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1. Introduction

The Hirzebruch-Riemann-Roch formula determines the Euler

characteristic of an analytic or algebraic vector bundle on an analytic
or algebraic space in terms of Chern classes of the bundle and certain
invariants of the space. In this note we prove such a formula for

arbitrary compact complex analytic spaces, and for arbitrary com-
plete varieties over a field. This extends, and the proof depends on,
the previous known results for complex manifolds [1] and projective
varieties [2].
We show that such a space X has a class T(X) in the homology of

X (with rational coefhcients), such that for any analytic (respectively
algebraic) vector bundle E on X,

Here y (X, E) = £ (- 1)’dim H’(X, E) is the Euler characteristic of E,
ch(E) is the Chern character of E, n is the cap product pairing of
cohomology and homology to homology, and E takes the degree of
the zero-dimensional component of a homology class.

In particular, two bundles on X with the same Chern classes have
the same Euler characteristic.

If X is nonsingular, with fundamental class [X], then T(X) =
td(Tx) n [X] is dual to the Todd class of the tangent bundle, and ( * )
reduces to Hirzebruch’s formula [8,4,1]. If X is projective, T(X) is
the homology Todd class constructed in [2], where (*) is a corollary
of a theorem which constructs a functorial homomorphism from the
Grothendieck group of coherent algebraic sheaves to homology. Such
a Grothendieck-Riemann-Roch theorem is not even known for non-
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projective complex manifolds, however, and we have no progress to
report on this.
The formula ( * ) is proved for complex spaces in section 2, and for

complete varieties in section 3. In section 4, we discuss the formula
for curves and surfaces.

2. Analytic Spaces

Notation. We denote by KOX (respectively KOX) the Grothendieck
group of analytic vector bundles (respectively coherent analytic
sheaves) on a complex analytic space X. The functor K° is con-

travariant, while Ko is covariant for proper mappings: if f : X ---&#x3E; Y is

proper, and [F] denotes the element of KoX represented by a sheaf
3P, then f*[@] = 1(- 11’[R’f*(@)] in Ko Y. The tensor product gives
K°X a ring structure and makes KoX a module over K°X, and there
is a projection formula f*(j*/3 0 a) = /3 @ f*a for f as above, a e
KoX, /3 E KOy. The structure sheaf of X is denoted Ox.

Construction of the homology Todd class. For any compact analytic
space X, apply the lemma below to find a (possibly disconnected)
compact complex manifold X’, a morphism f : X’---&#x3E; X, and an element
çEKoX’ such that f*(ç@[Ox’])=[Ox] in KoX. Let T(X’)=
td(Tx,) n [X’], and define the homology Todd class T(X), in the

singular homology of X with rational coefficients, by

PROOF OF (*): Let g be the map of X to a point, and identify
Ko(point) with the integers. If j6 E K°X is the class of a vector bundle E
on X, then the left side of (*) is g*(,80[ûx]). And



281

LEMMA: Let X be an analytic space, q E KoX. Then there is a

non-singular analytic space X’, a proper morphism f : X’--&#x3E; X, and an

element e E K°X’ such that ~ = f*(ç 0 [Ox’]),

PROOF: We use induction on the dimension of X. Standard ar-

guments reduce it to the case where X is reduced and irreducible, and
7J = [F] for a torsion-free sheaf F of C,,-modules. Then there is an

open set U of X where F is locally free and X - U = Y is a proper
analytic subspace of X; we may add the singular locus to Y to assure
that U is a manifold. It suflices to find f : X’ ~ X proper, X’ non-
singular, and 03B6’ E K°X’ such that f*(03B6’ @ [6x,]) - n is in the image of
the map from Ko Y to KoX.
Let P = Proj(SoxF) be the projective fibre space defined by 37

[7, 9], p: P ---&#x3E; X the structural morphism, p*g;~O(l) the universal
line bundle quotient, or fundamental sheaf, on P. This corresponds to
a morphism cf&#x3E;: g; p*O(l) on X. When we restrict to U, we have a
projectivized vector bundle. It follows that Ker(~), Coker(~), and all
R ip*O(l), i &#x3E; 0, are supported on Y. So if C is the class of 0(1) in
K°P, then

Now by Hironaka’s resolution of singularities, we may construct a
non-singular X’ and a proper morphism 7r: X’---&#x3E;P which maps
7T-l(P-l(U)) isomorphically onto p-’(U). Set f = p 0 7r, and let C’ be
the class of 7r*P(l) in K’X’. Then the natural map C(l) --&#x3E; 7T*7T*O(l) is
an isomorphism on p-’(U), and RÍ7T*(7T*O(l)) has support on p-’(Y)
for i &#x3E; 0, so

Therefore, applying p* to this,

The desired result follows by adding (1) and (2).

3. Complète Varieties

The construction of the Todd class and the proof of the formula
( * ) for complete algebraic schemes over a field is quite similar. We
indicate how the discussion in section 2 needs to be changed.
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The coherent sheaves and vector bundles are algebraic, of course.
Instead of singular homology and cohomology, one may use the étale
theory [10], or the Chow theory [S, 6], or in fact any homology-
cohomology theory with coefficients in a field of characteristic zero
which has cap products, a projection formula, Chern classes, and
fundamental classes for subvarieties.

In the statement of the lemma, X’ is projective (not necessarily
non-singular), and it is constructed by using Chow’s lemma (cf. [9])
instead of resolution of singularities. The construction of the

homology Todd class is then the same, and the proof of (*) is the

same except that one appeals to the known theorem for projective
varieties [2] instead of the non-singular version.

4. The Todd Class

We see from the construction that the homology Todd class of an
irreducible space X has the fundamental class [X] as its top-dimen-
sional term. Formula (*) shows that the degree of its zero-dimen-

sional term is x(X, Cx). So for a vector bundle E of rank r on a curve
X we recover the formula

where we have written (3 . a instead of E (0 n a) for a cohomology
class (3 and a homology class a.

If X is a normal surface, it has a canonical Weil divisor K, which

may be defined as the divisor of a meromorphic one-form on X ; it is
well-defined up to rational equivalence. If 03C0: X-&#x3E;X is a resolution of
singularities of X, then the homology class [K] of K is equal to
zr*(-ci(Tg)n[À]). From the construction, since X ~ X is an

isomorphism except over a zero-dimensional set in X, we see that
T(X ) has -2[K] as its middle-dimensional component, and so (*)
gives

for a vector bundle E of rank r on X.

If we use homology K-theory instead of singular homology, the

reasoning of section 2 constructs an orientation class in the homology
K-theory of any compact complex analytic space (cf. [3]).
Although the Todd class is not characterized by the fact that (*)
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holds for all bundles, the construction in section 2 will give a

well-defined class, provided, following Hironaka, one has a definite
choice for each resolution of singularities that occurs. If the main

theorem of [2] could be extended to analytic spaces and non-pro-
jective varieties, then it would imply that all possible choices lead to
the same Todd class.
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