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INTERSECTION FORM FOR QUASI-HOMOGENEOUS
SINGULARITIES

Joseph Steenbrink*

Abstract

We consider quasi-homogeneous polynomials with an isolated sin-
gular point at the origin.

We calculate the mixed Hodge structure of the cohomology of the
Milnor fiber and give a proof for a conjecture of V. I. Arnol’d
concerning the intersection form on its homology.

AMS (MOS) subject classification scheme (1970) 14 B 05,14 C 30,14 F
10, 32 C 40.

Introduction

Let f:C""'—>C be a quasi-homogeneous polynomial of type
(Wo, ..., w,); this means that if f=23 asz®, B=(Bo, ..., Bn), 2°=
...z BEZ, B:=0, w,€EQ, w;>0 and agz# 0 then =, Biw; = 1.

Equivalently:

f(A ™z, ..., A"z,) = Af (20, ..., 2,) for all A EC.

Denote V the affine variety in C**' with the equation f(z) = 1. The aim
of this paper is, to compute the mixed Hodge structure on H"(V) in
terms of the artinian ring

Cllzos - - -, z.11/(8fl 820, - . ., 8f] 32.).

The result can be described as follows.
Let {z*|a €I CN"""} be a set of monomials in C[zo,. .., z.] whose

*Supported by the Netherlands Organization for the Advancement of Pure Research
(Z.W.0.).
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212 J. Steenbrink 2]

residue classes form a basis for the finite dimensional C-vector-space
Cllzo, .. ., z.J)/(3fl 020, . . ., 3fl32,). For a €1 let l(a) =i a; + 1)w.
Define for every a € I a rational (n + 1)-form w. on C"*' by

we =2°(f(2)— DT'Yzo A . .. A dz,,

where [ ] denotes integral part. Using Griffiths’s theory of rational
integrals one associates with w, an element 7, of H"(V, C).

THEOREM 1: Denote W and F the weight and Hodge filtrations on
H"(V,C). Then

GrH"(V)=0 for k#n,n+1;

the forms m. with p <l(a)<p +1 form a basis for GrsGr”H"(V, C);
the forms m. with l(a) = p form a basis for GriGr..\H"(V, C).

For n even this theorem provides a proof for a conjecture of
V. I. Arnol’d concerning the intersection form on H,(V,R):

THEOREM 2: Let f, V, I be as above. Assume that n is even.
Suppose that after diagonalization of the matrix of the intersection
form on H,(V,R) one has w. positive, u_- negative entries and p,
zeroes on the diagonal. Then

w.= #{B EI|l(B)Z Zand [I(B)]is even};
p-= #{BEI|l(B)Z Zand [I(B)] is odd};
wo= #{B € I|I(B) € Z}.

The idea of the proof of theorem 1 is as follows. First one constructs a
compactification V of V, which is the closure of V in a weighted
projective space M. Because M, V and V.=V -V have quotient
singularities, in 2. we describe differential forms on spaces with quotient
singularities. We extend Griffiths’s theory of rational integrals to the
weighted projective case in 4., using the proper generalization of Bott’s
vanishing theorem which plays a key role in it and which is proved in 3.
Finally we show how to prove the conjecture of Arnol’d in 5.

We thank the I.LH.E.S. for its hospitality and N. A’Campo and D.
Siersma for their stimulating remarks.
1. Weighted projective spaces

Let w, .. ., w, be positive rational numbers; write w; = u;/v; with u,
v, EN and (u, v;)=1 for i =0,...,n. Denote d =1cm(v,,...,v,) and
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b,=dw, i=0,...,n. Then each b; is a natural number. Denote
e(a) =exp2mia, a €C. Let G be the subgroup of PGL(n+1,C)
consisting of the elements

e(B, /b,) O ===~ ———- 9
RN 1
ol\\ e(B,/b)) Sl !
oS - AN !
| ~. - ~._ !
! RN 0
| S
1 ~
Oo-—-=--—=----20 e(B,/b,) |

with B;€Z and 0=, <b, for i =0,...,n. We define the weighted
projective space of type (wy, ..., w,) to be the quotient P*(C)/G and
denote it by M. If one considers C[z,,.. ., z,] as a graded ring with
degree of z = b;, then M =set of prime ideals P of C[z,,..., z.],
generated by homogeneous elements, which are maximal in the set of
prime ideals # (2, .. ., z,), in other words, M = Proj C[z,,...,z.]. M
is covered by open affine pieces M, i =0,...,n; and I'(M;, O,) = the
ring of elements of C[z, . . ., z., zi '] which are homogeneous of degree
0 (with degree z = b; of course!)

If feClz,,..., z.] is “homogeneous”, then f defines a hypersurface
in M, namely the set of homogeneous prime ideals containing f.

2. Differentials on V-manifolds

A V-manifold of dimension n is a complex analytic space which
admits a covering {U.} by open subsets, each of which is analytically
isomorphic to Z,/G, where Z, is an open ball in C" and G, is a finite
subgroup of GL(n,C). So a weighted projective space is a V-mani-
fold. With notations as in 1., M; is the quotient of C" under the group
generated in GL(n, C) by the elements

e(Bo/bo) Oc—==-— === — -~ C!)
". \\ |
o AN {
(BN ~
: \\\ c. AN :
! ~_ elBiy/biny) hANY !
\\ ~ |
: ~ e(Biy) /biy) ~ !
! ~ N :
| \\ \\ |
| N
! ~
e iahabts =0 “elB,/by)
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for0=8,<b,j=0,...i—1,i+1,...,n and e(1/b,)L

A finite subgroup G of GL(n, C) is called small if no element of it
is a nontrivial rotation around a hyperplane i.e. no element has 1 as an
eigenvalue of multiplicity exactly n—1. If G CGL(n,C) is finite,
denote G, the subgroup generated by all rotations around hyper-
planes. Then C[xi,..., x,]% is isomorphic to a polynomial ring and
G/ G, maps isomorphically to a small subgroup of GL(n, C) acting on
C"[Go=C". Cf. [6] for a proof of these statements.

In the above example G/G, is isomorphic to the small quotient of
the subgroup of GL(n, C) generated by the matrix

elb,/b;) Ocmmmmmmmmmmm Q
|

N ~ i

: \\ .. ~ |

! A e(b,_;/b) \\\ :

| — S 1

: \\\ e(b|+|/.b|) \\\ i

| N

1 \\\ 0

| S o

| N .

O === == -0 e(bn/bi)

If X is a V-manifold, one defines sheaves 2%, p =0, on X as follows.
Denote X = Sing (X). Because X is normal, £ has codimension at
least two in X. Define
0% =i0%s

with i: X -2 - X.

One can show that, if X > X is a resolution of singularities for X,
then 2% = m+42%, hence (% is coherent for all p=0.

Moreover if UCX and U =Z/G with ZCC" open and GC
GL(n, C) small, then Q%(U) = (p4x02%)¢ where p: Z - U.

The sheaves %, p =0, form a complex which is a resolution of the
constant sheaf C.

THEOREM: Let X be a projective V-manifold. Then the spectral
sequence
B = H'(X, 0% > H""*(X, ) = H""*(X, C)

degenerates at E, and the resulting filtration on H*(X, C) coincides with
the canonical Hodge filtration, constructed by Deligne.

Cf. [7] for proofs and for the definition of forms with logarithmic
poles.
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3. Generalization of Bott’s vanishing theorem
In this section we prove

THEOREM: Let M be a weighted projective n-space and let w:P" -
M be the quotient map. Let ¥ be a coherent sheaf on M with
w* ¥ = Opn(k) for some k €Z. Then H* (M, 04 ® £) =0 except pos-
sibly in the cases p=q and k=0, p=0 and k>q or p=n and
k<q-—n.

Proor: If = =id one has Bott’s theorem, cf. [2], p. 246. If Z is
smooth of dimension n and H a group acting on Z, generated by a
rotation around a hyperplane, then Q%5 = (px02%)" if p: Z— Z/H is the
quotient map. By induction the same is true if H is solvable and
generated by such rotations. In particular 04 = (m,0%)° is a direct
factor of mx2 and 24 ® £ is a direct factor of (w0 ® L=
mx03(k) for all ¢ =0. Hence H*(M, 34 ® &) is a direct factor of
HP(M, me Q3(k))= H?(P", 23-(k)) so the theorem follows from its
special case 7 = id.

4. Quasi-homogeneous polynomials

Let f:C""'—>C be a quasi-homogeneous polynomial of type
(Wo, ..., w,). Denote V CC"' the affine variety with equation
f(zo,...,2z.)=1. Denote wi=ufv; with (u,v)=1, d=Ilcm
(vo, . . ., Un), bi =dw; for i =0,..., n. Then the polynomial

f(z(h v ey Zn) - Zg+1

is quasi-homogeneous of type (ws, ..., w,, 1/d).

Denote M the weighted projective (n + 1)-space of type (wo, . . ., W,
1/d); M =ProjC[Z,, ..., Z...] where C[Z,,..., Z,..] has the grading
with degree Z;=b;, i=0,...,n, degree Z,.,=1. Then M is a com-
pactification of C**' as one sees by putting z; = Z/Z}:,,. Moreover the
hypersurface in M with equation

f(Zo, ..., Z))~ Z1:1 =0

is a compactification V of V.

Denote M.=M-C*', V.=V-V=VNM. Then M. is
isomorphic to the weighted projective space of type (w,, ..., w,) and
V.C M. is given by the equation f(Z,,...,Z,)=0. From now on
assume that f has an isolated singularity at 0.
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LEMMA 1: V and V. are V-manifolds.

ProoF: Let M; be the subset of M given by Z;#0,j=0,...,n+1.
Then M; is a quotient of C"*' as described in 2.: say M; =C""'/G?.
Let Xo, ..., Xj-1, Xj+1,- .., Xas1 be coordinates on C**' and let G be
the subgroup of G generated by the rotations around the hyper-
planes x;=0 (i#j) over angles 2u/b. Then C[xo,...,Xx,
Xity o o o Xnet] "= CLLoy -« o Gty Gy« + o Lnsr] Where & = xP. Because
f(Zs,...,Z)—Z2,, is GP-invariant, there exists g € C[{,. .., &1,
Gists o o Lusa] such that g =f(Zo, ..., Zi1, 1, Zisry .o oy Zn) — Z2,,.

Hence if V, C C"**'is the hypersurface with equation g;({) = 0, then
V N M; is equal to a quotient of V; by a finite group, isomorphic to
G?IGP. Moreover V; and V;.={{ € V;|{,+. =0} are smooth: for a
singular point one would have the relations

{3]‘/6&:0 (i=0,..,j—-1Lj+1,...,n)
£n+1:0

Consider these as equations in ({o,..., {ur1). Using the relation
Lof13& = flw; — Zj.(wif wi)dfl 3;) one concludes f({) = 0 and hence ¢ =
0 for all i, because f has an isolated singularity at 0. Because we only
deal with points with ¢ = 1 we have finished the proof.

Remark that in general = '(V)CP"*' is not smooth: let f(zo, z;) =
ziz,+2z%. Here wo=3/8, w,=1/4, d=8, bo=3, b;,=2. Hence
m (V) CP? is given by the equation z§z2+ z% =z, so # (V) is not
smooth.

Lemma 1 and the theorem cited in 2. imply that H'(V) and H'(V.),
i =0 carry Hodge structures which are purely of weight i. Therefore
the canonical mixed Hodge structure on H'(V), i=0, can be com-
puted using the logarithmic complex (2i(log V.), which sits in the
exact sequence

0 Oy Oiflog V.) > 3! > 0.
One obtains a long exact sequence
<> H(V)>H' (V)>H (V)1)->H"(V)>- -
as in [4]. Hence for H"(V) we get:

{Gr:VH"(V) =H"(V)o;
GrY H" (V)= H"'(V.)(—1)o,
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where H"(V), = Coker (H"%(V.) (—=1)—» H"(V)) denotes the primi-
tive quotient and H" '(V.)(—1)o=Ker (H" '(V.)(—1)-=H""(V)).
Moreover Gri!H"(V) =0 for k# n,n + 1. Also note that H" '(V.),=
Coker (H"'(M.)—> H" '(V.)).

Let M be any weighted projective n-space and let N C M be a
hypersurface which is defined by a quasi-homogeneous polynomial g
with an isolated singularity at 0. Then N is a V-manifold (lemma 1)
and one can express the primitive cohomology H" '(N), in terms of
rational differential forms on M — N as follows (cf. Griffiths [5], 10.
for the smooth case).

The Hodge filtration on H'(N,C) satisfies GrzH'(N,C)=
H™”(N, 32) (cf. 2.). Denote Z({1%)=Ker(d: 3%—(%"). Then
F?H(N,C)=H""(N, Z({2%)). For p=0, k=0 denote (2(kN)=
ar ®en O (kN) where 0, (kN) is the line bundle on M whose local
sections are meromorphic functions ¢ such that (¢) + kN is a positive
divisor. Then one has exact sequences

(i) 0 Z(Qi (kN)) - 35 (kN) —— Z(O%((k + DN))—>0

for k=1;q=1;
(ii) 0> Z(0%) > Z(QN)) ——> Z(35 ) >0
where R is the Poincaré residue map. One shows this by taking the

invariant parts of the sequences in [5], (10.9). From (ii) one obtains
the exact sequences

<> P H(M, ©) > H'™ (M, Z(34(N)) ——>
F*H'(N,C)- F""'H"*(M,C)~>- - -
showing that FPH'(N, C)o= H' (M, Z(£23'(N))). Moreover from (ii)

and repeated application of the vanishing theorem of 3. one obtains,
because 7*0y(kN)= O(k') for some k' > 0:

H (M, Z(@H(N)) = H " (M, ZUEPRN)) = - - -
= H'(M, Z(2i{(i — p)N)))
= H(M, Z(Q3;'((i — p + DN))) dH(M, Bii(i — p)N))).

In particular for i = n — 1 one obtains

FPH" (N, C)o= H(M, 23{(n — p)N))/dH (M, 237'(n — p — 1)N)))
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ExaMPLE: Let X C M be a curve in a weighted projective plane.
To compute H'(X, C) one uses the exactness of

0 Z(Q4)—> Z(Q(X)) > Cx >0

to get H'(X, C) = H'(M, Z(2:(X)) because H(X, C) ~5 H'(M, Z(2y)
= (C, and one uses

()—)Z({)&(X))—).(EMX)—-)!X,,(ZX)—)O

to get H'(M, Z(2.(X))) = H'M, 232 X))/dH°(M, 21(X)) because
H'(M, 23(X)) = 0.
We now apply this in the cases (M, N) = (M, V) or (M., V.).

LEMMA 2: If w=g(2,...,2,) (F(2)—1)*dzon...Andz,, k=0,
describes a rational (n + 1)-form on M, then

0 € H'M, Q37\(kV)) & g =D, 8s2° with gz =0
B
for all B with I(B)=k.

PrOOF: Rewrite o in coordinates (x,, ..., X..,) on M, by putting
z=xx.2 (j=1,...,n) and z,= x_%. Then

n+1°

1 kd—1-1(B)d
0= (=) gexf . . xBuxidy e
B

XFA, X1, .0 X)) — X0 ) 5 dx Ao A dXnsr.

So  is regular at M..< g is linear combination of monomials z? with
I(B) <k (or equivalently: I(8) <k —1/d). Moreover » has at most a
logarithmic pole at M. < g is linear combination of z? for which
I(B)=<k.

Denote d3; the form dzoa...Andziyadzian...ndz, for i=
0, ..., n. Every rational n-form on M can be written as =7, gidZ with
g: rational functions on M for i =0,.. ., n. Analogous to lemma 2 we
determine a basis for H(M, 2;(kV)). A rational n-form on M with a
pole of order =k along V which is regular on M —(V U M..) can be
written as

w =

n

> his (f(2) — 1) 2°d%; (hi € C).
B

i=0

In coordinates x,,..., x,,; on M, one obtains
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By b8,

N
xnx 00 S

n+1

: (f(z)— D™ = x5 (f(1, Xy - - o X)) — X207
dz; = (—1)"box2 5% d%; for i# 0;

-z% = xf

-dfo—z Xibi(— 1) T T R+ X T T R
Hence for o we get o = =1 gd%/(f — xi..)* where
— 2 (_ 1)"b0hiﬁx{3 xﬁnxb +kd—dl(B)—1
B

+ 3 1) bihogxt . Xty
B

ifi=1,...,n and gu.1= g hopxt' ... xExki¥®* % So:

LEMMA 3: A basis for HY(M, Q;(kV)) is given by the forms

{z“(f— D*dz (i=0,...,n;l(B)=k+w —1/d);
273 o (= Dibizi(f— 1)7*d3  (I(y) = k).

ProoOF: With notations as above, g.., regular implies that I(B) =
k + wq if hog# 0. By symmetry one gets hi; =0 if [(B) >k + w,. If for
all i with 0=i=n and for all B8 with hg#0 one has [(B)=
k +w, —1/d, then clearly g; is regular for all i. This gives the first set
of generators. If one considers forms o with h =0 if I(B) # k+ w,
the regularity condition leads to the second set of generators.

Let I be as in the introduction. Denote I, ={a € I|l(a)Z Z}, I, =
I\I,.

LEMMA 4: The forms o, (a €1, k <l(a) <k +1) given by w, =
z°(f— 1) *'dzo A ... A dz, map to a C-basis for

HOM, (377 ((k + 1) V)/[HM, 32 (kV)) + dH(M, 35k V))].

ProOF: Let E be the linear subspace of C[zo, ..., z.] spanned by
all monomials z? for which [(B)<k+1. The map c:E->
H°(M, O3 (k + 1) V)) defined by ¢(z8) = z°(f — 1) * " dzo A ... A dz, is
an isomorphism by lemma 2. Let E, = ¢ 'H'(M, 23;'(kV)) and E, =
¢ 'dH(M, 2;(kV)). Write E = E; ® E, where Es(E,) is spanned by
monomials z? with I(B) <k (resp. k <I(B) <k +1). Denote A(f)=
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(8fl0zo, . . ., 8f/3z,). The statement of the lemma is equivalent to
EJ(E.NA(f)) = E/(E, + E,).

Let p: E,— E/(E, + E,) be the natural map. Consider C[z,, ..., z,] as a
graded ring with degz =b, i=0,...,n. One has degz’=
dl(B) — 2i_o b.. With this notation

E= {h € Clzo, . . ., z)|deg (h) < d(k + 1)—2 bi};
E.= {h € Eldeg ()= dk~ 3, b,-}.

Remark that E, = E N (f — 1)E and that the map h — h(f — 1) gives an
isomorphism between {h € E|deg(h) <dk —2", b} and E,. Hence if
g8EE,g=h(f—-D=hf-he(EN{ )+ E;C(ENA())+ E,;. Hence
E,C E;+(E N A(f)). Computation of the differentials of the genera-
tors of H(M, 2;(kV)) as given in lemma 3 shows that E,C E;+ E N
A(f).

If I(B)<k then z°€E,+E, for in that case degfz’=
deg(f— 1)z =d(k+1)—Z2fob; and z°=(1-f)z*+fz° If I(B)=k,
then z° =00 (—1)'bizi(f — 1)*d% € H'(M, Q;(kV)) and its differential
equals —z°(f—1)*'dzon...Andz, (use Zobi(B;+1)=dk and fd =
3o biz: 8f|3z;). Hence z® € E,. This shows E;C E,+ E,.

Finally if g=3{,gdflaz;€EA(f)NE, one may write g=

‘o h; 3fldz; with deg(h;)=dk —Z;..b; (use the fact that af/dz is
homogeneous of degree d—b;). This implies that =z=

mohi(f—1)*d5 € H'(M, 33(kV)) and dn=(g+h)({F-1D"*" dzoa
...Adz, for some h€ E,. Hence g=g+h—h€E,+ E,. So A(f)N
ECE,+E, Because E;CE,+ E, one has E=FE;+ E,=E,+ E.+ E,
hence p is surjective. Moreover E,+ E,C E,+(ENA(f))CE;+
(ENA())CE,+E,, hence E, +E,=E:+(ENA({)=E®@(E.N
A(f). So (E,+ E))NE,= E,NA(f) =Ker (p).

LEMMA 5: For B with I(B) € Z denote wg = z°(f —1)"® dzon ... A
dz, and mg = resy wp. Then the forms ng(B € I, I(B)=k) map to a
basis for

H(M.., 3. (kV)/[H (M., B ((k = DV.))
+ dH(M.., 03 ((k — ) V).
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Proor: For all i =0 one has the exact sequence

0— Qi (kV) - Qi (log ML)(kV) - 24 (kV.) = 0.

By the generalized vanishing theorem this gives
H(M.., 3, (kV.)) =~ HM, (%' (log M.)(kV))[HY(M, 023" (kV)).

This implies (cf. the proof of lemma 2) that a basis for
H°(M.., Q3,.(kV.)) is given by the forms n, with I(8)=k. Let EC
Clzo,...,z.] be spanned by all monomials z? with I(B)=k let
¢: Ex H'M., 23.(kV.)) be given by c(z*)=ms Denote E,=
¢ 'H°(M.., Q3. ((k —1)V.) and E.= ¢ 'dH’(M.., @%_'(k —1)V.)). We
have to show that E, + E, = E N A(f). One checks easily that E, = () N
E. To determine E,, remark that H°(M, Qi(log M.)(k —1)V)) is
generated by the forms

{PF-1)"*"dz|lB)<k—1+w, i=0,... n}k
Denote wg; a typical generator and mg; its residue at M.. Then
cldne; = (—1D)'{Biz7'z°f + (1 — k)z® 3fl 8z}

if I(B)=k+w.—1 and ¢ 'dn,; =0 elsewhere. This implies that E,+
(HNE)=A()NE as required.

This lemma gives a method to calculate explicitly the cohomology
of every smooth projective hypersurface.

Lemma 4 and lemma 5 together prove theorem 1.

5. The intersection form

We preserve the notations of the preceding sections. Denote H %(V)
the cohomology with compact support. Then H%(V) is isomorphic to
the dual of H"(V); the mixed Hodge structure on H3(V) satisfies
GrH*(V)=0 for k#n, n—1 and W, H:(V)={w € H}(V){w, n)
= for all n € W, H"(V)}.

Consider the commutative diagram:

H(V)—— H(V)

|

H™(V) —— H"(V)
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All arrows in this diagram are morphisms of Hodge structures, j and J
are the natural maps and i: V— V is the inclusion. Denote S the
bilinear form (intersection form) on HZ(V) given by S(x, y) = {x, j(y)).
Because j is a morphism of Hodge structures, S(x,y)=0 if x or
y € W,_,HZ(V), because in that case j(x) =0 or j(y) =0 and S(y, x) =
(= D" 28(x, y). Moreover iy identifies Gri'H"(V) with the primitive
part of H "(V) and hence S is described as follows on GrYH>(V):
Denote GrYHXV,C)= @p+q=n H**(V) the Hodge decomposition.
Then

@ Sx,y)=0if xeH™, yeH"™, (p,q) #(s,1);
(i) If x € H™, x# 0 then (—1)""""2{*=9 S(x, ) > 0.

COROLLARY: Suppose that n is even and that the matrix S has the
diagonal form on some basis for H:(V, Q). Suppose there are on the
diagonal of this matrix p, zeros, w. positive and u_ negative rational
numbers. Then:

Mo = dim Gr:‘—/HH"(V),

M+ = E dime.q;

q even
p+gq=n

> dim H"*.
q odd
p+gq=n

Mo

V.1. Arnol’d has conjectured that one may calculate wu,, w. and u_ as
follows. Let A, i =1,..., u be the eigenvalues of the residue of the
Gauss-Manin connection [3] considered as an endomorphism of the
ring Cl[zo, . . ., z.)1/(8fl 3z, . . ., 8fl 3z,). Then if n is even:

po= #{jlexp miA; ER}
p— = #{jlIm exp mi\; <0}

This has been communicated to me by A. Varchenko. We now show
how one deduces this from the theorem of the introduction. If
{z*la €I} is a basis of monomials for C[[zo,...,z]l
(8fl 8z, . . ., 8fl 3z,), then they are eigenvectors for the Gauss-Manin
connection: Vz® =I(a)z*, so the eigenvalues for V are precisely
{l(a)|a € I}, and

wo=dim GrY,\H" (V)= # L= #{a|l(a) € Z} = #{alexp mil(a) ER}.
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Moreover for a €I, one has w, € GrtH" (V)& p <l(a)<p +1, so
# {a|Ilm exp wil(a) > 0} = # {a € I|[l(a)] is even} =3I, cven dim H>* =
. and similarly for w..

REMARK: With this method one also obtains the intersection form
for semi-quasi-homogeneous polynomials (see Arnol’d [1]).

We end with some examples. Let h** = dim H"
.f(x’ Y, Z) =x’+ y3+ 2>+ 3Axy2 (EG) (A3 #+ 1)-

Monomials: 1 x y 2z Xxy xz yz xyz
Il(a): 1 4/3 4/3 4/3 5/3 5/3 5/3 2

Get: h**=h**=0, h"' =6, h">=h>' =1.
So p.=0, u-=6, po=2.

fx,y,2)=x’z2+y’+2z* (Qu)

Monomials: 1 x x*> z z* y xy x’y yz yz*
24l(a): 23 32 41 29 35 31 40 49 37 43

h**=h**=1, k"' =8, h'*=h*' =0

So =2, u_=8, wo=0.
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