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1. Introduction

We shall improve and generalize several results on transcendence
and on simultaneous approximations of numbers associated with the
exponential function. We deduce these results from the following
lower bound of an inhomogeneous linear form in logarithms of

algebraic numbers with algebraic coefhcients :

THEOREM 1: Let n &#x3E; 1 and d &#x3E; 1 be given integers. There exists an
effectively computable number C, depending only on n and d, with the
following property. Let Il, ..., ln be complex numbers such that a, ==
el1, ..., an = e ln are algebraic numbers of degrees at most d; for 1  j  n,
let Aj &#x3E; 6 be an upper bound for the height of aj and for elljl. Further, let 03B20,
03B21, ..., 03B2n be algebraic numbers of degrees at most d and heights at most
B (&#x3E;6) ; put

and define

Then, if A # 0, we have

From this point on, we shall write log ai instead of li so that (1) takes
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the form

then the theorem says, that, if A ~ 0, (2) holds where C is independent
of the branches of the logarithms.
We remark, that it is known that the linear form A in (3) is non-zero

when 03B11,..., an are non-zero and either log 03B11,..., log an not all zero
and 03B21, 03B22, ..., 03B2n linearly independent over Q, or 03B20 ~ 0.

For earlier results in this direction, see in particular A. Baker’s
papers [2] and [3]. It wa s pointed out to us by A.J. van der Poorten
that by minor changes we could have replaced the bound

exp 1- Cf2 (Log n)(Log B + Log 03A9)} by

where 03A9’ = (Log A1) ... (Log An-1). We shall develop this remark at
the end of the present paper. We understand that, independently, A.
Baker recently obtained a similar bound for the linear form (1), which
is somewhat more refined than our bound. However, these refine-
ments are not essential for our applications, and moreover, our proof
is simpler.
The actual proof of theorem 1 will follow closely the proof given in

[3]. Nevertheless a simplification is introduced here. In earlier similar
proofs, the extrapolation is performed by means of an induction, and
then a further inductive argument permits one to decrease the number
of terms in the auxiliary function. In our proof, there is no need to
increase the number of zeros, and we therefore avoid the induction in

the extrapolation argument. This simplification allows us to reduce
the main part of the proof from a chain of lemmas to a single unified
argument. Moreover, in a certain part of the proof where a prime p
has to be used which ordinarily must be sufficiently large, we can deal
with an arbitrary prime p, even with p = 2.
We want to express our gratitude to A. Baker and A. J. van der

Poorten for some very useful discussions at the conference on

transcendental number theory during early 1976 at Cambridge, where
this paper was put into its final form.

2. Simultaneous approximations

We shall apply theorem 1 to give bounds for the simultaneous
approximability of certain numbers. First, let a EC with a ~ 0, a ~ 1,
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bEC, E &#x3E; 0 and d E N be given. We consider the number of solutions
in algebraic numbers a, j3 and y, of degrees at most d, of the
inequality

where H is a bound for the heights of a, 03B2 and y and where

ab= eb log a for some fixed value of the logarithm. After some early
results of Ricci [10] and Franklin [8], Schneider [11] proved that if
b ~ Q, then there are only finitely many solutions (a, (3, y) with 03B2~Q
when K &#x3E; 5. Smelev [12] improved this to K &#x3E; 4, and Bundschuh [5]
reached K &#x3E; 4, without the restriction to the irrationality of 03B2. Note,
that b E Q implies that j3 = b for H large enough and that in this case
infinitely many solutions are possible when a is a suitable U-number.
The next theorem shows, that there are only finitely many solutions
(a, (3, y) with 03B2~ Q even when K &#x3E; 3.

THEOREM 2: Let a E C with a ~ 0, let log a be an arbitrary value of
the logarithm of a with log a # 0. Let b ~ C, E&#x3E; 0 and d E N be given.
There are only finitely many triples (a,,6, y) with B~ Q of algebraic
numbers with degrees at most d for which

where H is a bound f or the heights o f 03B1, 03B2 and y and where a b = eb log a.

PROOF: Let (a, 03B2, y) be a triple as indicated in the statement of the
theorem, and let H be sufliciently large. Since a ~ 0 and ab ~ 0, we
have a~ 0 and 03B3~ 0. Further, we know that for suitable deter-

minations of the logarithms

and

moreover, log 03B1~ 0 since log a ~ 0. Combining both inequalities and
using that 03B2 is close to b, we see tbat

However, in both cases log
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condition 03B2 ~ Q that the linear form j6 log a -log y does not vanish.
We obtain from theorem 1 the inequality

so that we have a contradiction for H large enough. Hence, H must
be bounded and the theorem follows. D

Wallisser [15] stated a theorem saying essentially that for algebraic
03B11, ..., an and certain numbers b 1,..., bn which can be approximated
very well by algebraic numbers, the number 03B1b11... 03B1bnn must be
transcendental. Meyer [9] improved this and also considered

ebo03B1b11 ... 03B1bnn; in both cases he achieved essentially the best possible
result. Bundschuh [6] recently showed, that for fixed algebraic
03B11, ..., an, the numbers b 1, ..., bn, al’ ... an- cannot be approximated
simultaneously very well (up to exp 1-(Log H)n2+2n+2+~}) by infinitely
many (n + 1)-tuples of algebraic numbers of bounded degrees; he
used only natural hypotheses. The next theorem gives an important
improvement of Bundschuh’s main theorem for a special case.

In theorem 4 we state an analogous result in which only natural
conditions are used.

THEOREM 3: Let a,,..., an be non-zero algebraic numbers, let log ai
be an arbitrary value of the logarithm with log 03B1j ~ 0 (j = 1, ..., n), let
b1,..., bn be complex numbers, E &#x3E; 0 and dEN. There are only finitely
many (n + 1)-tuples (03B21,..., (3n, 03B3) of algebraic numbers with 1,
03B21, ..., 03B2n linearly independent over 0 and of degrees at most d for
which

where H denotes a bound for the heights of 03B21, ..., 03B2n, y and where

PROOF: Use the linear form

of which ai, ..., an, y and log 03B11, ..., log 03B1n are non-zero. By the

assumption on the linear independence of 1, 03B21, ..., 03B2n this linear
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form is non-zero. Use theorem 1 and proceed as in the proof of
theorem 2. 0

THEOREM 4: Let 03B11, ..., 03B1n, log 03B11,..., log 03B1n, b1, ..., bn, E and d be
as in theorem 3. Let bo E C with bo =1= 0.
Then there are only finitely many (n + 2)-tuples (03B2o, (3l,..., I3n, y) of

algebraic numbers of degrees at most d for which

where H denotes a bound for the heights of 03B2o, 03B21, ..., 03B2n, y and where
;

P ROOF : Use the linear form 03B2o + 03B21 log « 1 + · · · + 03B2n log an - log y
which is nonzero for H large enough, since then the condition bo # 0
implies 03B2o ~ 0. 0

Pemark, that (4) enables us to replace (Log Log H)1+E by
(Log Log H)’ in theorem 3 and theorem 4.

In his paper [6], Bundschuh remarked that in theorem 3 and

theorem 4, one should like to replace the ai by complex numbers ai
which can be approximated very well by algebraic numbers. The
following theorems give such results. In theorem 5, of which the
second part is quite an extension of theorem 2, we again need a
condition on linear independence; in theorem 6 this is not the case.

THEOREM 5: Let al, ..., an be non-zero complex numbers, let log ai
denote an arbitrary value of the logarithm of ai such that log ai 7-’ 0.
Let bi,..., bn be complex numbers, let E &#x3E; 0 and d ~ N.

Firstly, suppose that there exist infinitely many (2n)-tuples
(al, ..., an, (31, ..., (3n) of algebraic numbers with 1, 03B21, ..., {3n linearly
independent over 0 and of degrees at most d, for which

where H is a bound for the heights of 03B11, ..., an, 03B21,..., {3n. Then
arl ... abnn (where abji = ebj log aJ) is transcendental.

Secondly, there are only finitely many (2n + 1)-tuples (al,..., an,
03B21, ..., 03B2n, y) of algebraic numbers with 1, 03B21,..., {3n linearly in-
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dependent over 0 and of degrees at most d, for which

where H is a bound for the heights of

PROOF : Use the linear form 03B21 log a 1 + · · · + J3n log 03B1n - log an -
log y with y fixed for the first assertion and free for the second one,
and proceed as in the proof of theorem 3. D

THEOREM 6: Let al, ..., an, log a,, ..., log an, b i, ..., bn, E and d be
as in theorem 5 and let bo E C with bo 94- 0.

Firstly, suppose that there exist infinitely many (2n + 1)-tuples
(al, ..., an, 03B2o, 03B21, ..., (3n) of algebraic numbers of degrees at most d,
for which

where H is a bound for the heights of 03B11, ..., an, 03B2o,..., 03B2n. Then

eboab11 ... ann (where abjj = ebJ log al) is transcendental.

Secondly, there are only finitely many (2n + 2)-tuples (a,, ..., an, 03B2o,
03B21, ..., (3n, y) of algebraic numbers of degrees at most d, for which

where H is a bound for the heights of ai,..., an, 03B2o, 03B21, ..., 03B2n, y and
where afj = ehJ log aJ.

PROOF: As the proof of theorem 5. D

We would like to remark here, that at the present state of de-

velopment of Baker’s method, the dependence on the degrees of the
algebraic numbers involved seems to become more interesting (for
some old results, see [7]). Among many possibilities, one could try to
investigate theorems like the above ones, in which the dependence on
the heights as well as on the degrees is explicitly given.
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3. Preliminary lemmas

When a is an algebraic number, we denote by la the maximum of
the absolute values of the conjugates of a, by H(a) the height of a
and by den(a) the denominator of a.
For elements a, j6 of a number field K of degree D, we have the

following inequalities

where Ci,...,C4 depend only on D; from the first inequality, we
deduce, for a 76 0,

We shall also use the fact that for any algebraic number a and any
positive integer q,

We shall use the notation Log for the principle value of the logarithm.

LEMMA 1: Let K be a number field of degree D over Q. Let ai,i

(1  i  n, 1  j  m) be algebraic integers in K, whose conjugates are
bounded in absolute value by an integer A. If n &#x3E; mD, there exists a
non-trivial solution (xl, ..., xn) of the system

in rational integers xi, bounded by

PROOF: This is lemma 1.3.1 of [14]. D

LEMMA 2: Let f be an analytic function in a disc Iz 1 - R of the
complex plane. Let E be a finite subset of the disc Izl:5 r with r --5 R/2,



180

consisting of k points which are lying on a straight line and have a
mutual distance at least 03B4 with 03B4  min (r/2, 1). Let t be a positive
integer. Then

PROOF: Without loss of generality, we may assume that r  R/4.
Consider the circles T: |03B6| = R and Tx : |03B6 - x| = 03B4/2 for x E E, des-
cribed in the positive sense; define Q(z) = IIxEE (z - x)t. We use
Hermite’s interpolation formula:

Finally, we use

and

LEMMA 3: For any positive integer k, let v(k) be the least common
multiple of 1, 2,..., k. Define, for z E C,

and
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For any integers 1 &#x3E; 0, m &#x3E; 0, k - 0, and any z E C,

Moreover, let q be a positive integer, and let x be a rational number
such that qx is a positive integer. Then

is a positive integer, and we have v(k):5 4k.

PROOF: The second part is lemma TI of [13]. The first one follows
from the following estimates (see [13]):

LEMMA 4: For any positive integers k, R and L with k &#x3E; R, the
polynomials (L1(z + r; k)Y (r = 0, 1, ..., R - 1; l = 1, ..., L), where

,A (z; k) has been introduced in lemma 3, are linearly independent.

PROOF: Follows immediately by induction on L from the following
result (see lemma 2 of [1]): If P is a polynomial with degree n &#x3E; 0 and
with coefficients in a field K, then, for any integer m with 0  m  n,
the polynomials P (x), P (x + 1),..., P (x + m) and 1, x, ..., xn-m-1 are
linearly independent over K. D

LEMMA 5: Let M and T be non-negative integers, let a, b and E-,
(m = 0, 1,..., M ; t = 0, 1, ..., T) be complex numbers.

If



182

PROOF: First we prove that a certain linear combination of the left
hand side of (6) for t = 0, 1,..., n just gives the left hand side of (5)
with t = n, when 0 S n S T. We prove:

Namely, the left hand side of (7) is equal to

which, by replacing t - T by t and applying the binomial formula, is
equal to the right hand side of (7).
We now prove the lemma by induction. For t = 0, (5) and (6) are the

same. Suppose (6) has been proved for t = 0, 1, ..., n - 1 with n :5 T.
Then from (7) it follows that (6) is also true for t = n. El

LEMMA 6: Let ai, ..., an be non-zero elements of an algebraic
number field K and let a:/p, ..., a,," denote fixed p-th roots for some
prime p. Further let K’ = K(a:/p,..., an’p,). Then either K’(an"p) is an

extension of K’ of degree p or we have

for some y in K and some integers

PROOF: This is lemma 3 of [4]. D

In fact, in order to prove theorem 1 we need lemma 6 only f or

p = 2. We remark that for this particular case the arguments of [4]
could be considerably simplified.

LEMMA 7: Suppose that a, {3 are elements of an algebraic number
field with degree D and that for some positive integer q we have
a = 3 q. If aa is an algebraic integer for some positive rational integer
a and if b is the leading coefficient in the minimal defining polynomial
of {3, then b - aD/q.
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PROOF: This is lemma 4 of [4]. 0

LEMMA 8: Let al, ..., an be algebraic numbers of degrees at most d
and of heights at most A; if Log al, ..., Log an are 0-linearly de-
pendent, then there exist rational integers bl,..., bn, not all zero, of
absolute values at most

such that

PROOF: This is lemma 2 of [3]. D

4. A special case of theorem 1

PROPOSITION 1: Let n ± 1, D &#x3E; 1 and po ± 2 be given integers. There
exists an effectively computable number CI &#x3E; 0, depending only on n,
D and po, with the following property. Let a,, ..., an be non-zero

algebraic numbers ; for 1  j  n, let log ai be any determination of the
logarithm of ah and let A; &#x3E; 6 be an upper bound for the height of ai
and for exp Ilog ail. Further, let {3o,..., {3n-l be algebraic numbers of
heights at most B (- 6); let K be a number field containing ah ..., an,
(30, ..., {3n-l and assume that the degree of K over 0 is at most D. Put

and define

Suppose that there exists a prime p _ po such that the degree of the
field K(al"P,...,a,,’P) over K is equal to pn, where a/lp =
exp ((1lp ) log ai), (1  j  n). Then

PROOF: First, we give some notations and discuss a certain

auxiliary function; then, we give the proof itself in three steps.
The numbers Ct,..., c4 were already introduced. By cs, c6, ..., C15

we shall denote positive numbers that can be specified in terms of n,
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D and po only. Let p be a prime satisfying the supposition of
proposition 1. Let v be a sufliciently large integer. Without loss of
generality, we may assume that fi and B are at least C2, where C2
is large in comparison to v (otherwise, we replace f2 by max (f2, C2),
or B by max (B, C2)). We show that, in this case, CI can be chosen as

2n +5V .
We define the integers Lo, LI, ..., Ln, S and T by

For abbreviation, we denote by U the number f2 (Log fi)(Log B +
Log fi). We suppose that

and we shall arrive at a contradiction.

To introduce our auxiliary function, we choose R =

[v(Log B + Log il)], and we signify by A,o(z), (Ao = 0, ..., Lo) the

functions (L1(z + r; R))’, (r = 0, 1, ..., R -1; 1 = 1,2, ..., (Lo + 1)/R).
Remark that it follows from the lemmas 3 and 4 that these functions

L1Ào, (Ào = 0, 1, ..., Lo) are linearly independent, that

for 1 z 1:::; 6S and 0  t  T - 1, and that for all integers q and s with
1 s q  T and 0 s s s qS, the numbers ~(t)03BB0(s/q) (Ào = 0, 1,..., Lo ; t =

0, 1, ..., T - 1) are rational numbers with a common denominator

which is at most

We shall use the auxiliary function

Remark that the exponent is equal to
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For brevity, we shall write aj for eZ log a,; we use 2(A) instead of

Ekj=o ... Ik,=o and p (A ) instead of p(Ào, ..., An ).
We shall compute the derivatives of F; for this purpose we

introduce the polynomials

The derivatives of F satisfy

where 17-1 = t stands for To &#x3E;_ 0, ..., Tn-l &#x3E;_ 0 and To + ... + Tn-l = t and

where the summation is extended over all tuples (To, ..., Tn_1) E Zn
with this property; further,

where

We shall also consider the entire functions

Step 1. Construction of the p (03BB)
There exist rational integers p(À), not all zero, bounded in absolute

value by exp (C7V2n+3 U), such that the corresponding functions 03A6(T)
defined above satisfy 4&#x3E;(T)(S) = 0 for all (n + 1)-tuples (To,..., Tn-l, s) E
Zn+l with 0  ITI  T - 1 and 0:5 s  S - 1.

be a common denominator of the numbers

,r 0 = 0, 1, ..., To). Consider the system
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of less than

linear homogeneous equations with

unknowns P (03BB), and with coefficients which are integers of K, of
conjugates bounded by

Using lemma 1, we obtain Step 1.

Step 2. Induction. When J is a non-negative integer satisfying
pJ  T - 1, we show that there exist rational integers

not all zero, bounded in absolute value by exp (C7p2n+3 U), such that
the functions

PROOF: For J = 0, we choose p(O)(À) = p(A), thanks to Step 1.

Assume that the assertion in Step 2 is correct for some integer J with
1 pJ  (T - 1)lp. Define

where the sum is for
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The following relation between fJ,(T) and CPJ,(T) will be an essential

tool in the sequel.

PROOF OF LEMMA 9: Consider the formula

Clearly, we have by the inequality

On the other hand, we bound the logarithm of the absolute value of

using (8), by

Consequently

This proves lemma 9.

We shall use also the following arithmetic property of the numbers
’PJkr)(S/ p).
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PROOF OF LEMMA 10: The number ’PJ,(T)(S/P) is an algebraic number
with a denominator which, using (9), is at most

is a common denominator of all numbers

Further, the conjugates of this number ’PJkr)(S/P) have absolute values
at most exp (C12V2n+3U). Since the degree of ’PJ,(Tls/p) over a is not
more than Dp"  Dp’ , it follows that the height of it is not more than
exp (C13v2n+3U). Hence, either ’PJ,(T)(S/P) = 0 or

and lemma 10 has been proved.

We now proceed to prove the assertion of Step 2 for J + 1. By
lemma 9, we obtain from the induction hypothesis

the functions f,,(,, satisfy the differential equations
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It follows from (10) that

for all values of (T), m, s with 0 :5ITI  2p -JT, 0  m - 2p -JT, 0 s 
pJS -1 and (s,p) = 1. We apply lemma 2 to the above indicated
functions f,,(,) with t = [2p-JT] and !pJS :5 k :5 pJS, using R = 6r, r =
pJS, 8 = 1. We have for Izl = R

It follows with (8) that

Lemma 2 and inequalities (11) give

Hence,

for all s e Z with 0spj+1S and all (T) with O:5ITI!p-JT. We
compare fj,r&#x3E;(slp) with ’PJ,(T)(S/ p ); once more lemma 9 gives

for 0  s :5 pJ+l S and 0 :5ITI 1  2p-JT.
By lemma 10, we see that ’PJkrls/p) = 0 for 0 s [T[  p -J-lT, 0:5 s 

pJ+l S. From this point on, we only use these numbers for so far
(s, p) = 1. Using our assumption [K(a:/p,..., a,,"): K] = pn, we can
express ’PJ,(T)(S/P) on the basis 1(a’,"p ... «nn’p), (1 1, ..., ln ) E

{0,1,...,p - 1}"}. We remark that the coefficients in this expression
consist of those contributions of 2(x) for which Ai =-À 0 (mod p),
(j = 1, ..., n). Since each of these coefficients must be zero, we have
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This is possible by the induction hypothesis. We denote by

For fixed r,, ..., Tn-1 and s, write into the form

Since this expression is zero for all values of To with 0  To 

P -J-l T - (Tl +... + Tn-1), it f ollows f rom lemma 5 that

is zero for the same To. Hence, the numbers

are zero, where

We proceed to prove that the numbers
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are zero for the same values of (T) and s.
Since

we have

so that each number ’PJ+l,(T)(S) can be written as a linear combination
of the numbers ÇJ+l,(T)(S); hence, they are zero for the mentioned
values of (T) and s.

Step 3. Contradiction. Let Jo be the integer such that pjo  T - 1 
pJo+l. Since

becomes a polynomial; it has zeros for z = s, 0 S s S pJoS - 1, (s, p) =
1. The number of these zeros exceeds ST/(2p ) which is more than
the degree of ’PJo,(O); so ’PJo,(O) must be identically zero. But the polyno-
mials A4(A,, = 0, 1,..., Lo -1) are linearly independent; hence all

p(JO&#x3E; (Ào, 0, ...,0) are zero, in contradiction to their construction.

5. Proof of theorem 1

We first use the arguments of [3], §4 to prove the following result.

PROPOSITION 2: Let n &#x3E; 1, D &#x3E; 1 and p &#x3E; 2 be given integers, with p
prime. There exists an effectively computable number C3 &#x3E; 0, depen-
ding only on n, D and p, with the following property. Let K be a
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number field, containing the pth roots of unity, of degree at most D
over Q; let al, ..., an be nonzero elements of K; for 1 :5 j :5 n, let log ai
be any determination of the logarithm of ai, and let Aj 2:: 6 be an upper
bound for the height of aj and for exp Ilog ail. We assume that

al, ..., an are arranged in such a way that A1  A2:5 ... :5 An. Fur-
ther, let 81, - - -, {3n be elements of K of heights at most B with

B 2:: Log An. Assume that the linear form

does not vanish.

Then there exist an integer v, 1  v :5 n + 1, non-zero elements

a1,..., a l, 0 fi, ..., 03B2 v of K, and determinations log a 1, ..., log a l of the
logarithms of a ( , ..., a 1, such that
(a) A, is equal to

(1 J  v), has degree pV over K,
(c) the height of a and exp Ilog ail are at most A; 3n-v, where (in case

of v = n + 1) Ao should be read as 6, and the heights of the
numbers ’ (j = 1,..., v) are at most BCB

REMARK: When {3],..., {3n are rational, we will find {3,..., {3 
rational. When log a i, ..., log an are the principle values of the

logarithm, we will find log a, ..., log a l principle valued too.

PROOF: The numbers C16,..., C23 will depend only on n, D and p.
Let h &#x3E; 1 be the greatest integer such that exp (p -hi7r) E K ; then
ph  c 16. Note that exp (p -hi7T) is an algebraic number of height 1;
note also that exp (P-(h+l)i7T) generates an extension of K of degree p
since K contains the p th roots of unity. It clearly sufices to prove the
proposition for linear forms Ai in which a 1= exp (P-hi7T) and log al 1=
p-hi7T, using Al 1 = 6, when we show that v:5 n instead of v :5 n + 1 and
(in case of v = n ) that the height of a’ and exp Ilog ail are at most 6c3.

We shall prove this by induction. For n = 1, our statement is

satisfied by our choice of al. Let n 2::: 2 and suppose that the statement
is true for all linear forms of the indicated type having n - 1
logarithms (we shall refer to this assumption as "the induction hypo-
thesis on n "). Let m be the greatest integer with the property that, for
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IL = 1,..., m, a’/ generates an extension of K’ = K(al/p, ... a’pl) of
degree p, where K! should be read as K; remark that m &#x3E; 1 by our
choice of a 1. For m = n, the statement holds trivially. Consequently,
we may assume that m  n, and moreover, we may suppose that the
statement is true for all linear forms of the indicated type, having n
logarithms, and with m replaced by m’ with m  m’  n (we shall
refer to this assumption as "the induction hypothesis on m "). By
lemma 6, we have

for some y E K and some integers ri, ..., rm with

m). We construct, as far as possible, a séquence’
elements in K such that

where the integers r,,j satisfy 0  ri,j  p. Clearly, we have

where the sn; are integers with 0  s,,j  p’. The denominator of

so that, by lemma 7, the leading coefficient in the minimal polynomial
of qyi is at most A’-D+,. Since each conjugate of

has absolute value at most

we obtain that the height of yi does not exceed

Remark, that it follows that

We deduce from (12) the existence of some sl,l E Z such that
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We have from (13):

in particular
Define

We distinguish two cases, according as the sequence yl, y2, ... ter-
minates at yl for some 1 with p’ :5 H (case 1), or it does not (case 2).

Case 1. Assume that yi, y2, ... terminates at yl with p’  H. From
(13), Ai is equal to a linear form A2 in log al, ..., log an, where log am+l
is replaced by Log y,, and where the coefficients are algebraic num-
bers in K having heights at most BC20; namely

where £i = Q  + Qm+is l,i and Ci = (3; + {3m+lS"j (2  j ~ m). By the sup-
position that the sequence terminates at yi, we deduce from lemma 6
that y’p generates an extension of K(a:’p,..., amp) of degree p. We
recall that the height of yi and exp ILog yi are at most A211. Hence,
replacing Am+i by Am+,, Aj by max (Aj, A21,) (m + 1 S j S n) and B by
max (BC20, C18 Log Am+,), the induction hypothesis on m gives the

desired result (remark, that a 1 remains unchanged, and that the

induction on m is finite, since 1 = m = n ).

Case 2. Let 1 be the least integer with p’ &#x3E; H. Since

log al, ..., log am+1, Log y, are linearly dependent by (13), we know
that also Log al, ..., Log am+t, Log-y, are linearly dependent. We
deduce from lemma 8 that there are rational integers bo, b°,
b2, ..., bm+1, not all zero and of absolute values at most H, such that

It follows that there exists a rational integer bl with

for which
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Eliminating Log yl from (13) and (14), we find

We see that

We claim that at least one b;, (2:5 j :5 m + 1) is not zero; in fact, if
b’-+, = 0, we deduce from its definition that (because p &#x3E; H ~ 1 b,,,I)
bm+, = bo = 0; in this case clearly b; = p’bj, (1  j  m), and the claim
follows by the observation that now b2 = 0, ..., bm = 0 imply b? = 0.
Let jo, with 2 - jo 5 m + 1, be such that bio -:j; O. Using (15), we express
the linear form A, as

where {3j = {3j - ({3jo/bjo)bj, (1  j :5 m + 1) and {3j = f3i (m + 2:5 j :5 n).
Since {3 jo = 0, and since the height of the numbers {3 j, (1  j :5 n) is not
more than BC23, the statement follows by the induction hypothesis on
n. Remark, that a 1 remains unchanged and that the order remains
intact. In both cases, our statement has been proved. This completes
the proof of proposition 2.

Finally, we give the proof of Theorem 1. We may assume without loss

of generality that A 1 _ A 2 ~···~ An :5 eB, and that A:F {3o. The num-
bers c24, ..., C28 will depend only on n and d. Let p be any fixed

prime, say p = 2, and take K = Q(j8o, j3i,..., {3n, al,..., an, Ç) where
{:F 1 is a p t’’ root of unity. Then K has degree D :5 d2n+lp ~ c24. We
first use proposition 2 with the linear form lll = A - {3o, to see that for
some v with 1  v  n + 1 there exist non-zero elements a’, ..., a,

{3, ..., {3 in K, and determinations of log a’, ..., log a v, such that

and such that the field K((a )l’p, ..., (a v)l’p) has degree pV over K;
moreover, the height of a and exp Ilog ail are at most Ai,25,,-,,, where (in
case of v = n + 1) Ao should be read as 6, and the heights of the
numbers {3o, j3i,..., (3 are at most B C26. Remark, that the product of
the logarithms of the bounds Ai,25,,-, (j = 1,..., v) is at most C27[J.
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Subsequently, we apply proposition 1 to the linear form

in which the coefficients have heights at most BC28. This gives a lower
bound of the desired form for 1-({3)-lA 1. As jS’, is non-zero, we have
1{3 I &#x3E; (BC28 + 1)-1, so that inequality (2) can be deduced from the above
lower bound by multiplying by lo’,I.

6. A final remark

As we said already in the introduction, it is possible to replace the
factor Log {l by Log f2’ in the conclusion of theorem 1. To do so, one
only has to make some changes in proposition 1 and its proof (§4).
Namely, use the new parameters:

Further, in the induction of step 2, the number J should satisfy
p J :5 L’ n + 1. At the end of the induction, we arrive at functions ’PJo,{-r)

for which LnJ°’ = 0. We replace step 3 by usual arguments (see for
example [2], beginning of §4).
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Added in proof

As pointed out to us by A. Bijlsma and confirmed by Bundschuh, there
is a gap in the proof of Satz 2a of [5], which also reflects to [6]. See a
forthcoming paper by Bijlsma.


