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Given a real valued smooth function on a manifold one can ask how

many critical points nearby morse function can have. Usually the
topology of the situation will make it necessary to have some critical
points, but one can ask if it is always possible to smoothly approximate
by a morse function with the least number of singularities topologically
possible (i.e. the least number of singularities in close continuous

approximations). The theorem below shows that this is not always
possible for C2 or better approximations and counter examples are
numerous.

Denote and will

mean boundary and will denote homeomorphism.

DEFINITION: If f : M - R and g : N - R, then f(Dg: M x N ---&#x3E; R is

the map f ~g (x, y) = f(x) + g(y).

DEFINITION: If f: M --&#x3E; R is CB then uk (f ) is the least number such
that there exist morse functions arbitrarily close to f in Ck (M, R ) with
Uk (f) critical points. Here Ck(M, R) is endowed with the Whitney C k
topology.

PROPOSITION 1: Suppose f : (R ", 0) - (R, 0) has no singularities ex -

cept 0 and h :Rk ~R is given by h (x l, ..., xk ) _ k-o ± x 2. Then

uk(f~h) = Uk(f) if k ~ 2.

PROOF: If g is Ck close to f, then g ~ h is Ck close to f ~ h so
uk(f(f)h) :5 Uk(f).
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Conversely, if g is Ck close enough to f©h, then by a parameterized
Morse lemma there is a Ck-’ diffeomorphism p Ck-l close to the
identity so gp (x, y ) = f ’ (x ) + h ( y ) where f ’ is Ck close to f. Then g has
as many critical points as f ’ does, so Uk (fEf)h) 2: Uk (f).

DEFINITION: If f : (R n, 0) - (R, 0) is a polynomial, and 0 is an isolated
singularity of f, then N(f ) = eSn-l n f -,«- 00, 0]) for sufhciently small e.
In [1] it was shown that this is independent of small e.

PROPOSITION 2: If f: (R n, 0) ~ (R, 0) is a polynomial with 0 an

isolated singularity of f and Ul(f) = 0, then N(f) is contractible.

PROOF: It follows from [1] that for small e and d,

Pick e and d so the above holds and also so f has no singularities in
eB n - 0 and 2dB contains no critical values of f restricted to eS"-’.
Pick c in (0, e ) so f (cB n ) C dB’. Pick a g C close to f with no critical
points in cBn. We may assume by altering g if necessary that

g(x) = f(x) if Ixl ~ c. Then the gradient of g (slightly modified near
eSn-1 to be tangent to eS"-’) is a nonzero vector field on eB n n

f-l(2dB 1) whose flow gives a diffeomorphism from eB" fl f-l(2dB 1) to
(eB- rl f-’(- 2d)) x [0, 1]. But eBn n f-l(2dB 1) = eB n and eB" n

f -1(- 2d) = N (f), so N (f) is contractible.

PROPOSITION 3: If p : (R n, 0) ---&#x3E; (R, 0) is a polynomial with 0 the only
critical point of p and if N (p ) is contractible and n &#x3E; 6, then uo(p) = 0.

PROOF: Pick any e &#x3E; 0. Pick a &#x3E; 0 and b in (0, e /2) so N(p) =
aSn-, rl p-’((-°°, o]) and (aBB aSn-, n p -1« - 00, 0]) = (aBn n
p -1(bB 1), aB n n p -1(- b ». Denote W = aB n n p -1(bB 1). Approximate
p by a morse function f so that p(x) = f(x) for x near aw. By the
relative h-cobordism theorem we may cancel all f’s handles and
produce a g : W ---&#x3E; bB without critical points so g (x ) = f(x) for x near
,9 W. Then the function

is e close to p in the C° topology, so uo(p) = 0.

PROPOSITION 4: N(f(f)t2) ~ N(f) x [0, 1] and N(f~- t2) ~
eB n x SOf(x, 1) = (x, -1) if x E eSn-1 n f -1«- oc, 0]) for e sufficiently
small.
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PROOF: It follows from [1] or [2], Lemma 3.6 that if e is small there is
a diffeomorphism c : : eS n-l x (0, l]---&#x3E;eB" -0 so that | c (x, t)l = te for all
x andt and so fc(x, t) = 0 if! f(x) = 0 and so (a / at)lfc(x, t)1 &#x3E; 0 for all t
if f (x ) ~ 0. Define a homeomorphism h : eS n ~ eS n C R x R n by

then there is a function b : eS"-’---&#x3E; [0, e ) so b -1(0) = eS,-, n f-l(O) and
h-I(f(~)t2)-I«_ 00, 0]) = {(t, x ) EeS"lf(exlixl)-O and Itl-b(exllxl)l
and so h-’(f(~)- t 2)-1((_ 00, 01) = {(t, X)IX = 0 or f(ex /Ix 1):5 0 or

t 1 b(ex llx 1)1. The result follows.

PROPOSITION 5: Suppose M CRpn is a codimension 1 compact
smooth submanifold of real projective n space. Then M is E-isotopic to
a real non-singular projective variety.

PROOF: See [3] and note that his trick works for this case also.
Unless a component of M doesn’t separate RPn, it will be necessary to

define 0 so 0 (x) = 0 (- x ) (rather than 0 (x) = - 0 (- x )) and likewise
$ = ($(x) + $(- x))/2. The isotopy on S n can be canonical, hence

equivariant. See also [7].

THEOREM: For every n 2: 6 there is a weighted homogeneous polyno -
mial q : (R n, 0) ~ (R, 0) of finite codimension so that 0 = u 1(q)  U2(q).
If n ~ 7 we may even require that N(q) is a disc so that q is

topologically equivalent to a function without critical points and yet is
not C2 close to any function without critical points.

PROOF: It follows from [4] that there is a compact n-2 dimensional
manifold U in Rpn-2 - Rpn-3 so that U has the homology of a point
but U is not simply connected. Take the connected sum of a U and
Rpn-3 in Rpn-2 by removing a disc from each of au and RP "-3 and
attaching a tube sn-4 X [0, 1]. Call M the resulting submanifold of
Rpn-2. By Proposition 5 there is a homogeneous polynomial R n-1 ---&#x3E;
R so h -1(0) n S n-2 is isotopic to p -’(M) where p : Sn-2 ---&#x3E; Rp n-2 is the
usual projection and so 0 is an isolated critical point of h. Milnor has
pointed out to me that since homogeneous polynomials of finite

codimension are dense in all homogeneous polynomials (c.f. [5]) we

may assume h has finite codimension. Notice that N(h) has the

homology of a point but is not simply connected. (To see this, note that
by Lefschetz duality, a U has the homology of a sphere. But then
aN(h ) ~ a U # a U has the homology of a sphere also so by Alexander
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duality, sn-2- h-t(O) has the homology of two points, hence N(h ) has
the homology of a point. N(h ) is not simply connected because it has
the homotopy type of the wedge of U with something else.)
Now Proposition 4 says that N(h~- t2) is the union of two discs

along N(h ) so Van Kampen’s theorem implies N(h ~ - t2) is simply
connected and the Mayer-Vietoris sequence implies N(h ~ - t 2) has
the homology of a point, hence N(h ~ - t2) is contractible. But then
Proposition 3 implies uo(h 0)- t 2) = 0. But u2(h ) = u2(h ~ - t 2) by Prop-
osition 1 and u2(h ) ~ u1(h ) &#x3E; 0 by Proposition 2. So 0 = uo(h ~- t2) 
u2(h 0)- t 2).

N(hffi - t2) might not be a disc since its boundary might not be
simply connected. But by Proposition 4, aN(h EBs2 - t2) is the double
of N(h(f)- t2) which is simply connected, so N(h ~s 2 - t2) is a disc.
Since N(f ) determines the local topological type of f (see [2], [6] or do
as an exercise in the weighted homogeneous case), h ~ s 2 - t 2 is

topologically equivalent to a projection.
To get u 1(h ~ - t2) = 0, pick any function g : R n ~ R without critical

points so that g(x) = (h(f) - t2)(x) if Ixl ~ 1. Let d be the degree of h.
Define gt (x, y ) = (g(t2x, tdy))/t2d all (x, y ) in Rn-l x R. Then for larger
and larger t, gt is a closer and closer C’ approximation to h EB- t 2.
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