
COMPOSITIO MATHEMATICA

H. HERING
Subcritical branching diffusions
Compositio Mathematica, tome 34, no 3 (1977), p. 289-306
<http://www.numdam.org/item?id=CM_1977__34_3_289_0>

© Foundation Compositio Mathematica, 1977, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation
commerciale ou impression systématique est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1977__34_3_289_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


289

SUBCRITICAL BRANCHING DIFFUSIONS
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COMPOSITIO MATHEMATICA, Vol. 34, Fasc. 3, 1977, pag. 289-306
Noordhoff International Publishing
Printed in the Netherlands

With a suitable concept of positive regularity it is possible to prove
limit theorems for Markov branching processes with an infinite set of
types which are as strong as the best results known for Bienaymé-
Galton-Watson processes. For critical and supercritical processes this
has been demonstrated - with differing degrees of generality - in [6]
and [2], respectively. The present note concerns the subcritical case.
We shall restrict ourselves to continuous parameter processes with
local branching laws. Our standard example will be branching
diffusions on simply connected bounded domains in Rn. Absorption at
the boundary will be admitted.

1. Statement of results

Let X be a locally compact Hausdorff space with countable open
base, X U {a} the one-point compactification if X is non-compact, 2t
the topological Borel algebra on X, and Îl) the corresponding
population space, i.e.

where x(n) is the symmetrization of the n -f old direct product X n,
n ~ 1, X(O):= 101 with some extra point 0, and U the a-algebra on X
induced by U.

Let 00 be the Banach algebra of all bounded, complex-valued,
2f-measurable functions e with supremum-norm II03BEII, 0--e, the non-

negative cone in B, C0 the algebra of all continuous e E 00, %o: = Co if
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X is compact, ego:= le E (6’: ç(x)~O as x - al if X is non-compact,
further 9 : = le E ÉB : Ileil - Il and 9,: = 9 n B+. Define 1(x) : = 1 and
0(x ) : = 0 for x E X, and let 1 A, 1 Â be the indicator functions of A C X,
A C X, respectively. Finally, denote

for e E 88.
Suppose to be given
(a) a contraction semigroup of non-negative linear operators {Tt}t~o

on B, strongly continuous on (6o with TtC(6o C ’6o, t &#x3E; 0,
(b) a termination density k E B+ and a branching law of the form

with

Let {xt, Px} be the Markov branching process determined by
[Tt, k, 7T], see [8], [11], and denote by EX the expectation with respect
to PX. The assumptions guarantee that {E(o)Xt [. ]}t~O exists as a se-

migroup of linear-bounded operators on 00. In fact, we assume

throughout that {xt, PX} is positively regular in the sense that the
following condition is satisfied:

(M) The first moment semigroup can be represented in the form

where p E (0, ~), cp* is a non-negative linear-bounded functional on B,
cp E B+, and Qt : B ~ B such that

with some a. : T ---&#x3E; [0, ~) satisfying
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EXAMPLE: Let f2 be a simply connected bounded open set in Rn
with sufhciently smooth boundary - see below - , let D be the closure
of il, and C(6Q(il), C(6Q(ilBD) the set of all q times continuously
differentiable functions on D, 03A9B03A9, respectively. Suppose f2 C X ~ ,03A9,
and let {Tt} be the transition semigroup of a diffusion process with
formally selfadjoint differential generator A defined on

where a 2: 0, b ~ 0, a + b &#x3E; 0, 03A9BX = f b = 0}, and a/an means diff-

erentiation in the direction of the exterior normal. If il is of class (£2q,
q = 2[(n + 2)/4] + 1, if the coefficients of A as well as the functions k
and m are in ce1(03A9) n ce2(Q-1)(D), and if a, b E ce2Q-l(DBil), then (M) is
satisfied with cp(x) &#x3E; 0 for x E X. If X is non-compact, i.e., if {b =

0} ~ ~, then cp(x) ~ 0 as x - a. A proof for general n is contained in

[7], for the one-dimensional case see [2], [6].
Let F,[.]k] be the generating functional of PX(Xt E ’), cf. [5], and

define F, [ . ] : F - F by

THEOREM 1: Suppose p  1. Then there exists a non-negative non-

increasing bounded functional y on 91, such that

Given e E 9, fl {~*[l - 03BE] &#x3E; oi, we have y[03BE] &#x3E; 0 if and only if

A proof of this result is to be found in §3.

REMARK: Relation (1.2) is also a necessary and sufhcient condition
for the non-degeneracy of W : = limt~~p-‘zt [cp] a.s., in case p&#x3E;l.
Furthermore, it has been shown in this context that (1.2) is equivalent
to

for any t &#x3E; 0, regardless of the value of p. For details see [2].
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By the branching property, i.e., by

it follows from (1.1) that

uniformly in Je = (Xl, ..., Xn) E x(n) for every n &#x3E; 0.

COROLLARY 1:

uniformly in X E x(n) for every n &#x3E; 0.

P ROOF: Notice that Px (xt ~ 0) = 1 - Ft [Olx].

If y[0] &#x3E; 0, a limit result of Yaglom type is a corollary of (1. 1).
However, in order to cover the case y[0] = 0, we have to assume
some additional well-behaviour. One way of expressing it is the

following condition:
(C) There exists a compactification X of X such that for every t &#x3E; 0

and e E S+ the function (1 - Ft [03BE])/ç possesses a continuous extension
defined on X.

Notice that 1- F,[g](x)] - 0 if ç(x) = 0, see §2. Hence it can be

assumed w.l.o.g. that cp(x) &#x3E; 0 V x E X.

EXAMPLE: In our diffusion example (C) is satisfied, see section 2.3
below.

THEOREM 2: Suppose p  1 and ço(x) &#x3E; 0 V x e X. If y [0] = 0, as -

sume in addition that (C) is satisfied. Then there exists a proper

generating functional G on 9 such that
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If y[0] &#x3E; 0, G has the first moment functional

If y[0] = 0, G does not have a bounded first moment functional.

This theorem will be proved in §4. Notice that we have admitted
the case that inf cp = 0.

Again using the branching property, we deduce from (1.4) that

uniformly in x = (xi, ..., xn ) E x(n) for every n &#x3E; 0.

COROLLARY 2: Under the assumptions of Theorem 2 there exists a
probability measure P on e such that

for every decomposition {Al,..., Aj} of X, Av EU, v = 1, ..., j, j &#x3E; 0,
and uniformly in y E x(n) for every n &#x3E; 0.

PROOF: Note that (1- F,[0!y]) ’([=1 1Avsvly] - Ft[Oly]) and

G [~jv=1 1Avsv]; Isvl 1  1, v = 1, ..., j, are ordinary j-dimensional genera-
ting functions, and use the standard argument for these. Of course, P
is the probability measure generated by G.

2. Some auxiliary facts

2.1. Define

Since m E 9JJ, there exists a mapping r(.): Ils l - 11---&#x3E; 00, r(1) = 0, r(s)(x)
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continuous in s for every x, such that

Similarly, given E’)xt [1] E 9lJ, there exists a mapping R t (.)[.]:
fi @ 9lJ ~ 9JJ, R r (1)[·] --- 0, which is sequentially continuous with res-
pect to the product topology on bounded regions in g @ 9lJ, linear-
bounded with respect to the second variable, and satisfies

See [10], [5].
2.2. Let {xt, PX} be the Markov process determined up to

equivalence by {Tt}. This process is defined as a conservative process
either on X, or on X U la *1, where a * is an extra point serving as
trap. If X is non-compact, take a * = a. Denote by E’ the expectation
with respect to px. With [Tt, k, 1T] as defined, 03BE E Y,
,(a*) : = k(a*) := 0, and

the function Ft [e](x); t - 0, x E X, is the unique solution of

where

Recall that m ~B ; thus for any 03BE ~ B the function Ex&#x3E;xt [03BE]; t ~ 0,
x E X, is the unique solution of

See [8], [11].
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As an immediate consequence of (2.6)

and, given (M),

Moreover, using (2.6), (2.8), and (M),

2.3. To verify (C) in the diffusion example, let X be the closure of
X. The assumptions guarantee that Tout has the kernel

where cpv is the regular eigenfunction of A - k with eigenvalue -03BBv;
v = 1, 2,..., and

for some c &#x3E;0, cf. [1; Theorem 14.6]. Moreover, it can be deduced
from Sobolev’s lemma that

with some K &#x3E; 0, cf. [7].

and it follows by (2.10)-(2.12) that 1 - Ft [03BE] has continuous extension
on X f or t &#x3E; 0, e F- 9. If X = X, we are done, since cp is continuous

and positive on X, cf. [7]. If X =+ X, we know that cp is positive on X
and that the first derivatives of cp possess continuous extensions on X
such that apl an  0 on X BX, cf. [7]. By (2.10)-(2.12), the first

derivatives of Tot(l - e) and ~t03B4 T’ f k(l - f(F,-, [el»Ids also have con-

tinuous extensions on X for t &#x3E; 0, 5 &#x3E; 0, e ~Y. Hence, it suffices to
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secure

But this is obtained in exactly the same way as the estimate (3.43) in
[9; p. 65].

3. Proof of Theorem 1

3.1. By (2.4), (2.3), and (M) with p  1

uniformly in e E 9.

LEMMA 1: For every t &#x3E;0 there exists a mapping gt [-]: F+ ~B such
that

where the convergence is uniform with respect to t in every closed

interval [a, b]; a&#x3E; 0.

PROOF: It follows from (2.2), (2.4), (2.5), and (2.6) that for every
E &#x3E; 0 and e (E 9, the function R t (e)[1 - e](x); t &#x3E; E, x E X, solves

As is readily verified, it is the only solution bounded on [E, b ] 0 X

1For 1; e 9 we define r(03BE)(x): := r(e(x»(x); x E X.
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and therefore equals the limit of the (non-decreasing) iteration

sequence {w;(x)}V2:0’ w’== 0, which we now estimate.
Take 0  5  e/2, and write

with the same integrand as above. Using (2.1), (2.4), (2.3), (2.7), and
(M) in this order, we get

By (2.4) and (2.6), or (M), there is a constant c  00 such that

Thus

Since (M) implies that ç*[lA]]U is a measure, and since r(s)(x)--&#x3E;O;
s ~ 1, r(’):5 m, we have

Hence, for every E’&#x3E; 0 we can first fix a 03B4&#x3E;0 such that fô +
J,’-à(...)ds S te’ç*[1 - )]ç/2 for all e e 1-7+ and then choose a 03B4’ &#x3E; 0

such that J;-S(...)ds :5 tE’cp*[1- ç]cp/2, whenever ~1 - çll  5’. That is,

Using (2.3) and (2.7),
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From (3.3), (3.4), and (3.6) it follows by induction and use of (2.7),
(M), that

In view of (3.5), (M), and the fact that E can be chosen arbitrarily
small, this proves the lemma. FI

LEMMA 2: Given that ~1- Ft [0111 - 0 as t - 00, there exists for every
t &#x3E; 0 a mapping ht : 9, --&#x3E; B such that

where cp*[I- F, [03BE]] &#x3E; 0 for all t &#x3E; 0 and e E g + n (ç *[1 - g] &#x3E; 0}.

PROOF: If ç*[1 - g] = 0, then by (2.4), (2.3), and (M) also cp * [1-
Ft [e]] = 0; t &#x3E; 0, and we may take h, [e] == 0. Now let ç*[1 - )] &#x3E; 0 and

0  E  1/~km~. Then by (2.5) and (2.9) there is a constant c2 &#x3E; 0 such

that

Combining the branching relation with the Chapman-Kolmogorov
equation, we get

Hence, by induction cp * [1- Ft[g]] &#x3E; 0; t 2: 0.

The remaining argument is essentially the same as in [5] and [6]1:
From (3.8)

’In the middle of the last formula of [6; Proof of Lemma 2] a "-cp," is missing.
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and from this by (M) and Lemma 1

Combining these two inequalities with those obtained by applying cp *
to them, we get

for some t*(s)  00, s*oo. By (M), (3.1), (3.2) this proves the

lemma. 0

Hence, recalling (2.3), there exists a non-negative, non-increasing
bounded functional y on Y+ such that

By Lemma 2 this implies (1.1) for e e 9,, n lo*[l - e] &#x3E; 01. The case
ç * [1 - )] = 0 is trivial, since I-Ft[ç]=0; t &#x3E; 0, if cp*[l-ç]=O, by
(2.4), (2.3), and (M).

where , Thus y[g] &#x3E; 0 if and only if
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If y[ç] &#x3E; 0, there exists by (1.1) a positive real E  1/~~~ such that
1- Fv [ç] ~ ~~03C1v for all sufhciently large v and thus by (2.3)

On the other hand, if y[g] = 0, there is for every E &#x3E; 0 a vo such that

1- Fv [03BE]  ~~03C1v for all v ~ Vo, and (3.10) cannot hold. Hence -Y [e] &#x3E; 0

if and only if (3.10) is satisfied for some E  1/~~~. This is the same
argument as for processes with a finite set of types, [10]. Two
additional steps now lead to (1.2).

LEMMA 3: Given p  1, (3.10) is satisfied for some positive E  1/~~~
if and only if

for some positive

PROOF: For any integer n the function E?=, R’[1 - eçp")[ç](x);
t ~ 0, x E X, solves

cf. (3.3). Moreover, it is the only solution bounded on [0, A] 0 X for
every A &#x3E; 0. Thus

where

is the iteration sequence of (3.12).
Using (3.12), (3.13), (3.14), (2.7), and (M) with p  1,
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Appealing to (2.4), Lemma 1, and (2.3),

Now choose a real T &#x3E; 0 such that 0  1 - T  l/~km~, and define

By Lemma 1 there is for every positive 5  1 an integer g such that
Tv :5 5; v ~ 03BC. By (3.16) and (2.9) there then exists a real c3 &#x3E; 0 for

which

Conversely, by (2.7), (M), and (3.16)

Since ç*[lA]]% is a measure and r(-):5 m, (3.15), (3.17), and (3.18)
prove the lemma. If

LEMMA 4: Given p  1, (3.11) holds for some E’  1/11’P1I if and only if

PROOF: The argument involves a trick that has already been used in
the different context of [3]. In view of (2.1),

pointwise on X. Fix x E X and change variables according to
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Then by (2.2) and the definition of f

pointwise on X. Note that s-2(1- e-s - s) and s2(1- e-S)-2e-S are

bounded on (0, oo), rewrite

and consider the function

Clearly, K is positive and continuous on [0,00), also K(w) --&#x3E; 1, as

w ---&#x3E; ~. Consequently

Thus (3.11) holds if and only if

Since for every integer N - 2

- oo  - ç*[kmç [log[log (1- e’cp)ID

(3.20) is equivalent to (3.19). D
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4. Proof of Theorem 2

4.1. Assume y[0]&#x3E;0 and p(x) &#x3E; 0; x E X. Then it follows im-

mediately from (1.1) that (1.4) is true with

Let {çn} be any sequence in Y+ such that 03BEn (x) ~ 1; x E X, as n - OJ.
Then Fi[gn](x) - 1 ; x E X, as n - cn. Since

and cp*[lA]I%C is a measure, it follows that

Hence, G is a proper generating functional, [4], [12].
Using (3.8), Lemma 2 with cp (x ) &#x3E; 0; x E X, (2.4), and (3.1),

In particular

Since (1- Pt [O])-lEo&#x3E;xt [1] converges (strongly), as t --&#x3E;~, to

ç*[1]/y[0]  00, G must have a bounded first moment functional M.

From (4.1)

By (M) therefore M = j6p*, j8 a positive real constant. Using (4.2) and
expanding G similarly as FI in (2.4),

where R(C)[e] is linear-bounded in e and tends to 0, as
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Hence, appealing to Theorem 1, M[y[0]cp] = 1, i.e., j6 = 1/y[0].
4.2. Now assume (C) and cp (x ) &#x3E; 0; x E X. Fix e EE 9,, and

define

By (C) the function h, [e](x); x E X, of Lemma 2 has a continuous
extension ht [03BE] (x ) to X for every t &#x3E; 0. Hence there exists a to such
that Gt[ç](x); x E X, has a continuous extension 6, [e](x) to X for all
t &#x26; to. Since X is a compactification of X, there is for every t 2: to an
xt E X such that

It follows by the same argument as in [10; p. 421] that G,[03BE](xt,) is

decreasing, as t -&#x3E; oo. Thus

exists. However, for all t ~ to

so that by (3.7) and (4.3)

Now let {çn} be any sequence in 9, such that e,, (x) ---&#x3E; 1; x E X, as
n - oc. Fix 03B4 &#x3E; 0, s &#x3E; 0, and no &#x3E; 0 such that

This is clearly possible by (3.1), Lemma 1, the fact that ç *[1A]]% is a
measure, and ç*[1 - FS[0]] &#x3E; 0, see Lemma 2. Appealing to (3.1), the
monotony of Ft[0], (3.8), (2.3), (2.4), (M), and Lemma 1, there then
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exists a sequence of integers 11(n)ln = 1, 2, ... such that 1(n) ~ s if n 2:: no,
further 1 (n) --&#x3E; ~, as n ---&#x3E; ~, and finally

Hence by (4.1), (4.2),

so that G [e,, 1 ---&#x3E; 1, as n--- &#x3E; ~, i.e., G is a proper generating functional.
Define

By (3.1) and the monotony of Fn [0], we have 0  En ! 0; n Î 00. Fix
t &#x3E; 0, n1 &#x3E; 0, and s &#x3E; 0 such that

This is possible by Lemma 1 and (M), p  1. Then, using (2.4), Lemma
1, and (M),

and by (4.1) and (3.8)

If y[0] = 0, the expression on the far right tends to infinity, as n --&#x3E; ~,

by Theorem 1. That is, in this case G cannot have a bounded first
moment functional.
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