES OF THE HARDY SPACES $H^{p}$ 

S. Kwapień and A. Pelczyński*


#### Abstract

The classical Hardy classes $H^{p}(1 \leq p<\infty)$ regarded as Banach spaces are investigated. It is proved: (1) Every reflexive subspace of $L^{1}$ is isomorphic to a subspace of $H^{1}$. (2) A complemented reflexive subspace of $H^{1}$ is isomorphic to a Hilbert space. (3) Every infinite dimensional subspace of $H^{1}$ which is isomorphic to a Hilbert space contains an infinite dimensional subspace which is complemented in $H^{1}$. The last result is a quantitative generalization of a result of Paley that a sequence of characters satisfying the Hadamard lacunary condition spans in $H^{1}$ a complemented subspace which is isomorphic to a Hilbert space.


## Introduction

The purpose of the present paper is to investigate some linear topological and metric properties of the Banach spaces $H^{p}, 1 \leq p<\infty$ consisting of analytic functions whose boundary values are $p$ absolutely integrable. The study of $H^{p}$ spaces seems to be interesting for a couple of instances: (1) it requires a new technique which combines classical facts on analytic functions with recent deep results on $L^{p}$-spaces; several classical results on the Hardy classes seem to have natural Banach-space interpretation. (2) The spaces $H^{p}$ and the Sobolev spaces are the most natural examples of " $\mathscr{L}_{p}$-scales" essentially different from the scale $L^{p}$.

[^0]Boas [4] has observed that, for $1<p<\infty$, the Banach space $H^{p}$ is isomorphic to $L^{p}$. The situation in the "limit case" of $H^{1}$ is quite different. For instance $H^{1}$ is not isomorphic to any complemented subspace of $L^{1}$, more generally-to any $\mathscr{L}_{1}$-space (cf. [16], Proposition 6.1); $H^{1}$ is a dual of a separable Banach space (cf. [14]) while $L^{1}$ is not embeddable in any separable, dual cf. [23]; in contrast with $L^{1}$, by a result of Paley (cf. [21], [31], [7] p. 104), $H^{1}$ has complemented hilbertian subspaces hence it fails to have the DunfordPettis property.

On the other hand in Section 2 of the present paper we show that every reflexive subspace of $L^{1}$ is isomorphic to a subspace of $H^{1}$. Furthermore an analogue of the profound result of H. P. Rosenthal [27] on the nature of an embedding of a reflexive space in $L^{1}$ is also true for $H^{1}$. This implies that a complemented reflexive subspace of $H^{1}$ is necessarily isomorphic to a Hilbert space. In Section 3 we study hilbertian (= isomorphic to a Hilbert space) subspaces of $\boldsymbol{H}^{1}$. We show that $H^{1}$ contains "very many" complemented hilbertian subspaces. Precisely: every subspace of $H^{1}$ which is isomorphic to $\ell^{2}$ contains an infinite dimensional subspace which is complemented in $H^{1}$. This fact is a quantitative generalization of a result of Paley, mentioned above, on the boundedness in $H^{1}$ of the orthogonal projection from $H^{1}$ onto the closed linear subspace generated by a lacunary sequence of characters.

Section 4 contains some open problems and some results on the behaviour of the Banach-Mazur distance $d\left(H^{p}, L^{p}\right)$ as $p \rightarrow 1$ and as $p \rightarrow \infty$.

## 1. Preliminaries

Let $0<p \leq \infty$. By $L^{p}$ (resp. $L_{R}^{p}$ ) we denote the space of $2 \pi$-periodic complex-valued (resp. real-valued) measurable functions on the real line which are $p$-absolutely integrable with respect to the Lebesgue measure on [ $0,2 \pi$ ] for $0<p<\infty$, and essentially bounded for $p=\infty$. $C_{2 \pi}$ stands for the space of all continuous $2 \pi$-periodic complex-valued functions. We admit

$$
\begin{aligned}
& \|f\|_{p}=\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(t)|^{p} d t \quad \text { for } 0<p<1 \\
& \|f\|_{p}=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(t)|^{p} d t\right)^{1 / p} \quad \text { for } 1 \leq p<\infty, \\
& \|f\|_{\infty}=\underset{0 \leq t \leq 2 \pi}{\operatorname{ess} \sup }|f(t)| .
\end{aligned}
$$

The $n$-th character $\chi_{n}$ is defined by

$$
\chi_{n}(t)=e^{\text {int }} \quad(-\infty<t<+\infty ; n=0, \pm 1, \pm 2, \ldots)
$$

Given $f \in L^{1}$ we put

$$
\begin{aligned}
\hat{f}(n) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) e^{-i n t} d t \quad(n=0, \pm 1, \pm 2, \ldots) \\
f_{0} & =f-\hat{f}(0) \cdot \chi_{0}
\end{aligned}
$$

If $0<p<\infty$, then $H^{p}$ is the closed linear subspace of $L^{p}$ which is generated by the non-negative characters, $\left\{\chi_{n}: n \geq 0\right\}$. We define

$$
H^{\infty}=\left\{f \in L^{\infty}: \hat{f}(n)=0 \quad \text { for all } n<0\right\} .
$$

By $A$ we denote the closed linear subspace of $H^{\infty}$ generated by the non-negative characters. We put $H_{0}^{p}=\left\{f \in H^{p}: \hat{f}(0)=0\right\}$ and $A_{0}=$ $\{f \in A: \hat{f}(0)=0\}$.

Let $f \in H^{p}$. We denote by $\tilde{f}$ a unique analytic function on the unit disc $\{z:|z|<1\}$ such that

$$
\begin{equation*}
\lim _{r=1} \tilde{f}\left(r e^{i t}\right)=f(t) \quad \text { for almost all } t \tag{1.1}
\end{equation*}
$$

For $u \in L_{R}^{1}$ we define $\mathscr{H}(u)=v$ to be the unique real $2 \pi$-periodic function such that for $f=u+i v$ there exists an $\tilde{f}$ analytic on the unit disc satisfying (1.1) and such that $\tilde{f}(0)=2 \pi^{-1} \int_{0}^{2 \pi} u(t) d t$. Recall (cf. [33], Chap. VII and Chap. XII).

Proposition 1.1: (i) $\mathscr{H}$ is a linear operator of weak type $(1,1)$.
(ii) For every $p \in(0,1)$ there exists a constant $\rho_{p}$ such that

$$
\|\mathscr{H}(u)\|_{p} \leq \rho_{p}\|u\|_{1}^{p} \quad \text { for } u \in L_{R}^{1}
$$

(iii) For every $p \in(1, \infty)$ there exists a constant $\rho_{p} \leq C \max (p$, $p /(p-1))$, where $C$ is an absolute constant, such that

$$
\|\mathscr{H}(u)\|_{p} \leq \rho_{p}\|u\|_{p} \quad \text { for } u \in L_{R}^{p}
$$

Next, for $f \in L^{1}$, we define $B(f)$ to be the unique function in $\cap_{0<p<1} H^{p}$ such that

$$
B(f)=\sum_{n \geq 0} \hat{f}(n) \tilde{\chi}_{2 n}+\sum_{n<0} \hat{f}(n) \tilde{\chi}_{-2 n-1}
$$

Let $\mathscr{H}(f)=\mathscr{H}(\operatorname{Re} f)+i \mathscr{H}(\operatorname{Im} f)$ for $f \in L^{1}$. Then

$$
\begin{array}{r}
B(f)(t)=\frac{1}{2}\left\{f_{0}(2 t)+i \mathscr{H}\left(f_{0}\right)(2 t)+\left[f_{0}(-2 t)-i \mathscr{H}\left(f_{0}\right)(-2 t)\right] e^{-i t}\right\}+\hat{f}(0) \\
(-\infty<t<+\infty)
\end{array}
$$

Clearly $B$ is a one to one operator and if $g=B(f)$, then

$$
\begin{aligned}
& f(t)=\frac{1}{2}\left[g\left(\frac{t}{2}\right)+g\left(\frac{t}{2}+\pi\right)+\left(\chi_{1} g\right)\left(-\frac{t}{2}\right)+\left(\chi_{1} g\right)\right.\left.\left(-\frac{t}{2}+\pi\right)\right] \\
&(-\infty<t<+\infty)
\end{aligned}
$$

Combining Proposition 1.1 with the above formulae we get (cf. Boas [4]).

Proposition 1.2: (i) $B$ is a linear operator of weak type $(1,1)$ from $L^{1}$ into $\cap_{0<p<1} H^{p}$
(ii) For every $p \in(0,1)$ there exists a constant $\beta_{p}$ such that

$$
\|B(f)\|_{p} \leq \beta_{p}\|f\|_{1}^{p}
$$

(iii) For every $p \subset(1, \infty) B$ maps isomorphically $L^{p}$ onto $H^{p}$; there exists a constant $\beta_{p} \leq 2 \rho_{p}+3$ such that

$$
\begin{equation*}
2^{-1}\|f\|_{p} \leq\|B(f)\|_{p} \leq \beta_{p}\|f\|_{p} \tag{1.2}
\end{equation*}
$$

A relative of $B$ is the orthogonal projection 2 defined by

$$
\begin{equation*}
2(f)(t)=2^{-1}\left[B(f)+(B(f))^{\pi}\right]\left(\frac{t}{2}\right) \quad \text { for } f \in L^{1} \tag{1.3}
\end{equation*}
$$

$$
-\infty<t<+\infty
$$

where $g^{\pi}(t)=g(t+\pi)$. Clearly, by Proposition $1.2,2\left(L^{1}\right) \subset \cap_{0<p<1} H^{p}$ and, for $1<p<\infty, \mathscr{2}$ regarded as an operator from $L^{p}$ is a projection onto $H^{p}$ with $\|\mathscr{2}\|_{p} \leq\|B\|_{p}$. In fact we have

$$
\mathscr{Q}(f)=\sum_{n \geq 0} \hat{f}(n) \chi_{n} \quad \text { for } f \in L^{p}, 1<p<\infty .
$$

## 2. Reflexive subspaces of $\boldsymbol{H}^{1}$

Proposition 2.1: A reflexive Banach space is isomorphic to a subspace of $H^{1}$ if (and only if) it is isomorphic to a subspace of $L^{1}$.

Proof: By a result of Rosenthal (cf. [27]) every reflexive subspace of $L^{1}$ is isomorphic to a reflexive subspace of $L^{r}$ for some $r$ with $1<r \leq 2$. Therefore it is enough to prove that, for every $r$ with $1<r \leq 2$, the space $L^{r}$ is isomorphic to a subspace of $H^{1}$. It is well known (cf. e.g. [27], p. 354) that, for $r \in[1,2]$, there exists in $\cap_{0<p<r} L^{p}$ a subspace $E_{r}$ which, for every fixed $p \in(0, r)$, regarded as a subspace of $L^{p}$ is isometrically isomorphic to $L^{r}$. Moreover (if $r>1$ ), for every $p_{1}$ and $p_{2}$ with $1 \leq p_{1}<p_{2}<r$, there exists a constant
$\gamma_{p_{1}, p_{2}}$ such that

$$
\begin{equation*}
\|f\|_{p_{1}}=\gamma_{p_{1}, p_{2}}\|f\|_{p_{2}} \quad \text { for } f \in E_{r} . \tag{2.1}
\end{equation*}
$$

Now fix $p_{1}$ and $p_{2}$ with $1<p_{1}<p_{2}<r$. By Proposition 1.2(iii), the operator $B$ embeds isomorphically $E_{r}$ regarded as a subspace of $L^{p_{1}}$ into $H^{p_{1}}$. Clearly we have the set theoretical inclusion $H^{p_{1}} \subset H^{1}$. Thus it suffices to prove that the norm $\|\cdot\|_{1}$ and $\|\cdot\|_{p_{1}}$ are equivalent on $B\left(E_{r}\right)$. By (1.2) and (2.1), for every $g \in B\left(E_{r}\right)$ we have $\|g\|_{p_{2}} \leq k\|g\|_{p_{1}}$ where $k=\gamma_{p_{1}, p_{2}} \cdot 2 \beta_{p_{1}}$. Letting $s=\left(p_{1}-1\right)\left(p_{2}-1\right)^{-1}$, in view of the logarithmic convexity of the function $p \rightarrow\|g\|_{p}^{p}$, we have

$$
\|g\|_{p_{1}}^{p_{1}} \leq\|g\|_{p_{2}}^{s p_{2}}\|g\|_{1}^{1-s} \leq k^{s p_{2}}\|g\|_{p_{1}}^{s p_{2}}\|g\|_{1}^{1-s}
$$

whence

$$
\|g\|_{1} \leq\|g\|_{p_{1}} \leq k^{p_{2} s l 1-s}\|g\|_{1} .
$$

This completes the proof.

REmARK: Using the technique of [15] (cf. also [19]) instead of the logarithmic convexity of the function $p \rightarrow\|\cdot\|_{p}^{p}$ one can show that on $B\left(E_{r}\right)$ all the norms $\|\cdot\|_{p}$ are equivalent for $0<p<r$ (in fact equivalent to the topology of convergence in measure). Hence if $0<p \leq 1$, then $H^{p}$ contains isomorphically every reflexive subspace of $L^{1}$. We do not know any satisfactory description of all Banach subspaces of $\boldsymbol{H}^{p}$ for $0<p<1$.

Our next result provides more information on isomorphic embeddings of reflexive spaces into $H^{1}$. It is a complete analogue of Rosenthal's Theorem on reflexive subspaces of $L^{1}$ (cf. [27]).

Proposition 2.2: Let $X$ be a reflexive subspace of $H^{1}$. Then there exists a $p>1$ such that for every $r$ with $p>r>1$ the natural embedding $j: X \rightarrow H^{1}$ factors through $H^{r}$, i.e. there are bounded linear operators $U: X \rightarrow H^{r}$ and $V: H^{r} \rightarrow H^{1}$ with $V U=j$. Moreover $U$ and $V$ can be chosen to be operators of multiplication by analytic functions.

Proof: By a result of Rosenthal ([27], Theorem 5 and Theorem 9), there exists a $p>1$ such that for every $r$ with $p>r>1$ there exist a $K>0$ and a non-negative function $\varphi$ with $1 / 2 \pi \int_{0}^{2 \pi} \varphi(t) d t=1$ such that

$$
\left(\frac{1}{2 \pi} \int_{0}^{\pi}|x(t)|^{r}[\varphi(t)]^{1-r} d t\right)^{1 / r} \leq K\|x\|_{1} \quad \text { for } x \in X
$$

(In this formula we admit $0 / 0=0$ ). Let us set $\psi=\max (\varphi, 1)$. Let $g$ be the outer function defined by

$$
\tilde{g}(z)=\exp \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{i t}+2}{e^{i t}-2} \log \left[\psi(t) \frac{r-1}{r}\right] d t \quad \text { for }|z|<1
$$

and let

$$
g(t)=\lim _{\rho \rightarrow 1} \tilde{g}\left(\rho e^{i t}\right) \quad \text { for } t \in[0,2 \pi]
$$

Then (cf. [7], Chap. 2) $g \in H^{r /(r-1)},|g(t)|=\psi(t)^{(r-1) / r}$ for $t$ a.e., $|\tilde{g}(z)| \geq 1$ for $|z|<1$ and $g^{-1} \in H^{\infty}$.

Let us set $U(x)=x / g$ for $x \in X$ and $V(f)=g \cdot f$ for $f \in H^{r}$. Since $\|g\|_{r /(r-1)} \leq 2^{(r-1) / r}, V$ maps $H^{r}$ into $H^{1}$ and $\|V\| \leq 2^{(r-1) / r}$. Finally, for every $x \in X$, we have

$$
\begin{aligned}
\|U(x)\|_{r}^{r} & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{x(t)}{g(t)}\right|^{r} d t=\frac{1}{2 \pi} \int_{0}^{2 \pi}|x(t)|^{r}[\psi(t)]^{1-r} d t \\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}|x(t)|^{r}[\varphi(t)]^{1-r} d t \leq K^{r}\|x\|_{1}^{r} .
\end{aligned}
$$

Thus $U(x) \in L^{r}$. Therefore $U(x) \in H^{r}$ because $U(x) \in H^{1}$ being a product of an $x \in H^{1}$ by $g^{-1} \in H^{\infty}$.

Corollary 2.1: A complemented reflexive subspace of $H^{1}$ is isomorphic to a Hilbert space.

Proof: Let $X$ be a complemented reflexive subspace of $H^{1}$. Then, by Proposition 2.2, there exists a $p>1$ such that for every $r$ with $p>r>1$ there are bounded linear operators $U$ and $V$ such that the following diagram is commutative

where $j: X \rightarrow H^{1}$ is the natural inclusion and $P: H^{1} \longrightarrow X$ is a projection. Thus, for every $r \in(1, p), P j=$ the identity operator on $X$ admits a factorization through $H^{r}$. Therefore $X$ is isomorphic to a complemented subspace of $L^{r}$ because, by Proposition 1.2(iii), $H^{r}$ is isomorphic to $L^{r}$. Since this holds for at least two different $r \in(1, p)$, we infer that $X$ is isomorphic to a Hilbert space (cf. [16] and [18]).

Remarks: (1) The following result has been kindly communicated to us by Joel Shapiro.

If $0<p<1$ and if a Banach space $X$ is isomorphic to a complemented subspace of $H^{p}$, then either $X$ is isomorphic to $\ell^{1}$ or $X$ is finite dimensional.

The proof (due to J. Shapiro) uses the result of Duren, Romberg and Shields [8], sections 2 and 3:
(D.R.S) the adjoint of the natural embedding $g \rightarrow \tilde{g}$ of $H^{p}$ into the space $B^{p}$ is an isomorphism between conjugate spaces. Here $B^{p}$ denotes the Banach space of holomorphic functions on the open unit disc with the norm

$$
\|f\|_{B_{p}}=\iint_{x^{2}+y^{2} \leq 1}|f(x+i y)|\left(1-\left(x^{2}+y^{2}\right)^{1 / 2}\right)^{(1 / p)-2} d x d y .
$$

It follows from (D.R.S) that a complemented Banach subspace of $\boldsymbol{H}^{\boldsymbol{p}}$ $(0<p<1)$ is isomorphic to a complemented subspace of $B^{p}$. Next using technique similar to that of [17], Theorem 6.2 (cf. also [31]) one can show that $B^{p}$ is isomorphic to $\ell^{1}$. Now the desired conclusion follows from [22], Theorem 1.

Problem (J. Shapiro). Does $H^{p}(0<p<1)$ actually contain a complemented subspace isomorphic to $\ell^{1}$ ?
(2) Slightly modifying the proof of Proposition 2.2 one can show the following

Proposition 2.2a: Let $1 \leq p_{0}<2$. Let $X$ be a subspace of $H^{p_{0}}$ which does not contain any subspace isomorphic to $\ell^{p_{0}}$. Then there exists a $p \in\left(p_{0}, 2\right)$ such that, for every $r$ with $p_{0}<r<p$ there exists an outer $g \in H^{p_{0} r\left(r-p_{0}\right)^{-1}}$ with $g \neq 0$ such that $j=V U$ where $U: X \rightarrow H^{r}$ and $V: H^{r} \rightarrow H^{p_{0}}$ are operators of multiplication by $1 / g$ and $g$ respectively and $j: X \rightarrow H^{p_{0}}$ denotes the natural inclusion.

The proof imitates the proof of Proposition 2.2; instead of Rosenthal's result we use its generalization due to Maurey (cf. [19], Théorème 8 and Proposition 97).

Our next result is in fact a quantitative version of Proposition 2.2a for hilbertian subspaces.

Proposition 2.3: Let $K \geq 1$ and let $1 \leq p \leq 2$. Let $X$ be a subspace of $H^{p}$ and let $T: \ell^{2} \xrightarrow[\text { onto }]{ } X$ be an isomorphism with $\|T\|\left\|T^{-1}\right\| \leq K$. Then there exists an outer $\varphi \in H^{1}$ such that

$$
\begin{gather*}
|\tilde{\varphi}(z)| \geq 1 \text { for every } z \text { with }|z|<1  \tag{2.2}\\
\frac{1}{2 \pi} \int_{0}^{2 \pi}|\varphi(t)| d t=1  \tag{2.3}\\
\left(\int_{0}^{2 \pi}|f(t)|^{2}|\varphi(t)|^{-(2 / p)+1} d t\right)^{1 / 2} \leq \gamma K\|f\|_{p} \quad \text { for every } f \in X \tag{2.4}
\end{gather*}
$$

where $\gamma$ is an absolute constant, in fact $\gamma \leq 4 / \sqrt{\pi}$.

Proof: A result of Maurey ([19] Théorème 8, 50a, cf. also [20]), applied for the identity inclusion $X \rightarrow L^{p}$, yields the existence of a $g \in L^{r}$ where $1 / r=1 / p-1 / 2$ such that $\|g\|_{r}=1$ and

$$
\begin{equation*}
\left(\frac{1}{\pi} \int_{0}^{2 \pi}\left|\frac{f(t)}{g(t)}\right|^{2} d t\right)^{1 / 2} \leq C\|f\|_{p} \quad \text { for every } f \in X \tag{2.5}
\end{equation*}
$$

where $C$ is the smallest constant such that

$$
\begin{equation*}
\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\sum_{j}\left|f_{j}(t)\right|^{2}\right)^{p / 2} d t\right)^{1 / p} \leq C\left(\sum_{j}\left\|f_{j}\right\|_{p}^{2}\right)^{1 / 2} \tag{2.6}
\end{equation*}
$$

for every finite sequence $\left(f_{j}\right)$ in $X$. A standard application of the integration against the independent standard complex Gaussian variables $\xi_{j}$ gives

$$
\begin{aligned}
\sum_{j}\left\|f_{j}\right\|_{p}^{2} & \geq\left\|T^{-1}\right\|^{-2} \sum_{j}\left\|T^{-1}\left(f_{j}\right)\right\|^{2} \\
& =\left\|T^{-1}\right\|^{-2} \int_{\Omega}\left\|\sum_{j} T^{-1}\left(f_{j}\right) \xi_{j}(s)\right\|^{2} d s \\
& \geq\left(\left\|T^{-1}\right\|\|T\|\right)^{-2} \int_{\Omega}\left\|\sum_{j} f_{j} \xi_{j}(s)\right\|_{p}^{2} d s \\
& \geq K^{-2}\left(\int_{\Omega} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\sum_{j} f_{j}(t) \xi_{j}(s)\right|^{p} d t d s\right)^{2 / p} \\
& =K^{-2} k_{p}^{2}\left[\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\sum_{j}\left|f_{j}(t)\right|^{2}\right)^{p / 2} d t\right]^{2 / p}
\end{aligned}
$$

where $\quad k_{p}=\left(1 / \pi \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}\left(x^{2}+y 2\right)^{p / 2} e^{-\left(x^{2}+y^{2}\right)} d x d y\right)^{1 / p}$. Since $k_{p} \geq k_{1}=$ $\sqrt{\pi} / 2$, one can replace $C$ in (2.5) and in (2.6) by $K / k_{1}=2 K / \sqrt{\pi}$.

Now, by [14], p. 53, there exists an outer function $\varphi \in H^{1}$ satisfying (2.2), (2.3) and such that

$$
\begin{equation*}
|\varphi(t)|=\frac{\max \left(|g(t)|^{r}, 1\right)}{\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \max \left(|g(t)|^{r}, 1\right) d t\right)^{1 / r}} \quad \text { for almost all } t \tag{2.7}
\end{equation*}
$$

It can be easily checked that (2.7) and (2.5) imply (2.4) with $\gamma=2 / k_{1}$.
Our last result in this section gives some information on reflexive subspaces of the quotient $L^{1} / H_{0}^{1}$.

Proposition 2.4: Let $X$ be a reflexive subspace of $L^{1}$ such that $\hat{f}(k)=0$ for $k>0, f \in X$. Then the sum $X+H_{0}^{1}$ is closed, equivalently the restriction of the quotient map $L^{1} \rightarrow L^{1} / H_{0}^{1}$ to $X$ is an isomorphic embedding.

Proof: Let $\mathscr{P}(f)=f-\mathscr{2}(f)$ for $f \in L^{1}$ where 2 is the projection
defined, by (1.3). It follows from Proposition 1.2(ii) that there exists a constant $a>0$ such that

$$
\|\mathscr{P}(f)\|_{1 / 2} \leq a\|f\|_{1}^{1 / 2} \quad \text { for } f \in L^{1} .
$$

On the other hand if $X$ is a reflexive subspace of $L^{1}$, then $X$ contains no subspace isomorphic to $\ell^{1}$. Hence (cf. [15], [19]) the norm topology in $X$ coincides with the topology of convergence in measure, in particular

$$
\left\|f_{n}\right\|_{1} \rightarrow 0 \text { iff }\left\|f_{n}\right\|_{1 / 2} \rightarrow 0 \quad \text { for every sequence }\left(f_{n}\right) \subset X
$$

Thus there exists a constant $b_{X}=b>0$ such that

$$
\|f\|_{1} \leq b\|f\|_{1 / 2}^{2} \quad \text { for } f \in X
$$

Now fix $f \in X$ and $g \in H_{0}^{1}$. Then $\mathscr{P}(g)=0$, and $\mathscr{P}(f)=f$ because $\hat{f}(k)=0$ for $k>0$. Hence

$$
\|f+g\|_{1} \geq a^{2}\|\mathscr{P}(f+g)\|_{1 / 2}^{2}=a^{2}\|\mathscr{P}(f)\|_{1 / 2}^{2}=a^{2}\|f\|_{1 / 2}^{2} \geq \frac{a^{2}}{b}\|f\|_{1} .
$$

Thus the sum $X+H_{0}^{1}$ is closed.
Remark: Proposition 2.4 yields, in particular, the following "classical" result.

If $\left(n_{k}\right)$ is a sequence of negative integers such that the space

$$
\mathscr{X}=\left\{f \in L^{1}: \hat{f}(n)=0 \quad \text { for } n \neq n_{k}(k=1,2, \ldots)\right\}
$$

is isomorphic to $\ell^{2}$ (in particular if $\lim _{k}\left(n_{k+1} / n_{k}\right)>1$ ) then the space $\mathscr{X}+H^{1}$ is closed or equivalently in the "dual language" the operator $A \rightarrow \ell^{2}$ defined by $f \rightarrow\left(\hat{f}\left(-n_{k}\right)\right)$ is a surjection.

## 3. Hilbertian subspaces of $\boldsymbol{H}^{\mathbf{1}}$

The existence of infinite-dimensional complemented hilbertian subspaces of $H^{1}$ follows from the classical result of R.E.A.C. Paley (cf. [21], [29], [7] p. 104, [33], Chap. XII, Theorem 7.8) which yields $(P)$. If $\lim _{k}\left(n_{k+1} / n_{k}\right)>1$, then the closed linear subspace of $H^{1}$ spanned by the sequence of characters $\left(\chi_{n_{k}}\right)_{1 \leq k<\infty}$ is isomorphic to $\ell^{2}$ and complemented in $H^{1}$.

On the other hand there are subspaces of $H^{1}$ spanned by sequences of characters which are isomorphic to $\ell^{2}$ but uncomplemented in $H^{1}$ (cf. Rudin [30] and Rosenthal [26]).

In this section we shall show that, in fact, $H^{1}$ contains "very many" complemented and "very many" uncomplemented hilbertian sub-
spaces not necessarily translation invariant. The situation is similar to that in $L^{p}$ (and therefore $H^{p}$, by Proposition 1.2(iii)) for $1<p<2$ (cf. [25], Theorem 3.1) but not in $L^{1}$ which contains no complemented infinite-dimensional hilbertian subspaces ([13], [22]).

If $\left(x_{n}\right)$ is a sequence of elements of a Banach space $X$ then $\left[x_{n}\right]$ denotes the closed linear subspace of $X$ generated by the $x_{n}$ 's.

Let $1 \leq K<\infty$. Recall that a sequence $\left(x_{n}\right)$ of elements of a Banach space is said to be $K$-equivalent to the unit vector basis of $\ell^{2}$ provided there exist positive constants $a$ and $b$ with $a b=K$ such that

$$
a^{-1}\left(\sum_{n}\left|t_{n}\right|^{2}\right)^{1 / 2} \leq\left\|\sum_{n} t_{n} x_{n}\right\| \leq b\left(\sum_{n}\left|t_{n}\right|^{2}\right)^{1 / 2}
$$

for every finite sequence of scalars $\left(t_{n}\right)$.
Now we are ready to state the main result of the present section
Theorem 3.1: Let $1 \leq K<\infty$. Let $\left(f_{n}\right)_{1 \leq n<\infty}$ be a sequence in $H^{1}$ which is $K$-equivalent to the unit vector basis of $\ell^{2}$. Then, for every $\epsilon>0$, there exists an infinite subsequence $\left(n_{k}\right)$ such that the closed linear subspace $\left[f_{n_{k}}\right]$ spanned by the sequence $\left(f_{n_{k}}\right)$ is complemented in $H^{1}$. Moreover, there exists a projection $P$ from $H^{1}$ onto $\left[f_{n_{k}}\right]$ with $\|P\|<4 K+\epsilon$.

The proof of Theorem 3.1 follows immediately from Propositions $3.1,3.2$ and 3.3 given below. We begin with the following general criterion

Proposition 3.1: Let $X$ be a Banach space with separable conjugate $X^{*}$. Assume that there exists a constant $c=c_{X}$ such that every weakly convergent to zero sequence ( $y_{m}$ ) in $X$ contains an infinite subsequence $\left(y_{m_{k}}\right)$ such that

$$
\begin{equation*}
\left\|\sum t_{k} y_{m_{k}}\right\| \leq c \sup _{m}\left\|y_{m}\right\|\left(\sum\left|t_{k}\right|^{2}\right)^{1 / 2} \tag{3.1}
\end{equation*}
$$

for every finite sequence of scalars $\left(t_{k}\right)$. Then, for every $K \geq 1$ and for every $\epsilon>0$, every sequence $\left(x_{n}^{*}\right)$ in $X^{*}$ which is $K$-equivalent to the unit vector basis of $\ell^{2}$ contains an infinite subsequence $\left(x_{n_{k}}^{*}\right)$ such that the closed linear subspace $\left[x_{n_{k}}^{*}\right]$ admits a projection $P: X^{*} \xrightarrow[\text { onto }]{ }\left[x_{n_{k}}^{*}\right]$ with $\|P\|<2 K c+\epsilon$.

Proof: Define $V: \ell^{2} \rightarrow X^{*}$ by $V\left(\left(t_{n}\right)\right)=\Sigma_{n} t_{n} x_{n}^{*}$ for $\left(t_{n}\right) \in \ell^{2}$. Clearly $V$ is an isomorphic embedding with $\|V\|\left\|V^{-1}\right\| \leq K$ ( $V^{-1}$ acts from $V\left(\ell^{2}\right)$ onto $\ell^{2}$ ). Since $\ell^{2}$ is reflexive, $V$ is weak-star continuous.

Hence there exists an operator $U: X \rightarrow \ell^{2}$ whose adjoint is $V$. It is easy to check that the operator $U$ is defined by $U(x)=\left(x_{n}^{*}(x)\right)_{1 \leq n<\infty}$ for $x \in X$. Since $\left\|U^{*}\left(\left(t_{n}\right)\right)\right\|=\left\|V\left(\left(t_{n}\right)\right)\right\| \geq\left\|V^{-1}\right\|^{-1}\left(\Sigma_{n}\left|t_{n}\right|^{2}\right)^{1 / 2}$ for every $\left(t_{n}\right) \in \ell^{2}$, the operator $U$ is a surjection such that, for every $r>\left\|V^{-1}\right\|$, the set $U(\{x \in X:\|x\| \leq r\})$ contains the unit ball of $\ell^{2}$ (cf. [32] Chap. VII, §5). Hence there exists a sequence ( $x_{s}$ ) in $X$ such that sup $\left\|x_{s}\right\| \leq r$ and $\left(U\left(x_{s}\right)\right)$ is the unit vector basis of $\ell^{2}$, equivalently $x_{n}^{*}\left(x_{s}^{s}\right)^{s}=\delta_{n}^{s}$ for $n, s=1,2, \ldots$. Since $X^{*}$ is separable and $\sup _{s}\left\|x_{s}\right\| \leq r$, there exists an infinite subsequence $\left(x_{s_{q}}\right)$ which is a weak Cauchy sequence. Let us set $y_{m}=x_{s_{2 m}}-x_{s_{2 m-1}}$ for $m=1,2, \ldots$. Clearly the sequence $\left(y_{m}\right)$ tends weakly to zero. Thus the condition imposed on $X$ yields the existence of an infinite subsequence ( $y_{m_{k}}$ ) satisfying (3.1). Let us set $n_{k}=s_{2 m_{k}}$ for $k=1,2, \ldots$ and put

$$
P\left(x^{*}\right)=\sum_{k=1}^{\infty} x^{*}\left(y_{m_{k}}\right) x_{n_{k}}^{*} \quad \text { for } x^{*} \in X^{*}
$$

Clearly we have

$$
\left\|P\left(x^{*}\right)\right\| \leq\|V\|\left(\sum_{k=1}^{\infty}\left|x^{*}\left(y_{m_{k}}\right)\right|^{2}\right)^{1 / 2}
$$

Thus, by (3.1),

$$
\begin{aligned}
\left\|P\left(x^{*}\right)\right\| \leq & \|V\| \sup _{\Sigma\left|t_{k}\right|^{2}=1}\left|\sum_{k=1} x^{*}\left(y_{m_{k}}\right) t_{k}\right| \\
\leq & \|V\|\|x *\| \sup _{\Sigma\left|t_{k}\right|=1}\left\|\sum_{k=1} t_{k} y_{m_{k}}\right\| \\
& c \sup _{k}\left\|y_{m}\right\|\|V\|\left\|x^{*}\right\| .
\end{aligned}
$$

Thus $P$ is a linear operator with $\|P\| \leq 2 c r\|V\|$ (because $\left.\sup _{k}\left\|y_{m_{k}}\right\| \leq 2 \sup _{s}\left\|x_{s}\right\| \leq 2 r\right)$. Letting $r<\left\|V^{-1}\right\|+\epsilon(2 c\|V\|)^{-1}$, we get $\|P\|<2 K+\epsilon$. Since $P\left(x^{*}\right) \in\left[x_{n_{k}}^{*}\right]$ for every $x^{*} \in X^{*}$ and since $P\left(x_{n_{k}}^{*}\right)=x_{n_{k}}^{*}$ for $k=1,2, \ldots$, we infer that $P$ is the desired projection.

Remark: The assertion of Proposition 3.1 remains valid if we replace the assumption of separability of $X^{*}$ by the weaker assumption that $X$ does not contain subspace isomorphic to $\ell^{1}$. To extract a weak Cauchy subsequence from the sequence ( $x_{s}$ ) we apply the result of Rosenthal [28].

To apply Proposition 3.1 we need a description of a predual of $H^{1}$. Our next proposition is known. Its part (ii) is a particular case of the Caratheodory-Fejer Theorem, cf. [1].

Proposition 3.2: (i) The conjugate space of the quotient $C_{2 \pi} / A_{0}$ is isometrically isomorphic to $H^{1}$.
(ii) The space $C_{2 \pi} / A_{0}$ is isometrically isomorphic to a subspace of the space of compact operators on a Hilbert space.

Proof: (i) The desired isometric isomorphism assigns to each $f \in H^{1}$ the linear functional $x_{f}^{*}$ defined by

$$
x_{f}^{*}\left(\left\{g+A_{0}\right\}\right)=\frac{1}{2 \pi} \int_{0}^{\pi} f(t) g(t) d t \quad \text { for the coset }\left\{g+A_{0}\right\} \in C_{2 \pi} / A_{0}
$$

The fact that this map is onto $\left(C_{2 \pi} / A_{0}\right)^{*}$ follows from the F . and M . Riesz Theorem. For details cf. [14], p. 137, the second Theorem.
(ii) To each coset $\left\{f+A_{0}\right\}$ we assign the linear operator $T_{f}: H^{2} \rightarrow H^{2}$ defined by

$$
\left\langle T_{f}(g), h\right\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) g(t) h \overline{(-t) d t} \quad\left(g, h \in H^{2}\right)
$$

Clearly the definition of $T_{f}$ is independent of the choice of a representative in the coset $\left\{f+A_{0}\right\}$. Moreover, for every $f_{1} \in\left\{f+A_{0}\right\}$, we have

$$
\left|\left\langle T_{f}(g), h\right\rangle\right| \leq\left\|f_{1}\right\|_{\infty}\|g\|_{2}\|h\|_{2} \quad\left(g, h \in H^{2}\right)
$$

Thus $\left\|T_{f}\right\| \leq \inf \left\{\left\|f_{1}\right\|_{\infty}: f_{1} \in\left\{f+A_{0}\right\}\right\}=\left\|\left\{f+A_{0}\right\}\right\|$.
Conversely, it follows from part (i) and the Hahn Banach Theorem that there exists a $\varphi \in H^{1}$ with $\|\varphi\|_{1}=1$ such that $1 / 2 \pi \int_{0}^{2 \pi} f(t) \varphi(t) d t=$ $\left\|\left\{f+A_{0}\right\}\right\|$. By the factorization theorem (cf. [14], p. 67), we pick functions $g$ and $h_{1}$ in $H^{2}$ with $g h_{1}=\varphi$ and $\|g\|_{2}=\left\|h_{1}\right\|_{2}=1$ (cf. [14], p. 71), and we define $h \in H^{2}$ by $h(t)=\overline{h_{1}(-t)}$. Then $\left\langle T_{f}(g), h\right\rangle=$ $\left\|\left\{f+A_{0}\right\}\right\|=\left\|\left\{f+A_{0}\right\}\right\|\|g\|_{2}\|h\|_{2}$. Hence $\left\|T_{f}\right\|=\left\|\left\{f+A_{0}\right\}\right\|$. This shows that the map $\left\{f+A_{0}\right\} \rightarrow T_{f}$ is an isometrically isomorphic embedding of $C_{2 \pi} / A_{0}$ into the space of bounded operators on $H^{2}$. Finally observe that each operator $T_{f}$ is compact because the cosets $\left\{\left\{\chi_{-n}+A_{0}\right\}: n=0\right.$, $1,2, \ldots\}$ are linearly dense in $C_{2 \pi} / A_{0}$ (by the Fejer Theorem) and $T_{\chi-n}=\sum_{j=0}^{n}\left\langle\cdot, \chi_{i}\right\rangle \chi_{n-j}$ is an $(n+1)$-dimensional operator $(n=0,1, \ldots)$. This completes the proof.

To complete the proof of Theorem 3.1 it is enough to show that the space $K(\hbar)$ of the compact operators on an infinite-dimensional Hilbert space $\hbar$ (and therefore every subspace of $K(\hbar)$ ) satisfies the assumption of Proposition 3.1. Precisely we have

Proposition 3.3: Let $\hbar$ be an infinite-dimensional Hilbert space. Let $\left(T_{m}\right)$ be a weakly convergent to zero sequence in $K(\hbar)$. Then, for
every $\epsilon>0$, there exists an infinite subsequence $\left(m_{k}\right)$ such that

$$
\left\|\sum_{k} t_{k} T_{m_{k}}\right\| \leq(2+\epsilon) \sup _{m}\left\|T_{m}\right\|\left(\sum\left|t_{k}\right|^{2}\right)^{1 / 2}
$$

for every finite sequence of scalars $\left(t_{k}\right)$.
Proof: The assumption that the sequence ( $T_{m}$ ) converges weakly to zero in $K(\hbar)$ means

$$
\begin{equation*}
\lim _{m}\left\langle T_{m}(x), y\right\rangle=0 \quad \text { for every } x, y \in \hbar . \tag{3.2}
\end{equation*}
$$

Here $\langle\cdot, \cdot\rangle$ denotes the inner product in $\hbar$. Let $\left(e_{\alpha}\right)_{\alpha \in \mathscr{Y}}$ be an orthonormal basis for $\hbar$. Since each $T_{m}$ is compact, the ranges of $T_{m}$ and its adjoint $T_{m}^{*}$ are separable. Hence there exists a countable set $\mathfrak{A}_{0}$ such that $\left\langle T_{m}(x), e_{\alpha}\right\rangle=\left\langle T_{m}^{*}(x), e_{\alpha}\right\rangle=0$ for every $m=1,2, \ldots$ for every $x \in \hbar$ and for every $\alpha \in \mathfrak{A} \backslash \mathfrak{A}_{0}$. Let $j \rightarrow \alpha(j)$ be an enumeration of the elements of $\mathfrak{H}_{0}$. Let furthermore $P_{n}$ denote the orthogonal projection onto the $n$-dimensional subspace generated by the elements $e_{\alpha(1)}$, $e_{\alpha(2)}, \ldots, e_{\alpha(n)}$. Since $\operatorname{dim} P_{n}(\hbar)=n$, it follows from (3.2) that

$$
\begin{equation*}
\lim _{m}\left\|P_{n} T_{m} P_{n}\right\|=0 \quad \text { for } n=1,2, \ldots \tag{3.3}
\end{equation*}
$$

Next the compactness of each $T_{m}$ and the definition of the set $\mathfrak{H}_{0}$ yield

$$
\begin{equation*}
\lim _{n}\left\|T_{m}-P_{n} T_{m} P_{n}\right\|=0 \quad \text { for } m=1,2, \ldots \tag{3.4}
\end{equation*}
$$

Let $\epsilon>0$ be given. Assuming that $\sup _{m}\left\|T_{m}\right\|>0$ we fix a positive sequence $\left(\epsilon_{k}\right)$ with $\left(\sum_{k=1}^{\infty} 4 \epsilon_{k}^{2}\right) \leq \epsilon \sup _{m}\left\|T_{m}\right\|$. Now using (3.3) and (3.4) we define inductively increasing sequences of indices $\left(m_{k}\right)_{k \geq 1}$ and $\left(n_{k}\right)_{k \geq 0}$ with $m_{1}=1$ and $n_{0}=0$ so that (admitting $P_{0}=0$ )

$$
\begin{gather*}
\left\|P_{n_{k-1}} T_{m_{k}} P_{n_{k-1}}\right\| \leq \epsilon_{k} \quad \text { for } k=1,2, \ldots  \tag{3.5}\\
\left\|T_{m_{k}}-P_{n_{k}} T_{m_{k}} P_{n_{k}}\right\| \leq \epsilon_{k} \quad \text { for } k=1,2, \ldots \tag{3.6}
\end{gather*}
$$

Let us put, for $k=1,2, \ldots$,

$$
B_{k}=\left(P_{n_{k}}-P_{n_{k-1}}\right) T_{m_{k}} P_{n_{k}}, \quad C_{k}=P_{n_{k-1}} T_{m_{k}}\left(P_{n_{k}}-P_{n_{k-1}}\right) .
$$

Clearly (3.5) and (3.6) yield

$$
\left\|T_{m_{k}}-B_{k}-C_{k}\right\|=\left\|T_{m_{k}}-P_{n_{k}} T_{m_{k}} P_{n_{k}}+P_{n_{k-1}} T_{m_{k}} P_{n_{k-1}}\right\| \leq 2 \epsilon_{k} .
$$

Let $\left(t_{k}\right)$ be a fixed finite sequence of scalars. Since the projections $P_{n_{k}}-P_{n_{k-1}}(k=1,2, \ldots)$ are orthogonal and mutually disjoint, for every $x \in \hbar$, we have

$$
\begin{aligned}
\left\|\sum t_{k} B_{k}(x)\right\|^{2} & =\left\|\sum t_{k}\left(P_{n_{k}}-P_{n_{k-1}}\right)\left[\left(T_{m_{k}} P_{n_{k}}\right)(x)\right]\right\|^{2} \\
& =\sum\left|t_{k}\right|^{2}\left\|\left(P_{n_{k}}-P_{n_{k-1}}\right)\left[\left(T_{m_{k}} P_{n_{k}}\right)(x)\right]\right\|^{2} \\
& \leq \sum\left|t_{k}\right|^{2}\left\|P_{n_{k}}-\left.P_{n_{k-1}}\right|^{2}\right\| P_{n_{k}}\left\|^{2}\right\| T_{m_{k}}\left\|^{2}\right\| x \|^{2} \\
& \leq \sum\left|t_{k}\right|^{2} \sup _{m}\left\|T_{m}\right\|^{2}\|x\|^{2} .
\end{aligned}
$$

Hence

$$
\left\|\sum t_{k} B_{k}\right\| \leq\left(\sum_{k}\left|t_{k}\right|^{2}\right)^{1 / 2} \sup _{m}\left\|T_{m}\right\| .
$$

Similarly

$$
\begin{aligned}
\left\|\sum_{k} t_{k} C_{k}\right\|=\left\|\sum_{k} \bar{t}_{k} C_{k}^{*}\right\| & =\left\|\sum_{k} \bar{t}_{k}\left(P_{n_{k}}-P_{n_{k-1}}\right) T_{m_{k}}^{*} P_{n_{k-1}}\right\| \\
& \leq\left(\sum_{k}\left|t_{k}\right|^{2}\right)^{1 / 2} \sup _{m}\left\|T_{m}\right\|
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left\|\sum_{k} t_{k} T_{n_{k}}\right\| & \leq \sum_{k}\left|t_{k}\right|\left\|T_{n_{k}}-B_{k}-C_{k}\right\|+\left\|\sum_{k} t_{k} B_{k}\right\|+\left\|\sum_{k} t_{k} C_{k}\right\| \\
& \leq\left(\sum_{k}\left|t_{k}\right|^{1}\right)^{1 / 2}\left(\left(\sum_{k=1}^{\infty} 4 \epsilon_{k}^{2}\right)^{1 / 2}+2 \sup _{m}\left\|T_{m}\right\|\right) \\
& \leq(2+\epsilon) \sup _{m}\left\|T_{m}\right\|\left(\sum_{k}\left|t_{k}\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

This completes the proof of Proposition 3.3 and therefore of Theorem 3.1.

Remarks: (1) Let us sketch a proof of Paley's result ( $P$ ) which uses the technique of the proof of Theorem 3.1.

Assume first that $\left(m_{k}\right)$ is a sequence of positive integers such that

$$
\begin{equation*}
m_{k+1} \geq 2 m_{k} \quad \text { for } k=1,2, \ldots \tag{3.7}
\end{equation*}
$$

Let $T_{m}=T_{\chi-m}$ for $m=0,1, \ldots$ be the compact operator on $H^{2}$ which is the image of the coset $\left\{\chi_{-m}+A_{0}\right\}$ by the isometry $C_{2 \pi} / A_{0} \rightarrow$ $K\left(H^{2}\right)$ defined in the proof of Proposition 3.2(ii). Then $\left\langle T_{m} \chi_{i}, \chi_{k}\right\rangle=0$ for $j+k \neq m$ and $\left\langle T_{m} \chi_{i}, \chi_{k}\right\rangle=1$ for $j+k=m$. Let $P_{m}: H^{2} \xrightarrow[\text { onto }]{ }$ span ( $\chi_{0}, \chi_{1}, \ldots, \chi_{m-1}$ ) be the orthogonal projection. It follows from (3.7) that $P_{m_{k-1}} T_{m_{k}} P_{m_{k-1}}=0$ and $T_{m_{k}}=P_{m_{k}} T_{m_{k}} P_{m_{k}}$ for $k=1,2, \ldots$ (i.e. the sequences $\left(P_{n_{k}}\right)$ and ( $T_{m_{k}}$ ) satisfy (3.5) and (3.6) with $n_{k}=m_{k}$ and $\epsilon_{k}=0$ for all $k$ ). Thus the argument used in the proof of Proposition
3.3 yields

$$
\left\|\sum t_{k} T_{m_{k}}\right\| \leq 2\left(\sum\left|t_{k}\right|^{2}\right)^{1 / 2}
$$

for every finite sequence of scalars $\left(t_{k}\right)$. Obviously $\left(\sum t_{k} T_{m_{k}}\right)\left(\sum \bar{t}_{k} \chi_{m_{k}}\right)=$ $\Sigma_{k}\left|t_{k}\right|^{2}$. Hence

$$
\left\|\sum t_{k} T_{m_{k}}\right\| \geq\left(\sum\left|t_{k}\right|^{2}\right)^{1 / 2} .
$$

Thus the subspace [ $T_{m_{k}}$ ] is isomorphic to $\ell^{2}$. Moreover $Q$ defined by $Q(S)=\Sigma_{k}\left\langle S\left(x_{0}\right), \chi_{m_{k}}\right\rangle T_{m_{k}}$ for $S \in K\left(H^{2}\right)$ is a projection onto [ $T_{m_{k}}$ ] with $\|Q\| \leq 2$. Let us regard $Q$ as an operator from [ $T_{m}$ ] (= the isometric image of $C_{2 \pi} / A_{0}$ ) into itself and let $P$ be the adjoint of $Q$. Then, by Proposition 3.1(ii), $P$ can be regarded as an operator from $H^{1}$ into itself. Obviously $\|P\|=\|Q\| \leq 2$. A direct computation shows that $P$ is the orthogonal projection of $H^{1}$ onto $\left[\chi_{m_{k}}\right.$ ]. To complete the proof of $(P)$ in the general case observe that every lacunary sequence admits a decomposition into a finite number of sequences satisfying (3.7).
(2) A similar argument gives also the following relative result.

Let $\left(f_{n}\right)$ be a sequence in $H^{1}$. Assume that $+\infty>\sup _{n}\left\|f_{n}\right\|_{\infty} \geq$ $\inf _{n}\left\|f_{n}\right\|_{1}>0$ and

$$
\lim _{n} \hat{f}_{n}(j)=0 \quad \text { for every } j=0,1, \ldots
$$

Then there exists an infinite subsequence ( $n_{k}$ ) and a $1 \leq K<\infty$ such that the sequence $\left(f_{n_{k}}\right)$ is $K$-equivalent to the unit vector basis of $\ell^{2}$ and the orthogonal projection from $H^{1}$ onto $\left[f_{n_{k}}\right]$ is a bounded operator.

Our next aim is to give a quantitative generalization of Theorem 3.1 to the case of $H^{p}$ spaces $(1<p \leq 2)$.

Theorem 3.2: Let $1<p \leq 2$ and let $K \geq 1$. Then there exists an absolute constant $c$ (independent of $K$ and $p$ ) such that if $\left(f_{n}\right)$ is a sequence in $H^{p}$ which is $K$-equivalent to the unit vector basis of $\ell^{2}$, then there exists a subsequence $\left(n_{k}\right)$ such that there exists a projection $P$ from $H^{p}$ onto $\left[f_{n_{k}}\right]$-the closed linear span of $\left(f_{n_{k}}\right)$ with $\|P\| \leq c K^{2}$.

Proof: Let $X=\left[f_{n}\right]$. By the assumption, there exists an isomorphism $T: \ell^{2} \xrightarrow[\text { onto }]{ } X$ with $\|T\|\left\|T^{-1}\right\| \leq K$. Hence, by Proposition 2.3, there exists a $\varphi \in H^{1}$ which satisfies an outer (2.2), (2.3), (2.4). Let us set $\|f\|_{\varphi, q}=\left(1 /(2 \pi) \int_{0}^{2 \pi}|f(t)|^{q}|\varphi(t)| d t\right)^{1 / q}$ for $f$ measurable and for $1 \leq q<\infty$. It follows from (2.2) that there exists in the open unit disc a
holomorphic function, say $\tilde{g}$, such that $\tilde{\varphi}=e^{p \bar{\delta}}$. Let us set

$$
\varphi^{-1 / p}(t)=\lim _{r=1} e^{-\bar{\varepsilon}\left(r e e^{i t}\right)} \quad \text { for } t \in[0,2 \pi] .
$$

Since $0 \neq \varphi \in H^{1}$, the limit exists for almost all $t$ and $\varphi^{1 / p}=$ $1 / \varphi^{-1 / p \in H^{p}}$. Furthermore observe that (2.4) is equivalent to

$$
\begin{equation*}
\left\|f_{\varphi^{-1 / p}}\right\|_{\varphi, 2} \leq \gamma K\left\|f_{\varphi^{-1 / p}}\right\|_{\varphi, p} \quad \text { for } f \in X, \tag{3.8}
\end{equation*}
$$

where $\gamma$ is the absolute constant appearing in Proposition 2.2. On the other hand, by the logarithmic convexity of the function $q \rightarrow\left\|f \varphi^{-1 / p}\right\|_{q}^{q}$, we get

$$
\left\|f \varphi^{-1 / p}\right\|_{\varphi, p} \leq\left\|f \varphi^{-1 / p}\right\|_{\varphi, 1}^{(2 / p)-1}\left\|f \varphi^{-1 / p}\right\|_{\varphi, 2}^{2-(2 / p)} \quad \text { for } f \in X
$$

Thus

$$
\begin{equation*}
\left\|f \varphi^{-1 / p}\right\|_{\varphi, p} \leq(\gamma K)^{(2 p-2) /(2-p)}\left\|f \varphi^{-1 / p}\right\|_{\varphi, 1} \quad \text { for } f \in X . \tag{3.9}
\end{equation*}
$$

Now, let $H_{\varphi}^{1}$ denote the Banach space being the completion of the trigonometric polynomials $\Sigma_{n \geq 0} c_{n} \chi_{n}$ in the norm $\|\cdot\|_{1, \varphi}$. It easily follows from (2.2) and (2.3) that $H_{q}^{1}$ is isometrically isomorphic to $H^{1}$. The desired isometry is defined by $f \rightarrow f \varphi$ for $f \in H_{\varphi}^{1}$. Next (3.9) and the obvious relation

$$
\|f\|_{p}=\left\|f \varphi^{-1 / p}\right\|_{\varphi, p} \geq\left\|f \varphi^{-1 / p}\right\|_{\varphi, 1} \quad \text { for } f \in H^{p}
$$

imply that the sequence $\left(f_{n} \varphi^{-1 / p}\right)$ belongs to $H_{\varphi}^{1}$ and in $H_{\varphi}^{1}$ is $K^{(2 p-2) /(2-p)+1} \gamma^{(2 p-2) /(2-p)}$-equivalent to the unit vector basis of $\ell^{2}$. Hence, by Theorem 3.1 which we apply to $H_{\varphi}^{1}$-the isometric image of $H^{1}$, there exists a subsequence $\left(n_{k}\right)$ and a projection

$$
Q: H_{\varphi}^{1} \xrightarrow[\text { onto }]{ }\left[f_{n_{k}} \varphi^{-1 / p}\right] \text { with }\|Q\| \leq 5 \gamma^{(2 p-2) /(2-p)} K^{p /(2-p)} .
$$

Let us set

$$
P(f)=\varphi^{1 / p} Q\left(f \varphi^{-1 / p}\right) \quad \text { for } f \in H^{p} .
$$

To see that $P$ is well defined observe first that if $f \in H^{p}$, then, by the Hölder inequality and by (2.3),

$$
\left\|f \varphi^{-1 / p}\right\|_{\varphi, 1}=\left\|f|\varphi|^{(p-1) / p}\right\|_{1} \leq\|f\|_{p}\|\varphi\|_{1}^{(p-1) / p}=\|f\|_{p} .
$$

Thus, by (3.9), for every $f \in H^{p}$, we have

$$
\begin{aligned}
\|P(f)\|_{p} & =\left\|\varphi^{1 / p} Q\left(f \varphi^{-1 / p}\right)\right\|_{p}=\left\|Q\left(f_{\varphi}^{-1 / p}\right)\right\|_{\varphi, p} \\
& \leq(\gamma K)^{(2 p-2) /(2-p)}\left\|Q\left(f \varphi^{-1 / p}\right)\right\|_{\varphi, 1} \\
& \leq 5\left[\gamma^{(2 p-2) /(2-p)}\right]^{2} K^{(3 p-2) /(2-p)}\left\|f_{\varphi}{ }^{-1 / p}\right\|_{\varphi, 1} \\
& \leq 5 \gamma^{(4 p-4) /(2-p)} K^{(3 p-2) /(2-p)}\|f\|_{p .}
\end{aligned}
$$

Thus $P$ is bounded. Obviously $P\left(H^{p}\right) \subset X$ and $P(f)=f$ for $f \in\left[f_{n_{k}}\right]$. Hence $P$ is a projection. Now, for $p \leq \frac{6}{5}$ we get (remembering that $\gamma \geq 1$ and $K \geq 1$ )

$$
\|P\| \leq 5 \gamma^{(4 p-4) /(2-p)} K^{(3 p-2) /(2-p)} \leq 5 \gamma K^{2} .
$$

If $p>\frac{6}{5}$, then an inspection of the proof of Proposition 2.1 shows that there exists an isomorphism $T$ from $L^{p}$ onto a subspace of $H^{1}$ with $\|T\|\left\|T^{-1}\right\| \leq k=\gamma_{11 / 10,6 / 5} \cdot 2 \beta_{11 / 10}$ (we put in (2.1) and further $p_{2}=\frac{6}{5}$, $p_{1}=\frac{11}{10}$ ). Thus, by Theorem 3.1, we infer that every sequence in $L^{p}$ ( $p>\frac{6}{5}$ ) (particularly in $H^{p}$ ) which is $K$-equivalent to the unit vector basis of $\ell^{2}$ contains an infinite subsequence whose closed linear span is the range of a projection from $L^{p}$ of norm $\leq 5 k \cdot K$. This completes the proof.

Corollary 3.1: There exists an absolute constant $c \geq 1$ such that, for $1 \leq p \leq 2$, every infinite-dimensional hilbertian subspace of $H^{p}$ contains an infinite dimensional subspace which is the range of a projection from $H^{p}$ of norm $\leq c$ and which is a range of an isomorphism from $\ell^{2}$, say $T$, with $\|T\|\left\|T^{-1}\right\| \leq c$.

Proof: Combine Theorems 3.1 and 3.2 with the recent result of Dacunha-Castelle and Krivine [5] from which, in particular, follows that every infinite-dimensional hilbertian subspace of $L^{p}$ contains, for every $\epsilon>0$, a subspace which is $(1+\epsilon)$-isomorphic to $\ell^{2}$.

Since the argument of Dacunha-Castelle and Krivine is quite involved, to make the paper self contained we include a proof of a slightly weaker Proposition 3.4 (which suffices for the proof of Corollary 3.1). This result and the argument below is due to H. P. Rosenthal ${ }^{1}$ and is published here with his permission.

Proposition 3.4: There exists an absolute constant $c$ such that every infinite-dimensional hilbertian subspace $X$ of $L^{p}(1 \leq p \leq 2)$ contains an infinite dimensional subspace $E$ such that there exists an isomorphism $T: \ell^{2} \xrightarrow[\text { onto }]{ } E$ with $\|T\|\left\|T^{-1}\right\| \leq c$.

Proof: Since $L^{p}$ is isometrically isomorphic to a subspace of $L^{1}$ $(1<p \leq 2)$, it is enough to consider the case $p=1$. For $X \subset L^{1}$ and $X$

[^1]isomorphic to $\ell^{2}$ we put
\[

$$
\begin{aligned}
d\left(X, \ell^{2}\right) & =\inf \left\{\|S\|\left\|S^{-1}\right\|: S: \ell^{2} \xrightarrow[\text { onto }]{ } X \text { isomorphism }\right\} \\
I_{2}(X) & =\inf \left\{\sup _{x \in X,\|x\|_{1}=1}\|T(x)\|_{2}: T: L^{1} \xrightarrow[\text { onto }]{ } L^{1} \text { positive isometry }\right\} . \\
\tilde{I}_{2}(X) & =\inf \left\{I_{2}(Y): Y \subset X, \operatorname{dim} X / Y<\infty\right\} .
\end{aligned}
$$
\]

Recall that, for the complex $L^{1}$, if $Z \subset L^{1}$ and $Z$ is isomorphic to $\ell^{2}$, then

$$
\begin{equation*}
I_{2}(Z) \leq \frac{2}{\sqrt{\pi}} d\left(Z, \ell^{2}\right) \tag{3.10}
\end{equation*}
$$

(This is a result of Grothendieck [12], cf. also Rosenthal [27]. It can be easily deduced from a result of Maurey [20], cf. the proof of our Proposition 2.3). Clearly

$$
I_{2}(Z)=\inf \left\{\sup _{x \in Z:\|x\|_{1}=1}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|x(t)|^{2} g^{-1}(t) d t\right)^{1 / 2}: g>0,\|g\|_{1}=1\right\} .
$$

Now fix $X$ isomorphic to $\ell^{2}$ and pick $Y \subset X$ with $\operatorname{dim} X / Y<\infty$ so that $I_{2}(Y)<2 \tilde{I}_{2}(X)$. Replacing, if necessary $X$ by $T(X)$ for an appropriate positive isometry $T$ (depending only on $Y$ but not on subspaces of $Y$ of finite codimension), one may assume without loss of generality that

$$
\begin{array}{r}
I_{2}(Z)=\sup _{y \in Z:\|y\|_{1}=1}\|y\|_{2}<2 \tilde{I}_{2}(X) \text { for every } Z \subset Y  \tag{3.11}\\
\\
\quad \text { with } \operatorname{dim} Y \mid Z<\infty .
\end{array}
$$

We claim that (3.11) implies
(3.12) for every $Z \subset Y$ with $\operatorname{dim} Y / Z<\infty$ there exists a $y \in Z$ such that

$$
1=\|y\|_{1} \leq\|y\|_{2}<\frac{4}{\sqrt{\pi}}
$$

Indeed, let $m=\inf \left\{\|y\|_{2}: y \in Z\right.$ and $\left.\|y\|_{1}=1\right\}$. Then, by (3.11), $m\|y\|_{1} \leq$ $\|y\|_{2}<2 \tilde{I}_{2}(X)\|y\|_{1}$ for every $y \in Z$. Thus

$$
\frac{2 \tilde{I}_{2}(X)}{m}>d\left(Z, \ell^{2}\right)
$$

Hence, by (3.10),

$$
\frac{2 \tilde{I}_{2}(X)}{m}>\frac{\sqrt{\pi}}{2} I_{2}(Z) \geq \frac{\sqrt{\pi}}{2} \tilde{I}_{2}(X)
$$

Hence $m<4 / \sqrt{\pi}$ and this proves (3.12).
Let $\left(h_{j}\right)$ denote the Haar orthonormal basis. It follows from (3.12)
that one can define inductively a sequence $\left(y_{n}\right)$ in $Y$ so that, for all $n$,

$$
1=\left\|y_{n}\right\|_{2} \geq\left\|y_{n}\right\|_{1}>\frac{\sqrt{\pi}}{4}
$$

$y_{n}$ is orthogonal to $y_{1}, y_{2}, \ldots, y_{n-1}$ and $h_{1}, h_{2}, \ldots, h_{n-1}$.
By a result of [2], passing again to a subsequence (if necessary) we may also assume that $\left(y_{n}\right)$ is equivalent to a block basic sequence with respect to the Haar basis regarded as a basis in $L^{3 / 2}$. Now using the Orlicz inequality (cf. e.g. [25], p. 283), for arbitrary finite sequence of scalars $\left(t_{n}\right)$ we get

$$
\begin{aligned}
& \left\|\sum t_{n} y_{n}\right\|_{2} \geq\left\|\sum t_{n} y_{n}\right\|_{3 / 2} \geq a\left(\sum\left|t_{n}\right|^{2}\left\|y_{n}\right\|^{2}\right)^{1 / 2} \\
& \quad \geq a\left(\sum\left|t_{n}\right|^{2}\left\|y_{n}\right\|_{1}^{2}\right)^{1 / 2} \geq \frac{a \sqrt{\pi}}{4}\left(\sum\left|t_{n}\right|^{2}\right)^{1 / 2} \\
& \quad=\frac{a \sqrt{\pi} \pi}{4}\left\|\sum t_{n} y_{n}\right\|_{2} .
\end{aligned}
$$

where $a$ is an absolute constant depending only on the unconditional constant of the Haar basis in $L^{3 / 2}$ and the constant in the Orlicz inequality for $L^{3 / 2}$. Thus, for every $f \in \operatorname{span}\left(y_{n}\right)$,

$$
\|f\|_{2} \geq\|f\|_{3 / 2} \geq \frac{a \sqrt{\pi}}{4}\|f\|_{2}
$$

Hence by the logarithmic convexity of the function $r \rightarrow\|f\|_{r}^{r}$

$$
\|f\|_{2} \geq\|f\|_{1} \geq\left(\frac{a \sqrt{\pi}}{4}\right)^{3}\|f\|_{2} \quad \text { for } f \in \operatorname{span}\left(y_{n}\right)
$$

Thus the same inequality holds for $f \in\left[y_{n}\right]$. Therefore $\left[y_{n}\right]$ is a subspace of $X$ with $d\left(\left[y_{n}\right], \ell^{2}\right) \leq(4 /(a \sqrt{\pi}))^{3}$. This completes the proof.

It is interesting to compare Corollary 2.1 with the following fact

Proposition 3.5: Let $1 \leq p<2$, let $Y$ be a hilbertian subspace of $H^{p}$. Then there exists a non complemented hilbertian subspace $X$ of $H^{1}$ which contains $Y$.

Proof: Observe first that there exists a non complemented hilbertian subspace of $H^{p}(1 \leq p<2)$. This follows from Proposition 1.2 (iii) and from the corresponding fact for $L^{p}(1<p<2)$ (If $1<p \leq \frac{4}{3}$ then, by an observation of Rosenthal [26], p. 52, a result of Rudin [30] yields the existence of a non-complemented hilbertian subspace. If $\frac{4}{3}<p<2$, then the same fact for $L^{p}$ was very recently observed by several mathematicians (cf. Bennet, Dor, Goodman, Johnson and

Newman [9]), finally $H^{1}$ contains an uncomplemented hilbertian subspace because, by Proposition $2.1, H^{1}$ contains $H^{p}$ isomorphically for $2>p>1$.

Now Proposition 3.5 is an immediate consequence of the following general fact

Proposition 3.6: If a Banach space $Z$ contains a non complemented hilbertian subspace, say $E$, then every hilbertian subspace of $Z$ is contained in a non complemented hilbertian subspace.

Proof: Let $Y$ be a hilbertian subspace of $Z$. If $Y$ is finite dimensional, then the desired subspace is $Y+E$. If $Y$ is uncomplemented then there is nothing to prove. In the sequel suppose that $Y$ is infinite dimensional and that there exists a projection $P: Z \xrightarrow[\text { onto }]{ } Y$. Let $E_{1}$ denote any subspace of $E$ with $\operatorname{dim} E / E_{1}<\infty$. Let $P_{E_{1}}$ denote the restriction of $P$ to $E_{1}$. If $P_{E_{1}}$ were an isomorphic embedding, then the formula $S Q P$ would define a projection from $Z$ onto $E_{1}$ where $Q$ is a projection from a hilbertian subspace $Y$ onto its closed subspace $P_{E_{1}}\left(E_{1}\right)$ and $S: P_{E_{1}}\left(E_{1}\right) \rightarrow E_{1}$-the inverse of $P_{E_{1}}$. Since $E$ is uncomplemented in $Z$, so is $E_{1}$. Hence the restriction of $P$ to no subspace of $E$ of finite codimension is an isomorphism. Combining this fact with the standard gliding hump procedure and the block homogeneity of the unit vector basis in $\ell^{2}$ (cf. [2]) we define a sequence $\left(e_{n}\right)$ in $E$ which is equivalent to the unit vector basis of $\ell^{2}$ and satisfies the condition $\left\|P\left(e_{n}\right)\right\|<2^{-n}\left\|e_{n}\right\|$ for $n=1,2, \ldots$. This implies that, for some $n_{0}$, the perturbed sequence $\left(e_{n}-P\left(e_{n}\right)\right)_{n>n_{0}}$ is equivalent to the unit vector basis of $\ell^{2}$; hence the space $F=\left[e_{n}-P\left(e_{n}\right)\right] \subset$ ker $P$ is hilbertian. If $F$ is not complemented in $Z$, then the desired subspace is $F+Y$. If $F$ is complemented in $Z$ and therefore in ker $P$, then the standard decomposition method (cf. [22]) yields that ker $P$ is isomorphic to $Z$. Thus ker $P$ contains a non complemented hilbertian subspace, say $F_{1}$. The desired subspace can be defined now as $F_{1}+Y$.

A modification of the above argument gives

Proposition 3.7: Let $Z$ be a separable Banach space such that (i) there exists a non complemented hilbertian subspace of $Z$, (ii) every infinite dimensional hilbertian subspace of $Z$ contains an infinite dimensional subspace which is complemented in $Z$. Then
${ }^{(*)}$ given infinite dimensional complemented hilbertian subspaces of $Z$, say $Y_{1}$ and $Y_{2}$, there exists an isomorphism of $Z$ onto itself which carries $Y_{1}$ onto $Y_{2}$.

In particular $H^{p}$ satisfies $\left(^{*}\right)$ for $1 \leq p<2$.

Proof: Let $P_{j}$ be a projection from $Z$ onto $Y_{j}(j=1,2)$. Using (i) we construct similarly as in the proof of Proposition 3.6 subspaces $F_{j}$ of $\operatorname{ker} P_{j}$ which are isomorphic to $\ell^{2}$. By (ii) we may assume without loss of generality that $F_{j}$ are complemented in $Z$ and therefore in $\operatorname{ker} P_{j}(j=1,2)$. Now the decomposition technique gives that $\operatorname{ker} P_{j}$ is isomorphic to $Z$ for $j=1,2$. This allows to construct an isomorphism of $Z$ onto itself which carries $\operatorname{ker} P_{1}$ onto $\operatorname{ker} P_{2}$ and $P_{1}(Z)$ onto $P_{2}(Z)$.

## 4. Remarks and open problems

We begin this section with a discussion of the behavior of the Banach Mazur distances $d\left(L^{p}, H^{p}\right), d\left(L^{p}, L^{p} / H_{0}^{p}\right), d\left(H^{p}, L^{p} / H_{0}^{p}\right)$ for $p \rightarrow \infty$ and for $p \rightarrow 1$.

Recall that if $X$ and $Y$ are isomorphic Banach spaces, then $d(X, Y)=\inf \left\{\|T\|\left\|T^{-1}\right\|: T: X \xrightarrow[\text { onto }]{ } Y, T\right.$ - isomorphism $\} ;$ if $X$ and $Y$ are not isomorphic, then $d(X, Y)=\infty$. Let $p^{*}=p(p-1)^{-1}$. Then

$$
\left(H^{p}\right)^{\perp}=\left\{f \in L^{p^{*}}: \int_{0}^{2 \pi} f(t) g(t) d t=0 \text { for } g \in H^{p}\right\}=H_{0}^{p^{*}}
$$

Hence the map $\left\{f+H_{0}^{p^{*}}\right\} \rightarrow x_{f}^{*}$ where $x_{f}^{*}(g)=1 /(2 \pi) \int_{0}^{2 \pi} f(t) g(t) d t$ for $g \in H^{p}$ is a natural isometric isomorphism from $L^{p^{*}} / H_{0}^{p^{*}}$ onto the conjugate ( $\left.H^{p}\right)^{*}$. Thus, for $1<p<\infty$,

$$
\begin{equation*}
d\left(L^{p}, H^{p}\right)=d\left(L^{p^{*}}, L^{p^{*}} / H_{0}^{p^{*}}\right) ; d\left(H^{p}, L^{p} / H_{0}^{p}\right)=d\left(H^{p^{*}}, L^{p^{*}} / H_{0}^{p^{*}}\right) . \tag{4.1}
\end{equation*}
$$

The formulae (4.1) allow us to restrict our attention to the case where $p \rightarrow 1$. In the sequel we assume that $1 \leq p \leq 2$.

The results enlisted in section 1 give upper estimates for the distances in question. We have

Proposition 4.1: There exists an absolute constant $K$ such that

$$
\max \left(d\left(L^{p}, H^{p}\right), d\left(L^{p}, L^{p} / H_{0}^{p}\right), d\left(H^{p}, L^{p} / H_{0}^{p}\right)\right) \leq K \frac{p}{p-1}(1<p \leq 2)
$$

Proof: By Proposition 1.1(iii) and 1.2(iii), $d\left(L^{p}, H^{p}\right) \leq K(p / p-1)$
and $\quad d\left(L^{p^{*}}, H^{p^{*}}\right) \leq K p^{*}=K p /(p-1)$. Hence, by (4.1), $d\left(L^{p}, L^{p} / H_{0}^{p}\right) \leq K p /(p-1)$. Let $\bar{H}^{p}=f \in L^{p}: \bar{f} \in H^{p}$ and let $V$ denote the restriction to $\bar{H}^{p}$ of the quotient map $L^{p} \rightarrow L^{p} / H_{0}^{p}$. Clearly
$\|V(f)\|_{L^{p} / H_{0}{ }^{p}} \leq\|f\|_{p}$ for $f \in \bar{H}^{p}$. Since $Q(\bar{g})$ for $g \in H_{0}^{p}$ (cf. section 1 for the definition of $Q$ ), we have, for $f \in \bar{H}^{p}$ and $g \in H_{0}^{p},\|f\|_{p}=\|\bar{f}\|_{p}=$ $\|Q(\bar{f})\|_{p}=\|Q(\overline{f-g})\|_{p} \leq\|Q\|_{p}\|f-g\|_{p}$. Thus $\quad\|V(f)\|_{L^{p} / H_{0}{ }^{p}}=$ $\inf _{g \in H_{0}{ }^{p}}\|f-g\|_{p} \geq\|Q\|_{p}^{-1}\|f\|_{p}$ for $f \in \bar{H}^{p}$. Therefore the range of $V$ is closed in $L^{p} / H_{0}^{p}$ and since $\bar{H}^{p}+H_{0}^{p}$ is dense in $L^{p}, V\left(\bar{H}^{p}\right)$ maps $\bar{H}^{p}$ onto $L^{p} / H_{0}^{p}$. Since $\bar{H}^{p} \cap H_{0}^{p}=\{0\}$, we infer that $V$ is one to one. Thus $d\left(\bar{H}^{p}, L^{p} / H_{0}^{p}\right) \leq\|V\|\left\|V^{-1}\right\| \leq\|Q\|_{p} \leq\|B\|_{p} \leq K p /(p-1)$. To complete the proof observe that $\bar{H}^{p}$ is isometrically isomorphic to $H^{p}$ via the map $f \rightarrow f^{*}$ where $f^{*}(t)=f(-t)$.

Problem 4.1: Does there exist an absolute constant $k>0$ such that, for $1<p<2$,

$$
\min \left(d\left(L^{p}, H^{p}\right), d\left(L^{p}, L^{p} / H_{0}^{p}\right), d\left(H^{p}, L^{p} / H_{0}^{p}\right)\right)>k \frac{p}{p-1} .
$$

We are able to prove only
Proposition 4.2: There exists an absolute constant $k>0$ such that
(a) $d\left(L^{p}, H^{p}\right) \geq k \sqrt{\frac{p}{p-1}} \quad(1<p \leq 2)$,
(b) $d\left(H^{p}, L^{p} / H_{0}^{p}\right) \geq k \sqrt{\frac{p}{p-1}} \quad(1<p \leq 2)$,
(c) $\lim _{p=1} d\left(L^{p}, L^{p} / H_{0}^{p}\right)=\infty$.

Proof: (a) is an immediate consequence of the following stronger result.
( $a^{\prime}$ ) There exists an absolute constant $k>0$ such that if $X$ is a subspace of $H^{p}(1<p \leq 2)$, if $X$ contains a subspace isomorphic to $\ell^{2}$, and if $X \xrightarrow{s} L^{p} \xrightarrow{T} X$ is a factorization of identity (i.e. $T S=$ the identity on $X$ ), then $\|T\|\|S\| \geq k \sqrt{p /(p-1)}$.

Proof Applying Corollary 3.1: we can choose a subspace $E \subset X$ an isomorphism $U: E \xrightarrow[\text { onto }]{ } \ell^{2}$ and a projection $P: X \xrightarrow{\text { onto }} E$ so that $\|U\|\left\|U^{-1}\right\| \leq c$ and $\|P\| \leq c$ where $c$ is an absolute constant. Let $S_{1}=S U^{-1}$ and $T_{1}=U P T$. Then $\ell^{2} \xrightarrow{S_{1}} L^{p} \xrightarrow{T_{1}} \ell^{2}$ is a factorization of identity with $\left\|S_{1}\right\|\left\|T_{1}\right\| \leq\|S\|\| \| T \| \cdot c^{2}$. Now the desired conclusion follows from a result of Gordon, Lewis and Retherford [11], Remark (1) to Corollary 5.7 which asserts that there exists an absolute constant $k_{1}$ such that if $\ell^{2} \xrightarrow{s_{1}} L^{p} \xrightarrow{T_{1}} \ell^{2}$ is any factorization of identity, then $\left\|T_{1}\right\|\left\|S_{1}\right\| \geq k_{1} \sqrt{p /(p-1)}(1<p \leq 2)$. This completes the proof of ( $\mathrm{a}^{\prime}$ ).
(b) is an immediate consequence of a slightly stronger result.
( $b^{\prime}$ ) There exists an absolute constant $k>0$ such that if $U$ is an isomorphism from $L^{p} / H_{0}^{p}$ onto a subspace $X$ of $H^{p}(1<p \leq 2)$ then $\|U\|\left\|U^{-1}\right\| \geq k \sqrt{p /(p-1)}$.

Proof: Let $X_{p}$ denote the closed linear subspace of $L^{p}(1<p \leq 2)$ generated by the sequence $\left(\chi_{-2^{k}}\right)$. Let $I_{p}: L^{p} \rightarrow L^{1}$ and $j_{p}: L^{p} / H_{0}^{p} \rightarrow$ $L^{1} / H_{0}^{p}$ denote natural embeddings (i.e. $\left.j_{p}\left(\left\{f+H_{0}^{p}\right\}\right)=\left\{f+H_{0}^{1}\right\}\right)$ and let $q_{p}: L^{p} \rightarrow L^{p} / H_{0}^{1}$ denote the quotient map. Clearly $\left\|q_{p}\right\| \leq 1$ and, we have $j_{p} q_{p}=q_{1} I_{p}$. A direct computation shows that $\|f\|_{4} \leq 2^{1 / 4}\|f\|_{2}$ for $f \in X_{2}$. Thus the logarithmic convexity of the function $p \rightarrow\|f\|_{p}$ yields

$$
\|f\|_{2} \geq\|f\|_{p} \geq\|f\|_{1} \geq 2^{-1 / 2}\|f\|_{2} \quad \text { for } f \in X_{p}
$$

It follows from the above inequality and from the proof of Proposition 2.4 that the operator $V_{p}$-the restriction of $q_{p}$ to $X_{p}$ is invertible and $\left\|V_{p}^{-1}\right\| \leq c$ where $c$ is an absolute constant independent of $p$. Since $X_{p}$ is isomorphic to $\ell^{2}$, so is $U V_{p}\left(X_{p}\right)$. Hence, by Corollary 3.1, there exist a subspace $E$ of $U V_{p}\left(X_{p}\right)$ an isomorphism $T: E \xrightarrow[\text { onto }]{ } \ell^{2}$ and a projection $P: X \longrightarrow$ onto $E$ with $\|T\|\left\|T^{-1}\right\| \leq c_{1}$ and $\|P\| \leq c_{1}$ where $c_{1}$ is an absolute constant. Now we consider the factorization of identity.
$\ell^{2} \xrightarrow{T^{-1}} E \xrightarrow{U^{-1}} V_{p}\left(X_{p}\right) \xrightarrow{V_{p}^{-1}} L^{p} \xrightarrow{a_{p}} L^{p} / H_{0}^{p} \xrightarrow{U} X \xrightarrow{P} E \xrightarrow{T} \ell^{2}$
By a result of [11], Remark (1) to Corollary 5.7, there exists an absolute constant $k_{1}>0$ such that

$$
\begin{aligned}
k_{1} \sqrt{\frac{p}{p-1}} & \leq\left\|V_{p}^{-1} U^{-1} T^{-1}\right\|\left\|T P U q_{p}\right\| \\
& \leq\|T\|\left\|T^{-1}\right\|\left\|V_{p}^{-1}\right\|\left\|q_{p}\right\|\|P\|\|U\|\left\|U^{-1}\right\| \\
& \leq c_{1}^{2} c\|U\|\left\|U^{-1}\right\|
\end{aligned}
$$

Thus $\|U\|\left\|U^{-1}\right\| \geq k \sqrt{(p / p-1)}$ for $k=k_{1} c_{1}^{-2} c^{-1}$. This completes the proof of ( $\mathrm{b}^{\prime}$ ).

To prove (c), in view of the fact that, for $1<p \leq 2 H^{p} \subset L^{p}$ is isometrically isomorphic to a subspace of $L^{1}$ (cf. e.g. [27], p. 354), it is enough to show
( $\left.c^{\prime}\right)$ Let $d_{p}=\inf \left\{d\left(L^{p} / H_{0}^{p}, X\right): X \subset L^{1}\right\}(1<p \leq 2)$. Then $\lim _{p=1} d_{p}=$ $\infty$.

Proof of ( $c^{\prime}$ ): Fix $\epsilon>0$ and a finite-dimensional subspace $B$ of $L^{1} / H_{0}^{1}$. Since the continuous $2 \pi$-periodic functions are dense in $L^{1}$, the standard perturbation argument (cf. e.g. [2]) yields the existence of a
$(\operatorname{dim} B)$-dimensional subspace $G$ of $C_{2 \pi}$ with $G \cap H_{0}^{1}=\{0\}$ such that

$$
d\left(B,\left(G+H_{0}^{1}\right) / H_{0}^{1}\right)<(1+\epsilon)^{1 / 2}
$$

( $G+H_{0}^{1}$ is regarded as a subspace of $L$ ). Let us put

$$
\||g|\|_{p}=\inf \left\{\|g+h\|_{p}: h \in H_{0}^{p}\right\} \quad(g \in G, p \geq 1)
$$

and let $G_{p}$ stand for $G$ equipped with the norm $\left\|\left||\cdot| \|_{p}\right.\right.$. We claim that

$$
\begin{equation*}
\text { If } g \downarrow p \text {, then }\left\|\left|g\left\|_{q} \downarrow\right\|\right| g\right\| \|_{p} \quad(g \in G, p \geq 1) \tag{4.2}
\end{equation*}
$$

To see (4.2) observe first that

$$
\|\|g\|\|_{p}=\inf \left\{\|g+h\|_{p}: h \in A_{0}\right\} \quad(g \in G, p \geq 1)
$$

because $A_{0}$ is dense in each $H_{0}^{p}$. Next note that, for every $g \in G$ and $h \in A_{0}$, the function $p \rightarrow\|g+h\|_{p}$ is (finite) continuous and non decreasing. Thus

$$
\varlimsup_{q \downarrow p}\|g\|_{q} \leq\|g\|_{p} \text { and }\left\|\|g\|_{q} \geq\right\| g \|_{p} \quad(g \in G, 1 \leq p<q)
$$

which yield (4.2).
Let $S_{G}^{1}=\left\{g \in G:\|g\| \|_{1}=1\right\}$. Since $G$ is finite-dimensional, $S_{G}^{1}$ is compact. Hence Dini's Theorem combined with (4.2) implies that $\||g|\|_{p} \rightarrow \mid\|g\|_{1}=1$ uniformly on $S_{G}^{1}$ as $p \rightarrow 1$. Therefore there exists a $p_{0}=p_{0}(B, \epsilon)>1$ such that

$$
(1+\epsilon)^{1 / 2} \geq\| \| g \|_{p} \geq 1 \text { for } g \in S_{G}^{1} \text { and for } 1<p<p_{0}
$$

Equivalently the formal identity map $j_{p}: G_{p} \rightarrow G_{1}$ is an isomorphism with $\left\|j_{p}\right\|\left\|j_{p}^{-1}\right\| \leq(1+\epsilon)^{1 / 2}$. Clearly $G_{p}$ is isometrically isomorphic to the subspace $\left(G+H_{p}\right) / H_{p}$ of $L^{p} / H_{0}^{p}$. Using this fact for $p=1$ we get

$$
\begin{equation*}
d\left(B, G_{p}\right) \leq 1+\epsilon \quad\left(1<p<p_{0}\right) . \tag{4.3}
\end{equation*}
$$

Now suppose to the contrary that there exist a sequence $(p(n))$ with $\lim _{n} p(n)=1$, a constant $\lambda>0$ and a sequence ( $\mathscr{X}_{n}$ ) of subspaces of $L^{1}$ such that

$$
d\left(L^{p(n)} / H_{0}^{p(n)}, \mathscr{H}_{n}\right)<\lambda \quad \text { for all } n .
$$

Then (4.3) would imply that for every finite-dimensional subspace $B$ of $L^{1} / H_{0}^{1}$ there exists a subspace $B_{1}$ in $L^{1}$ with $d\left(B, B_{1}\right)<\lambda$. Hence, by [16], Proposition 7.1, $L^{1} / H_{0}^{1}$ would be isomorphic to a subspace of some $L^{1}(\mu)$-space which contradicts [24]. This completes the proof of ( $\mathrm{c}^{\prime}$ ) and therefore of Proposition 4.2.

There are several problems related to Proposition 2.1.

Problem 4.2: Does there exist an absolute constant $\lambda \geq 1$ such that, for every $p$ and $q$ with $1 \leq q<p<2$, there exists a subspace $X_{p, q}$ of $H^{q}$ such that $d\left(H^{p}, X_{p, q}\right) \leq \lambda$ ? In particular is $H^{p}$ isometrically isomorphic to a subspace of $H^{q}$ ?

The recent result of Dacunha-Castelle and Krivine [5] yields that, for every $p$ with $1 \leq p<\infty$ and for every $\lambda>1$, there exists a subspace $X$ of $H^{p}$ such that $d\left(X, \ell^{2}\right)<\lambda$. In fact a subspace $X$ with the above property can be defined as the closed linear span of a sequence $\left(\sum_{j=m k+1}^{(m+1)} \chi_{n_{j}}\right)_{m=1,2 . .}$ where $k$ and the "lacunary" sequence $\left(n_{j}\right)$ depend on $p$ and $q$. We do not know, however, whether $\ell^{2}$ is isometrically isomorphic to a subspace of $H^{p}$ for any $p \neq 2$ ? On the other hand there is no subspace of $H^{p}$ which is isometrically isomorphic to the 2-dimensional space $\ell_{2}^{p}(p \neq 2)$. Otherwise there would exist in $H^{p}$ functions $f_{1}$ and $f_{2}$ of norm one such that $\left\|f_{1}+f_{2}\right\|^{p}+\left\|f_{1}-f_{2}\right\|^{p}=$ $2\left(\left\|f_{1}\right\|^{p}+\left\|f_{2}\right\|^{p}\right)$. Then (cf. e.g. [22]) $f_{1} \cdot f_{2}=0$. Thus the analyticity of the $f_{j}$ 's would imply that either $f_{1}$ or $f_{2}$ is zero, a contradiction. This remark answers negatively a question of Boas [4] who asked whether $H^{p}$ is isometrically isomorphic to $L^{p}$ for some $p \neq 2$.

Finally we would like to mention the well known open problems concerning the existence of unconditional structures in $H^{1}$.

Problem 4.3: (a) Does $H^{1}$ have an unconditional basis?
(b) Is $H^{1}$ isomorphic to a subspace of a Banach space with an unconditional basis? (c) Does $H^{1}$ have a local unconditional structure either in the sense of [6] or of [10]?

Let us mention that the basis for $H^{1}$ which has been constructed by Billard [3] is conditional.

Let us recall briefly Billard's construction. Let $H_{R}^{1}$ denote the real Banach space of functions $f \in L_{R}^{1}$ such that $\mathscr{H}(f) \in L_{R}^{1}$ equipped with the norm $\left\|\left\|f_{1}\right\|_{1}=\sqrt{\|f\|^{2}+\|\mathscr{H}(f)\|_{1}^{2}}\right.$. It is easy to see that the complexification of $H_{R}^{1}$ is isomorphic to $H^{1}$. Therefore every basis for $H_{R}^{1}$ induces a basis for $H^{1}$. Billard [3] has proved that the classical Haar system $\left(h_{k}\right)_{0 \leq k<\infty}$ is a basis for $H_{R}^{1}$. (In our convention the $h_{k}$ 's are defined on the whole real line, are $2 \pi$-periodic, and restricted to $[0,2 \pi)$ consist the Haar orthonormal system i.e. $h_{0} \equiv 1$ and for $j=0$, $1, \ldots, r=0,1, \ldots, 2^{j}-1$,

$$
h_{2^{i}+r}(t)=2^{i / 2}\left(I_{\Delta(j+1,2 r)}-I_{\Delta(j+1,2 r+1)}\right)(t) \quad \text { for } 0 \leq t<2 \pi
$$

where $\quad \Delta(j+1, k)=\left\{t \in R: 2 \pi k 2^{-j-1}<t<2 \pi(k+1) 2^{-j-1} \quad\right.$ and $\quad I_{A}$ denotes the characteristic function of a set $A \subset R$.)

Proposition: The sequence $\left(h_{k}\right)_{0 \leq k<\infty}$ is a conditional basis for $H_{R}^{1}$.

Proof: Let us set $g_{0}=2 h_{1}, g_{0}^{*}=2 h_{1}$,

$$
\begin{aligned}
& g_{n}=2 h_{1}+\sum_{j=1}^{n} 2^{j / 2}\left(h_{2^{j}}+h_{2^{j+1}-1}\right) \\
& g_{n}^{*}=2 h_{1}+\sum_{k=1}^{k \leq n / 2} 2^{(2 k+1) / 2}\left(h_{2^{2 k+1}}+h_{2^{2 k+2}-1}\right)
\end{aligned}
$$

Since $\left\|\left\|g_{n}^{*}\right\|_{1} \geq\right\| g_{n}^{*} \|_{1} \geq n / 4$ for all $n$ (an easy computation), to complete the proof it suffices to show that $\sup _{n}\| \| g_{n}\| \|_{1}<\infty$. Observe that, for all $n$,

$$
g_{n}(t)=2^{n+1}\left(I_{\Delta(n+1,0)}-I_{\Delta\left(n+1,2^{n+1}-1\right)}\right)(t) \quad \text { for } 0 \leq t<2 \pi
$$

Thus $\left\|g_{n}\right\|_{1}=2$ for all $n$. Therefore our task is to show that $\sup _{n}\left\|\mathscr{H}\left(g_{n}\right)\right\|_{1}<\infty$.

We have almost everywhere (cf. [33], [7])

$$
\begin{aligned}
\mathscr{H}\left(g_{n}\right)(t) & =\frac{1}{2 \pi} \lim _{\epsilon=0} \int_{\epsilon}^{\pi} \operatorname{ctg}\left(\frac{s}{2}\right)\left[g_{n}(t-s)-g_{n}(t+s)\right] d s \\
& =\frac{1}{2 \pi} \lim _{\epsilon=0} \int_{\epsilon}^{\pi}\left[\operatorname{ctg}\left(\frac{s}{2}\right)-\frac{2}{s}\right]\left[g_{n}(t-s)-g_{n}(t+s)\right] d s \\
& +\frac{1}{2 \pi} \lim _{\epsilon=0} \int_{\epsilon}^{\pi} \frac{2}{s}\left[g_{n}(t-s)-g_{n}(t+s)\right] d s .
\end{aligned}
$$

Since

$$
\left|\operatorname{ctg} \frac{s}{2}-\frac{2}{s}\right|<\frac{2}{\pi} \quad \text { for } 0<s<\pi \text { and }\left\|g_{n}\right\|_{1}=2
$$

we infer that

$$
\frac{1}{2 \pi} \lim _{\epsilon=0} \int_{\epsilon}^{\pi}\left[\operatorname{ctg}\left(\frac{s}{2}\right)-\frac{2}{s}\right]\left[g_{n}(t-s)-g_{n}(t+s)\right] d s \|_{1} \leq c_{1}
$$

for some constant $c_{1}$ independent of $n$. On the other hand, evaluating the second integral, we get

$$
\begin{gathered}
\frac{1}{2 \pi} \lim _{\epsilon=0} \int_{\epsilon}^{\pi} \frac{2}{s}\left[g_{n}(t-s)-g_{n}(t+s)\right]=\frac{2^{n}}{\pi} \ln \left|\frac{\left(t-2^{-n} \pi\right)\left(t+2^{-n} \pi\right)}{t^{2}}\right| \\
=\frac{2^{n}}{\pi} \ln \left|1-\frac{\pi^{2}}{\left(2^{n} t\right)^{2}}\right| .
\end{gathered}
$$

Since

$$
2^{n} \int_{0}^{2 \pi} \ln \left|1-\frac{\pi^{2}}{\left(2^{n} t\right)^{2}}\right| d t=c_{2}<+\infty
$$

we infer that $\left\|\mathscr{H}\left(g_{n}\right)\right\|_{1} \leq c_{1}+c_{2}$ for all $n$. This completes the proof.

## REFERENCES

[1] V. M. Adamian, D. Z. Arov and M. G. Krein: On infinite Hankel matrices and generalized problems of Caratheodory-Fejer and F. Riesz. Funkt. Analiz i Prilož., vol. 2, No 1 (1968) 1-19 (Russian).
[2] C. Bessaga and A. Pelczyński: On bases and unconditional convergence of series in Banach spaces. Studia Math. 17 (1958) 151-164.
[3] P. Billard: Bases dans $H$ et bases de sous espaces de dimension finie dans $A$, Linear Operators and approximation. Proc. Conference in Oberwolfach August 14-22 (1971) Edited by P. L. Butzer, J.-P. Kahane and B. Sz.-Nagy, Birkhäuser Verlag, Basel und Stuttgart (1972) 310-324.
[4] R. P. Boas: Isomorphism between $H^{p}$ and $L^{p}$. Amer. J. Math., 77 (1955) 655-656.
[5] D. Dacunha-Castelle et L. Krivine: Sous-Espaces de L ${ }^{1}$. Universite Paris XI. Preprint No 142 (1975).
[6] E. Dubinsky, A. Pelczyński and H. P. Rosenthal: On Banach spaces for which $\Pi_{2}\left(\mathscr{L}_{\alpha}, X\right)=B\left(\mathscr{L}_{\infty}, X\right)$. Studia Math. 44 (1972) 617-648.
[7] P. L. Duran: Theory of $H^{p}$ spaces. Academic Press, New York and London 1970.
[8] P. L. Duren, B. W. Romberg and A. L. Shields: Linear functionals on $H^{p}$ spaces with $0<p<1$. J. Reine Angew. Math. 238 (1969) 32-60.
[9] G. Bennet, L. E. Dor, V. Goodman, W. B. Johnson and C. M. Newman: On uncomplemented subspaces of $L^{p}(1<p<2)$. Israel J. Math. (to appear).
[10] Y. Gordon and D. R. Lewis: Absolutely summing operators and local unconditional structures. Acta Math. 133 (1974) 27-47.
[11] Y. Gordon, D. R. Lewis and J. R. Retherford: Banach ideals of operators with applications. J. Functional Analysis 14 (1973) 295-306.
[12] A. Grothendieck: Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Matem., Sao Paulo 8 (1956) 1-79.
[13] A. Grothendieck: Sur les applications lineares faiblement compactes d'espaces du type $C(K)$. Canadian J. Math. 5 (1953) 129-173.
[14] K. Hoffman: Banach spaces of analytic functions. Prentice-Hall, Englewood Cliffs, N.J. 1962.
[15] M. I. Kadec and A. Pelczyński: Bases, lacunary sequences and complemented subspaces in the spaces $L_{p}$. Studia Math., 21 (1962) 161-176.
[16] J. Lindenstrauss and A. PelczyńSki: Absolutely summing operators in $\mathscr{L}_{p}$ spaces and their applications. Studia Math. 29 (1968) 275-326.
[17] J. Lindenstrauss and A. Pelczyński: Contributions to the theory of the classical Banach spaces. J. Funct. Analysis, 8 (1971) 225-244.
[18] J. Lindenstrauss and H. P. Rosenthal: The $\mathscr{L}_{p}$ spaces. Israel J. Math., 7 (1969) 325-349.
[19] B. MaUREY: Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces $L^{p}$. Astérisque 11 (1974) 1-163.
[20] B. Maurey: Expose No 15, Seminaire Maurey-Schwartz Espaces L ${ }^{p}$ et applications radonifiantes. Ecole Polytechnique, Paris 1972-1973.
[21] R. E. A. C. Paley: On the lacunary coefficients of power series. Ann. of Math., 34 (1933) 615-616.
[22] A. Pelczyński: Projections in certain Banach spaces. Studia Math., 19 (1960) 209-228.
[23] A. Pelczyński: On the impossibility of embedding of the space $L$ in certain Banach spaces. Coll. Math., 8 (1961) 199-203.
[24] A. Pelczyński: Sur certaines propriétés isomorphiques nouvelles des espaces de Banach de fonctions holomorphes A et $H^{\circ}$. C.R. Acad. Sc. Paris, t. 279 (1974) Série A, 9-12.
[25] A. Pelczyński and H. P. Rosenthal: Localization techniques in $L^{p}$ spaces. Studia Math., 52 (1975) 263-289.
[26] H. P. Rosenthal: Projections onto translation-invariant subspaces of $L_{p}(G)$. Memoirs AMS 63 (1966).
[27] H. P. Rosenthal: On subspaces of $L^{p}$. Annals of Math., 97 (1973) 344-373.
[28] H. P. Rosenthal: A characterization of Banach spaces containing $\ell^{1}$. Proc. Nat. Acad. Sci. USA, vol. 7 (1974) 2411-2413.
[29] W. Rudin: Remarks on a theorem of Paley. J. London Math. Soc., 32 (1957) 307-311.
[30] W. Rudin: Trigonometric series with gaps. J. Math. Mech., 9 (1960) 203-227.
[31] A. L. Shields and D. L. Williams: Bounded projections, duality, and multipliers in spaces of analytic functions. Trans. Amer. Math. Soc., 162 (1971) 287-302.
[32] Kosaku Yosida: Functional Analysis. Springer Verlag, New York, Heidelberg, Berlin 1965.
[33] A. Zygmund: Trigonometric series I, II. Cambridge University Press, London and New York 1959.
(Oblatum 10-X-1975)
Department of Mathematics Warsaw University

Institute of Mathematics Polish Academy of Sciences
and

The Ohio State University
Columbus, Ohio 43210, USA


[^0]:    *Research of the second named author was partially supported by NSF Grant MPS 74-07509-A-02.

[^1]:    ${ }^{1}$ It was presented at the Functional Analysis Seminar in Warsaw in October 1973.

