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LOCALLY CONVEX SPACES FOR WHICH 039B(E) = 039B [E]
AND THE DVORETSKY-ROGERS THEOREM

N. De Grande-De Kimpe

The classical Dvoretsky-Rogers theorem states that if E is a

Banach space for which l1[E] = (l(E), then E is finite dimensional. 
This property still holds for any (P (1  p  ~) (see [5]).

Recently it has been shown (see [11]) that the result remains true
when one replaces e’ by any non-nuclear perfect sequence space A,
having the normal topology n(A, Ax). (This situation does not contain
the (P (1  p  -)-case). The question whether the Dvoretsky-Rogers
theorem holds for any perfect Banach sequence space A is still open.
(A partial, positive answer to this problem, generalizing the é’-case
for any p is given in this paper.) It seemed however more convenient
to us to tackle the problem from the "locally-convex view-point".
The "locally-convex version" of the Dvoretsky-Rogers theorem

was proved by A. Pietsch in [8] (for the definitions and notations see
below):

If E is a locally convex space then the following are equivalent:
(i) E has property (B) and e’[El = (l(E)
(ii) E’03B2 is nuclear (Remark that every Banach space E has the

property (B)).
An inspection of the proof shows that Pietsch actually proves
that (i) is equivalent to

(iii) For every A E BE there exists a B E BE (A C B) such that the
canonical mapping ~AB: EA ~ EB is absolutely summing.

Since all the notions appearing in the ((i) ~ (iii))-version of the
Dvoretsky-Rogers theorem have meaningfull generalizations when
replacing (l1 by any perfect Banach sequence space A one can ask if
(i) ~ (iii) still holds in this generalized situation.

In this paper we show that the answer to this question is positive
and we apply our result to some special cases.
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§ 1. Preliminaries

All the classical notions and properties concerning locally convex
spaces, as well as the elementary theory of sequence spaces, will be
taken from [6]. They will be used without any further reference. The
same will be done as far as nuclearity is concerned. Here we refer to
[8].
We fix the following notations:

-If not specified E will denote a complete locally convex Hausdorff
space with topological dual space E’.
-0 PE is a fundamental system of semi-norms determining the to-

pology of E.
- UE is a fundamental system of barrelled neighbourhoods of the
origin in E.
- ’5 4E is a fundamental system of closed, convex, bounded subsets of
E.

For B E BE we denote by EB the Banach space UnEN n . B, normed
by the gauge of B. This norm is denoted by Il.IIB.
-A is a perfect sequence space with a-dual space Ax. We assume
that A is a Banach space for the strong topology 03B2 (A, A x ). Elements
of A are denoted by a = (a;).
-We consider the following generalized sequence spaces

and

A locally convex Hausdorff topology on A [E] is given by the semi-
norms :

A locally convex Hausdorff topology on A (E) is given by the semi-
norms

For A = l1 the above spaces are studied in [8]. In their general form
the spaces A[E] and A(E) are studied in [7] and in [1] ] and [10]

respectively. Obviously A(E) is continuously embedded in A[E].
-For a normal bounded subset R of A and B E loke, define:
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The space E is said to be fundamentally A -bounded if the collec-
tion of all [R, B] forms a fundamental system of bounded subsets of

A(E). The notion of fundamentally A-bounded space has been in-
troduced in [10]. A fundamentally l1-bounded space is exactly a space
"having the property (B )" (see [8]).
-An operator (i.e. a continuous linear mapping) from a Banach space
X to a Banach space Y is called A-summing if for every (xi) E A[X] ]
the sequence (f (xi))i is an element of A (Y). For A = fI (resp. A = fP,
1  p  ~) such an operator is called absolutely summing (resp. p-
summing).

§2. A generalized Dvoretsky-Rogers theorem

LEMMA 1: If D is a bounded subset of A [E] then there exists

A E BE such that D C A [E,] and

PROOF : For U El OIIE we put

Then Uu  00 since D is bounded in A [E]. If A = ~ U~UE 03C3u . U then
A E 9JJE. Take (03BBi) E A x such that ll(03BBi)||Ax  1. Then for U ~ UE and
a E U we have:

for all (xi) E D. Hence li 03BBiXi E (Tu . U for each U E OUE. So li 03BBiXi E A
(or ~~i 03BBiXi~A  1) for all (Ài) E Ax, II(Ài)IIAx  1 and all (x;) E D. I.e.

for all (xi ) E D, all (Ài) E Ax, ~(03BBi)~Ax  1 and all b E (EA)’ with Ilbll(EA)’ 
1.

Since the unit ball in Ax is a normal subset of Ax we also have:
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under the same assumptions on (xi), (03BBi) and b. Hence (x; ) E A [EA]
and ~(xi)~A [EA]  1 for all (xi) E D.

LEMMA 2: If A (E) = A [E] and B is a bounded subset of A [E], then
B is also bounded in A (E).

PROOF : Remark that B C A [E] is bounded if and only if for every
a E E’ the set

is bounded in A (see [7]). Also B C A (E) is bounded if and only if for
each p E PPE the set

is bounded in A (see [1]). Finally a subset A of A is bounded if and
only if for each 03B2 E Ax the set

is bounded in R. Taking these f acts in mind, the proof proceeds
exactly as in [8] Theorem 2.1.2.

THEOREM: The following are equivalent
(i) E is fundamentally A-bounded and A (E) = A [E].
(ii) For every A E BE there exists a B E BE (B D A) such that the

canonical injection ~AB : EA ~ EB is A-summing.

PROOF: (i) ~ (ii): Take A E ’-9SE and put

The continuous injection iA : EA ~ E extends canonically to a con-
tinuous injection iA :A [EA] A[E] ([2] Prop. 28). Hence D is boun-
ded in A [E].

Since A [E] = A (E), D is also bounded in A (E) (lemma 2). Since E
is fundamentally A-bounded, there exists B E ~ BE such that the set

is bounded in A. In particular we have D C A (EB ). So (xn ) E A [EA]
implies (xn ) ~ A (EB) and (ii) is proved.

(ii) ~ (i): Let D be a bounded subset of A (E). Then D is bounded
in A [E] and, by lemma 1, D is bounded in A [EA] for some A E BE.
By (ii) there exists B ~ BE such that ~AB : EA ~ EB is A-summing.
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Then D is a bounded subset of A (EB) since the extended mapping
~AB : li [EA] ~ A (EB) is continuous ([2] Prop. 28). So E is fundamen-
tally A-bounded. For the second half of (i) suppose (xi) E A [E]. Then
by lemma 1 there exists A E OOE such that (xi) E A [EA]. (Consider
{(xi)} as a bounded subset of A [E]). By (ii) (x;) E A (EB) for some
B E 1,9AE. Finally the canonical injection iB : EB ~ E induces an in-

jection iB:A(EB)~A(E) and the conclusion follows.

§3. Examples and spécial cases

1. Locally convex spaces for which A (E) = A [E]
Recall that a sequence (ei) in E is called a Schauder basis for E if

every x E E can be written uniquely as x = li aiei and if the co-

efhcient functionals fk : x - ak are continuous. The basis (e;) is strong
if ~i p(ei)PB(fi)  00 for every p E eE and every B E OOE (pB denotes
the seminorm on E’, 03B2 (E’, E) corresponding to B). For the con-
nection between the existence of a strong basis with the nuclearity of
the space, as well as for examples of spaces having a strong basis we
refer to [3].

PROPOSITION 1: If E has a strong basis (ei, fi) then A (E) = A[E]
whenever e’ C A.

PROOF: Take (Yn) E A [E]. Since E is semi-reflexive ([3] Prop. 4), its

strong dual space E03B2 is barrelled. Hence, by the Banach-Steinhaus
theorem, the linear mapping

is continuous. I.e. 3 B E BE, ~ K &#x3E; 0 such that

For we then have:

So for (3 ~ A x we obtain:
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which implies that (yn) ~ A (E).

2. Spaces having property (ii) in the Theorem.
For convenience we’ll call them A-spaces.

PROPOSITION 2: Under each of the following conditions E is a
A-space:

(a) E03B2 is nuclear
(b) E has a strong basis and is fundamentally A-bounded
(c) E is a Frechet space or a DF-space with a strong basis

(d) E is a Frechet space or a DF-space and A (E) = A[E].

PROOF:

(a) Every absolutely summing map between Banach spaces is

A-summing (see [4]), then apply Pietsch’s result mentioned in the
introduction, and the theorem.

(b) From Prop. 1.

(c) Every Frechet space (and every DF-space) is fundamentally
A-bounded (see [10]). Then apply (b)

(d) As in (c).

REMARK: Proposition 2(a) can also be interpreted as follows: If E
has property (B) and l1(E) = l1[E] then for every A, E is fundamen-
tally A-bounded and A (E) = A [E].

3. The relation to nuclearity.
03B2If A is such that sufficiently many compositions of A-summing

maps provide an absolutely summing map then every A-space E has a
strong dual space E03B2 which is nuclear. It is shown in [9] that this is
the case whenever A = fP (1  p  ~. We therefore obtain:

PROPOSITION 3: The following are equivalent:
(i) E03B2. is nuclear
(ii) E is fundamentally ep-bounded and lP (E) = lP [E] (for some

1  p  ~.

COROLLARY: IF E is a Frechet space or a DF-space then E (and

E’03B2) is nuclear if and only if fP(E) = fP[E] for some p (1  p  ~.

(This result contains Grothendieck’s result mentioned in the in-

troduction).
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