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1

The "standard" Tauberian theorems applicable to Cesàro sum-

mability (C, a) continue to hold when (C, a) is replaced by Abel

summability, though the proof for Abel summability is often harder.
It is therefore of some interest to obtain a Tauberian theorem for

summability (C, a) which becomes false when (C, a) is replaced by
Abel summability. Such theorems have been given in [1], [2]; in the

present paper we give such a result with a Tauberian condition of a
somewhat different nature.

We consider a series (in general, of complex numbers),

and will write throughout

THEOREM 1: Let a &#x3E; 0. Suppose that

and that (1) is bounded (C, a). Then (1) converges.

We note that we need assume only the (C, a) boundedness of (1),
and not its (C, a) summability.

1 obtained this result in the course of certain investigations into
Nôrlund summability. It is familiar that the Nôrlund transformation

(N, an ) is regular if and only if (2) holds and
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Thus (2) is relevant. However, the result appears to be of some

interest for its own sake, and thus we shall not be concerned with
Nôrlund summability in the present paper.

This theorem becomes false when (C, a) is replaced by Abel
summability, even if we assume Abel summability (instead of only
boundedness), and even if we impose the additional restriction (3). In
other words, we have the following result.

THEOREM 2: There is a series satisfying (2) and (3) which is Abel
summable but not convergent.

The results for Abel summability become somewhat different if we
restrict ourselves to real series.

THEOREM 3: Suppose that an is real. Suppose that (2) and (3) hold,
and that (1) is Abel bounded. Then (1) converges. This result becomes

false when (3) is omitted, even if we replace Abel boundedness by Abel
summability.

We let Sn denote the (C, a) sum of (1); that is to say,

where, as is usual, Aa denotes the binomial coefficient

For any positive integer m, let Sm denote the operator defined by

if a is a positive integer, let 8: denote the result of applying the

operator 8m a times. With this notation, we have the following lemma.

LEMMA: Let a be a positive integer. Then
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and where

PROOF: The proof is by induction on a. The result is evident when
a = 1, since

Now assume the result true f or a (where a ? 1), and prove it true for
a + 1. We have

Here we adopt the convention that Kv m is to be taken to mean 0 when
v  a or v &#x3E; am. Thus (4) holds with a replaced by a + 1, and with

This gives us (4) and (5). In order to prove (6), we need only observe
that, by (4) the sum on the left of (6) is equal to the value of S03B1mS03B1n in
the special case in which sk = 1 for all k. But, in this special case,
S" = An, and (6) follows easily.

3

We can now prove Theorem 1. In view of the well known result

that, if a’&#x3E; a &#x3E; - 1, any series bounded (C, a) is also bounded (C, a’),
there is no loss of generality in supposing that a is an integer. We will
make this assumption throughout in what follows.
We note that it follows at once from (2) that there is a constant

c &#x3E; 0, which will be kept fixed throughout, such that, for all suffi-

ciently large n,
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It follows that for sufficiently large n and all m &#x3E; n,

It is enough to prove that ISnl is bounded, for the convergence

(indeed, absolute) of (1) will then follow from (2). So we suppose that

ISnl is unbounded, and show that this leads to a contradiction. Since

|Sn| | is unbounded, it follows from (8) that

as n ---&#x3E; oo.

Now, for each n define k(n) as the least value of k &#x3E; n such that

We will show that, for all sufficiently large n, k(n ) exists (that is to
say, there is some k &#x3E; n satisfying (10)) and, further, that

as n - 00. This is equivalent to showing that, if 5 &#x3E; 0 is given, then, for
all sufliciently large n, there is some k with n  k  (1 + 5)n satisfying
(10). To prove this, suppose the assertion false; thus

for all k with n  k ~ (1 + 03B4) n. Now let

and define m = m(n) by m = [n8Ia]. Then, by the lemma together
with (12) and (8),
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as n ---&#x3E;~ (8 being fixed). But, since (1) is bounded (C, a), there is a
constant A such that

for all n a 1, m ? 1. In view of (9), this contradicts (13) whenever n is

sufficiently large.
Now choose any sufficiently large fixed integer no, and define {nr}

inductively by

We note that, by (8) we have, for r ~ 1,

[Here and elsewhere, in order to avoid complicated sufhxes, we write
s (n ) in place of sn whenever n is replaced by a more complicated
expression]. In view of the definition of nr, it follows at once that

and hence that

Now let p be a fixed positive integer so chosen that

Then, by (7) and (14)

Applying a similar argument with no replaced by nP, we find that

and so on. Thus, for all positive integers v,

Now it follows from (11) that

as v - 00, so that
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Thus, given any q &#x3E; 0 we have

for all sufficiently large v. But the (C, a) boundedness of (1) implies
that there is a constant B such that, for all sufficiently large n

Thus, for all sufficiently large v,

If we choose Ty so that

this contradicts (15) whenever v is sufficiently large. The proof of
Theorem 1 is thus completed.

In order to prove Theorem 2, let (1) be chosen so that, for |z|  1,

It is immediately evident that (1) is Abel summable to 0. By (5.1.9) of

[3] we have, with the notation for the Laguerre polynomials used in

[3],

It now follows from (5.6.1) of [3] that

We deduce from (16) with the aid of Theorem 8.22.7 of [3] and

Stirling’s formula that, for large n,

where À denotes a non-zero constant (which is different at each

occurrence). We deduce from (17) that
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and it follows easily from (17) and (18) that (2) and (3) hold. This
completes the proof of Theorem 2.
The first part of Theorem 3 is trivial, but it is stated for the sake of

completeness. Suppose the hypothesis of the theorem satisfied. Then,
as in the case of Theorem 1, it is enough to prove that sn is bounded.
Supposing this false, it follows that (9) holds. But, since an is real, (3)
implies that sn is ultimately of constant sign. Hence either sn z + 00 as
n ---&#x3E; oo or sn ~ 2014 ~ as n - or. This implies that

tends to either +00 or - 00 as x --&#x3E; 1-, in contradiction to the assump-
tion that 03A6 (x) is bounded.

For the second part of Theorem 3, let 8 be a fixed positive number
with el)  2. Define

Thus

It is clear that (2) holds. Also

Now if

then ~~ n=0 bn converges and is thus certainly Abel summable. Hence,
as x --&#x3E; 1-,

where c is a constant, and where

With the notation for the theta functions used, for example, in [4], we
can write (19) as
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By Jacobi’s product for the theta function (see, e.g., [4], §§21.3 and

21.42), we have

Now for 0  x  1,

Since e03B4  2, the first factor lies between ± 1; the second clearly lies
between 0 and 1. Thus

Since G - 0 as x - 1-, it is clear that li(x) - 0 as x - 1-. Thus (1) is
Abel summable. Since (1) is clearly not convergent, the theorem is

proved.
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