J. Bourgain

A geometric characterization of the Radon-Nikodym property in Banach spaces

Compositio Mathematica, tome 36, no 1 (1978), p. 3-6

<http://www.numdam.org/item?id=CM_1978__36_1_3_0>
A GEOMETRIC CHARACTERIZATION OF THE RADON–NIKODYM PROPERTY IN BANACH SPACES

J. Bourgain*

Abstract

It is shown that a Banach space E has the Radon–Nikodym property (R.N.P.) if and only if every nonempty weakly-closed bounded subset of E has an extreme point.

Notations

E, $\|\|$ is a real Banach space with dual E'. For sets $A \subset E$, let $c(A)$ and $\bar{c}(A)$ denote the convex hull and closed convex hull, respectively. If $x \in E$ and $\epsilon > 0$, then $B(x, \epsilon) = \{y \in E; \|x - y\| < \epsilon\}$. A subset A of E is said to be dentable if for every $\epsilon > 0$ there exists a point $x \in A$ such that $x \in \bar{c}(A \setminus B(x, \epsilon))$.

Suppose that C is a nonempty, bounded, closed and convex subset of E. Let $M(C) = \sup\{\|x\|; x \in C\}$. If $f \in E'$, let $M(f, C) = \sup\{f(x); x \in C\}$, and for each $\alpha > 0$, let $S(f, \alpha, C) = \{x \in C; f(x) \geq M(f, C) - \alpha\}$. Such a set is called a slice of C.

Lemma 1: Let C and C_1 be nonempty, bounded, closed and convex subsets of E, such that $C_1 \subset C$ and $C_1 \neq C$. Then there exist $x \in C$, $f \in E'$ and $\alpha > 0$ with $f(x) = M(f, C) > M(f, C_1) + \alpha$.

Proof: Without restriction, we can assume $M(C) \leq 1$. Take $x_1 \in C \setminus C_1$. By the separation theorem we have $f_1 \in E'$ and $\alpha_1 > 0$ with $f_1(x_1) > M(f_1, C_1) + \alpha_1$.

Let $\alpha = \alpha_1/3$. Using a result of Bishop and Phelps (see [1]), we

Navorsingsstagiair, N.F.W.O., Belgium, Vrije Universiteit Brussel.
LEMMA 2: Let C be a nonempty, bounded, closed and convex subset of E. If for every $\epsilon > 0$, there exist convex and closed subsets C_1 and C_2 of C, such that $C = \partial(C_1 \cup C_2)$, $C_1 \neq C$ and $\text{diam } C_2 \leq \epsilon$, then C is dentable.

PROOF: Take $\epsilon > 0$ and let C_1, C_2 be convex and closed subsets of C, such that $C = \partial(C_1 \cup C_2)$, $C_1 \neq C$ and $\text{diam } C_2 \leq \epsilon/2$. By Lemma 1, there exist $x \in C$, $f \in E'$ and $\alpha > 0$ with $f(x) = M(f, C) > M(f, C_1) + \alpha$.

Let $d = \text{diam } C$ and consider the set

$$Q = \left\{ \lambda y_1 + (1 - \lambda) y_2; \ y_1 \in C_1, y_2 \in C_2 \text{ and } \lambda \in \left[\frac{\epsilon}{12d}, 1 \right] \right\}.$$

It follows immediately that Q is a closed, convex subset of C and $x \notin Q$. Suppose $z_1, z_2 \in C \setminus Q$. We find z_1', z_2' such that $z_i' \in \partial(C_1 \cup C_2)$, $z_i' \notin Q$ and $\|z_i - z_i'\| < \epsilon/6$ ($i = 1, 2$). There exist $y_1 \in C_1$, $y_2 \in C_2$ and $\lambda_i \in [0, \epsilon/12d]$, with $z_i' = \lambda_i y_1 + (1 - \lambda_i) y_2$ ($i = 1, 2$). We obtain:

$$\|z_i - z_i'\| < \|z_i' - z_i\| + \frac{\epsilon}{3} \leq \|y_i - y_i'\| + \lambda_i \|y_1 - y_2\| + \lambda_2 \|y_1 - y_2\| + \frac{\epsilon}{3} \leq \epsilon.$$

This implies that $C \setminus Q \subset B(x, \epsilon)$ and therefore $\partial(C \setminus B(x, \epsilon)) \subset Q$. Because $x \notin Q$, we have that $x \notin \partial(C \setminus B(x, \epsilon))$, which proves the lemma.

THEOREM 3: If the Banach space E hasn’t the RNP, there exists a nonempty, bounded and weakly-closed subset of E without extreme points.

PROOF: If E hasn’t the RNP, there is a closed and separable subspace of E, which hasn’t the RNP (see [4]). Therefore we can assume E separable.

Let C be a non-dentable, convex, closed and bounded subset of E. By Lemma 2, there exists $\epsilon > 0$, such that if $C = \partial(C_1 \cup C_2)$, where C_1, C_2 are closed, convex and $\text{diam } C_2 \leq \epsilon$, then $C = C_1$. Suppose $C = \cup_{p \in \mathbb{N}^*} B_p$, where B_p is the intersection of C and a closed ball with radius $\epsilon/2$. By induction on $p \in \mathbb{N}^*$, we construct sequences $(N_p)_p$, $(V_p)_p$ and $(\alpha_p)_p$, where N_p is a finite subset of \mathbb{N}^*, $V_p = \{(x_\omega, \lambda_\omega, f_\omega); \omega \in N_p\}$ a subset of $C \times [0, 1] \times E'$ and $\alpha_p > 0$, with the following properties:
(1) \(N_p\) is the projection of \(N_{p+1}\) on the \(p\) first co-ordinates \((p \in \mathbb{N}^*)\).

(2) \(\sum_{(w,i) \in N_p} \lambda_{(w,i)} = 1\) \((p \in \mathbb{N}^*, \omega \in N_p)\).

(3) \(\|x^i - \sum_{(w,i) \in N_{p+1}} \lambda_{(w,i)} x_{(w,i)}\| < (1/2^{p+1})\) \((p \in \mathbb{N}^*, \omega \in N_p)\).

(4) \(f_w(x_w) = M(f_{w}, C)\) \((p \in \mathbb{N}^*, \omega \in N_p)\).

(5) \(S(f_{(w,i)}, \alpha_{p+1}, C) \subseteq S(f_{(w,i)}, \alpha_{p}, C)\) \((p \in \mathbb{N}^*, (\omega, i) \in N_{p+1})\).

(6) \(S(f_{(w,i)}, \alpha_{p}, C) \cap B_1 = \emptyset\) \((p \in \mathbb{N}^*, \omega \in N_p)\).

(In (2) and (3), \(i\) is the summation index).

CONSTRUCTION:

(1) Take \(N_1 = \{1\}\) and \(\lambda_1 = 1\). Applying Lemma 1, we find \(x_1 \in C\), \(f_1 \in E'\) and \(\alpha_1 > 0\) such that \(f_1(x_1) = M(f_1, C)\) and \(S(f_1, \alpha_1, C) \cap B_1 = \emptyset\).

(2) Suppose we found \(N_p\), \(V_p\) and \(\alpha_p\).

Take \(\omega \in N_p\).

Let \(S = \{x \in C; \exists f \in E'\) such that \(f(x) = M(f, C)\)

> \sup f((C \setminus S(f_{(w,i)}, \alpha_{p}, C)) \cup B_{p+1})\}

By lemma 1, we obtain easily

\[C = \bar{c}((C \setminus S(f_{(w,i)}, \alpha_{p}, C)) \cup B_{p+1} \cup S)\).

Because \(\text{diam } B_{p+1} = \epsilon\), this implies

\[x_w \in C = \bar{c}((C \setminus S(f_{(w,i)}, \alpha_{p}, C)) \cup S)\]

Thus there are sequences \((a_m)_m\) in \(C \setminus S(f_{(w,i)}, \alpha_{p}, C)\), \((b_m)_m\) in \(c(S)\) and \((t_m)_m\) in \([0, 1]\), with \(x_w = \lim_{m \to \infty} (t_m a_m + (1 - t_m) b_m)\).

Because \(f_w(t_m a_m + (1 - t_m) b_m) \leq M(f_{(w,i)}, C) - t_m \alpha_p\), it follows that \(\lim_{m \to \infty} t_m = 0\) and thus \(x_w = \lim_{m \to \infty} b_m \in \bar{c}(S)\).

Take \(m_w \in \mathbb{N}^*, x_{(w,i)} \in S, \lambda_{(w,i)} \in [0, 1], f_{(w,i)} \in E'\) \((1 \leq i \leq m_w)\) and \(\beta_{\omega} > 0\), such that:

(1) \(\sum_{i=1}^{m_w} \lambda_{(w,i)} = 1\).

(2) \(\|x_w - \sum_{i=1}^{m_w} \lambda_{(w,i)} x_{(w,i)}\| < (1/2^{p+1})\).

(3) \(f_{(w,i)}(x_{(w,i)}) = M(f_{(w,i)}, C)\) \((1 \leq i \leq m_w)\).

(4) \(S(f_{(w,i)}, B_{\omega}, C) \subseteq S(f_{(w,i)}, \alpha_{p}, C)\) \((1 \leq i \leq m)\).

(5) \(S(f_{(w,i)}, B_{\omega}, C) \cap B_{p+1} = \emptyset\) \((1 \leq i \leq m_w)\).

Finally, let

\[N_{p+1} = \{(\omega, i); \omega \in N_p \text{ and } 1 \leq i \leq m_w\}\]

\[V_{p+1} = \{(x_{(w,i)}, \lambda_{(w,i)}, f_{(w,i)}); (\omega, i) \in N_{p+1}\}\]

\[\alpha_{p+1} = \min\{\beta_{\omega}; \omega \in N_p\}\].

We verify that this completes the construction. Now, for every \(p \in \mathbb{N}^*\) and \(\omega \in N_p\), we define

\[y_{\omega} = \lim_{p \to \infty} \sum_{i_{1}, \ldots, i_{p}} \lambda_{(w_{i_{1}}, \ldots, i_{p})} x_{(w_{i_{1}}, \ldots, i_{p})}\].
where for each \(\nu \in \mathbb{N}^\ast \) the summation happens over all integers \(i_1, \ldots, i_{\nu} \) satisfying \((\omega, i_1, \ldots, i_{\nu}) \in N_{p+\nu} \). It is clear that these limits exist. Furthermore, we have for each \(p \in \mathbb{N}^\ast \) and \(\omega \in N_p \):

1. \(y_\omega = \sum_{(\omega,i) \in N_{p+1}} \lambda_{(\omega,i)} y_{(\omega,i)} \).
2. \(y_\omega \in S(f_\omega, \alpha_p, C) \).

(In (1) is \(i \) the summation index).

We will show that \(R = \{ y_\omega; p \in \mathbb{N}^\ast \text{ and } \omega \in N_p \} \) is the required set.

If \(z \in C \), there exists \(n \in \mathbb{N}^\ast \) such that \(z \in B_n \). By construction \(U = \bigcap_{\omega \in N_n} (E \setminus S(f_\omega, \alpha_n, C)) \) is a weak neighborhood of \(z \) and \(U \cap R \) is finite. Hence \(R \) is weakly closed and we also remark that \(R \) is discreet in its weak topology. It remains to show that \(R \) hasn’t extreme points.

Take \(p \in \mathbb{N}^\ast \) and \(\omega \in N_p \).

Then there is some \(n \in \mathbb{N}^\ast \) with \(y_\omega \in B_n \). Clearly, \(n > p \). Since \(y_\omega \in c(U \subset N_n (S(f_D, \alpha_n, C) \cap R)) \), and for each \(\Omega \in N_n \), we have \(S(f_D, \alpha_n, C) \cap B_n = \emptyset \), \(y_\omega \) is not an extreme point of \(R \).

This completes the proof of the theorem.

Corollary 4: A Banach space \(E \) has the RNP if and only if every bounded, closed and convex subset \(C \) of \(E \) contains an extreme point of its weak*-closure \(\tilde{C} \) in \(E'' \).

Proof: The necessity is a consequence of the work of Phelps (see [5]).

If now \(E \) does not possess the RNP, there exists a bounded, weakly closed subset \(R \) of \(E \) without extreme points. Clearly \(C = \text{c}(R) \) does not contain an extreme point of its weak*-closure.

References

