ANTONIO CASSA

A theorem on complete intersection curves and a consequence for the runge problem for analytic sets

Compositio Mathematica, tome 36, no 2 (1978), p. 189-202

<http://www.numdam.org/item?id=CM_1978__36_2_189_0>
A THEOREM ON COMPLETE INTERSECTION CURVES AND A CONSEQUENCE FOR THE RUNGE PROBLEM FOR ANALYTIC SETS

Antonio Cassa

Summary

The main goal of this article is to prove the following:

Approximation Theorem: Let X be a Stein complex analytic manifold of dimension $n \geq 2$, A a Runge and Stein open set of X and C a curve of A; there exists a sequence of curves $\{C_k\}_{k \geq 1}$ of X such that:

$$C = \lim_{k \to \infty} (C_k|_A)$$

in the topological space $Z_1^+(A)$ of positive analytic 1-cycles of A.

The proof makes use essentially of the following:

Complete Intersection Theorem: For each relatively compact open set B of A there exist functions g_1, \ldots, g_{n-1} holomorphic on B such that the positive analytic 1-cycle defined by $g = (g_1, \ldots, g_{n-1})$ in B is:

$$V_1(g) = C|_B + m_1 \cdot (D_1|_B) + \cdots + m_s \cdot (D_s|_B)$$

where D_1, \ldots, D_s are curves of X and m_1, \ldots, m_s positive integers.

In fact if $\{g^{(k)}\}_{k \geq 1}$ is a sequence of maps $g^{(k)} : X \to \mathbb{C}^{n-1}$ holomorphic on X, having at least multiplicity m_i on D_i for each $i = 1, \ldots, s$ and converging to g, for k big enough we have:

$$V_1(g^{(k)}) = C|_B + m_1 \cdot (D_1|_B) + \cdots + m_s \cdot (D_s|_B)$$
where the C_k are curves of X; then in $Z^1(B)$:

$$C = \lim_{k \to \infty} (C_k|_B)$$

So every curve C of A can be approximated by curves of X on every relatively compact open set B of A, that is the restriction map:

$$Z_1(X) \longrightarrow Z_1(A)$$

has dense image in $Z_1(A)$.

Moreover if C is irreducible in A the curves C_k can be chosen irreducible in X and if X is an open set of C^n they can be taken algebraic.

This proves that the so-called Runge problem has always solution for analytic cycles of dimension one. This is no longer true in general for higher dimension; Cornalba and Griffiths show in [7] page 76 there exists a non trivial condition for the approximability of an analytic set.

Under that condition they state a general Runge problem for analytic sets that they solve in the case of codimension one.

In that article (as in [4]) the topology of $Z^d_+(X)$ is defined through the space of currents $\mathcal{D}^d(X)$; the properties of that topology are described in [11] and in a more geometric way in [3] or in [5].

I take the opportunity of thanking prof. A. Andreotti for all his help and mainly for his precious suggestions; likewise I wish to thank prof. M. Cornalba and prof. Ph. Griffiths for having communicated to me their ideas about the Runge problem.

List of symbols

- $\text{reg } V = \text{manifold of all the regular points of the analytic space } V.$
- $\text{sing } V = V - \text{reg } V = \text{subspace of the singular points of } V.$
- $T_x(V) = \text{Hom}_C(\mathcal{W}_x, \mathcal{W}_x^*; C) = \text{Zarinski tangent space at } x \in V.$
- $\text{dim } T_x(V) = \text{dim}_C T_x(V) = \text{embedding dimension} = \text{tangential dimension}.$
- $Z_d(W) = \text{topological group of the analytic } d\text{-cycles in the manifold } W.$
- $Z^+_d(W) = \text{cone in } Z_d(W) \text{ of the positive } d\text{-cycles of } W.$
- $V_d(f) = \text{positive } d\text{-cycle defined by the equation } f = 0, \text{ where } f: W \to \mathbb{C}' \text{ is an holomorphic map.}$
§1. The estimate of the rank of a sheaf using the Endromisbündel of Forster and Ramspott

Let \mathcal{F} be a coherent sheaf on a complex analytic manifold X. For each point $x \in X$ the least number of generators of the stalk \mathcal{F}_x is given by the dimension on \mathbb{C} of the vector space $L_x(\mathcal{F}) = \mathcal{F}_x/(\pi_x \cdot \mathcal{F}_x)$. If this number is bounded in X the sheaf \mathcal{F} has finite rank, that is there exist sections $f_1, \ldots, f_r \in \Gamma(X, \mathcal{F})$ generating all the stalks \mathcal{F}_x for every $x \in X$ (see [6]).

Taken a positive integer $s \leq r$, the existence of s sections $g_1, \ldots, g_s \in \Gamma(X, \mathcal{F})$ with the same property is equivalent to the existence of an holomorphic section of a bundle $E(\mathcal{F}; f, r)$ on X called Endromisbündel (see [8]).

The Endromisbündel is an open set of $X \times \mathbb{C}^s$ obtained subtracting analytic subspaces defined by the sections f_1, \ldots, f_r and by the numbers $\{\dim \mathcal{F}_x; x \in X\}$.

Let’s put for each integer $k \geq 0$:

$$Y_k(\mathcal{F}) = \{x \in X: \dim \mathcal{F}_x \geq k\}$$

the family $\{Y_k(\mathcal{F})\}_{k \geq 0}$ is a decreasing sequence of analytic subspaces of X which are surely empty for $k \geq r + 1$.

On the analytic space $X_k(\mathcal{F}) = Y_k(\mathcal{F}) - Y_{k+1}(\mathcal{F})$ the Endromisbündel is a locally trivial holomorphic bundle whose fibre $F_{r, s, k}$ is homotopic to the manifold W_{sk} of all the orthonormal k-frames of \mathbb{C}^s.

The main result of [8] (satzen 5 and 6) claims that if X is holomorphically convex the existence of a holomorphic section of the Endromisbündel is equivalent to the existence of a continuous section.

Therefore the evaluation of the rank of \mathcal{F} is a purely topological problem whose main ingredients are the spaces $Y_k(\mathcal{F})$ and the fibres W_{sk}.

The following proposition is a way to make sure the existence of a continuous section of $E(\mathcal{F}, f, s)$ supposing zero all the cohomology groups containing the obstructions.

Proposition: Let X be a Stein manifold and \mathcal{F} a coherent analytic sheaf having his rank bounded by an integer s.

If for each $k \geq 0$ and $q \geq 1$:

$$H^{q+1}(Y_k(\mathcal{F}), Y_{k+1}(\mathcal{F}); \pi_q(W_{sk})) = 0$$
then there exist s sections $g_1, \ldots, g_s \in \Gamma(X, \mathcal{F})$ generating all the stalks of \mathcal{F}.

Proof: Let f_1, \ldots, f_r be global sections of \mathcal{F} generating all the stalks of \mathcal{F}; proceeding by induction on $h = r - k$ from 0 to r we will prove there exists a continuous section of $E(\mathcal{F}, f, s)$ on $Y_{r-h}(\mathcal{F})$ for $h = 0, \ldots, r$.

If $h = 0$ since $Y_{r+1} = \emptyset$ the bundle $E(\mathcal{F}, f, s)$ is a locally trivial fibre bundle with fibre homotopic to W_{sr}; the condition $H^{q+1}(Y_r; \pi_q(W_{sr})) = 0$ is just the one we need to prove the existence of a continuous section on Y_r (see [13] page 174).

Let's prove now we can extend a continuous section from $Y_{r-(h-1)}$ to Y_{r-h}; we can find a triangulation of Y_{r-h} in such a way $Y_{r-(h-1)}$ is a subpolyhedron furnished of a neighborhood U which is again a subpolyhedron of Y_{r-h} and contractible on $Y_{r-(h-1)}$.

Since $E(\mathcal{F}, f, s)$ is an open set of $\mathbb{C}^n \times X$ choosing U suitably small we can, first of all, extend our continuous section from $Y_{r-(h-1)}$ to U; then we can extend the section from $U - Y_{r-(h-1)}$ to $Y_{r-h} - Y_{r-(h-1)}$ because for each $q \geq 1$ we have:

$$H^{q+1}(Y_{r-h} - Y_{r-(h-1)}, U - Y_{r-(h-1)}; \pi_q(W_{s,r-h})) = 0$$

In fact:

$$H^{q+1}(Y_{r-h} - Y_{r-(h-1)}; U - Y_{r-(h-1)}) = H^{q+1}(Y_{r-h}, U)$$

$$= H^{q+1}(Y_{r-h}, Y_{r-(h-1)}) = H^{q+1}(Y_k, Y_{k+1}) = 0.$$

§2. Complete intersection curves

Let C be a curve of an open set of \mathbb{C}^n and x_0 a singular point of C, if $\dim t_{x_0}(C) = 2$ then the curve C is complete intersection at x_0.

In fact there exist a manifold M of dimension 2 in \mathbb{C}^n and a neighborhood U of x_0 such that $C \cap U \subset M \cap U$; restricting, in case, U we can find a function f_n holomorphic on U such that $\mathcal{F}_{C \cap U \cap M} = f_n \cdot \mathcal{O}_{M \cap U}$ and functions f_2, \ldots, f_{n-1} holomorphic on U such that $\mathcal{F}_{M \cap U} = f_2 \cdot \mathcal{O}_U + \cdots + f_{n-1} \cdot \mathcal{O}_U$; therefore

$$\mathcal{F}_{C \cap U} = f_2 \cdot \mathcal{O}_U + \cdots + f_n \cdot \mathcal{O}_U.$$

The following two lemmas prove in most cases that if $t = \dim t_{x_0}(C)$ is bigger than 2, then adding to C some lines L_1, \ldots, L_{t-2} through x_0 the curve $C \cup (L_1 \cup \cdots \cup L_{t-2})$ is complete intersection at x_0.

LEMMA 1: Let C be a curve of an open set of \mathbb{C}^n (with $n \geq 2$) and the origin 0 a singular point of C.

Denoted by L_1, \ldots, L_n the coordinate axes of \mathbb{C}^n and written $L_0 = \{0\}$, if the following hypothesis is verified:

(i) the projection map $p : \mathbb{C}^n \to \mathbb{C}^2$ defined by $p(z_1, \ldots, z_n) = (z_{n-1}, z_n)$ is injective on C in a neighborhood of 0.

then a neighborhood V of 0, an integer $s = 0, \ldots, n-2$, a Stein neighborhood U of $(L_0 \cup \cdots \cup L_s)$ and functions f_1, \ldots, f_{n-1} holomorphic on U exist such that:

(1) \{ $x \in U : f_i(x) = \cdots = f_{n-1}(x) = 0$ \} = $(C \cap V \cap U) \cup (L_0 \cup \cdots \cup L_s)$

(2) the germs $f_{1,x}, \ldots, f_{n-1,x}$ generate the stalk $\mathcal{F}_{C,x}$ for each $x \in C \cap V \cap U - \{0\}$.

PROOF: Let's proceed by induction on $n \geq 2$. For $n = 2$ the conclusion is well known. For $n \geq 3$ let's suppose we have already proved the lemma for all the curves C' of \mathbb{C}^n with $n' < n$ and let's prove it for the curves C of \mathbb{C}^n.

Let's denote by $q : \mathbb{C}^n \to \mathbb{C}^{n-1}$ the projection along the axis L_{n-2} defined by $q(z_1, \ldots, z_{n-2}, z_{n-1}, z_n) = (z_1, \ldots, 0, z_{n-1}, z_n)$ with values in $\mathbb{C}^{n-1} = \{z \in \mathbb{C}^n : z_{n-2} = 0\}$.

For the hypothesis (i) it is possible to find a neighborhood V of 0 where q is injective on C. Rechoosing in case V we can suppose the map $q : V \cap C \to q(V)$ proper; therefore $C' = q(C \cap V)$ is a curve of $V' = q(V)$ open neighborhood of 0 in \mathbb{C}^{n-1}.

We can choose V small enough to have also $\text{sing}(C) \cap V = \{0\} = \text{sing}(C')$.

The curve C' of \mathbb{C}^{n-1} in respect to the coordinates $z_1, \ldots, z_{n-2}, z_{n-1}, z_n$ verifies the hypothesis (i); for the induction there exist an integer $s' = 0, \ldots, n-3$, a Stein neighborhood U' of $L_0 \cup \cdots \cup L_{s'}$ and functions f_1', \ldots, f_{n-2} holomorphic on U' verifying the theses (1) and (2).

Using (i) it can be verified that the restriction of q gives a map $\hat{q} : (C \cap V) \cup (L_0 \cup \cdots \cup L_s) \to C' \cup (L_0 \cup \cdots \cup L_{s'})$ bijective and holomorphic, whose inverse is meromorphic, continuous and biholomorphic out of 0. Likewise the function m in $C' \cup (L_0 \cup \cdots \cup L_{s'})$ defined by $m(x') = z_{n-2}(\hat{q}^{-1}(x'))$ is meromorphic, continuous, holomorphic out of 0 and vanishes on $(L_0 \cup \cdots \cup L_{s'})$. Therefore $m(x') = a'(x')/b'(x')$ everywhere $b'(x') \neq 0$ for two functions a', b' holomorphic on $C' \cup (L_0 \cup \cdots \cup L_{s'})$ with b' not identically zero on any irreducible component and $a' = 0$ on $L_0 \cup \cdots \cup L_{s'}$.

Solving a \mathcal{O}^*-cohomological problem we can find two functions a and b holomorphic such that $b(x') \neq 0$ if $x' \neq 0$ and $m(x') = a(x')/b(x')$ for each $x' \neq 0$.

Since U' is Stein we can suppose a and b defined on U'; written $U = q^{-1}(U')$, $f_1 = f_1 \circ q$, \ldots, $f_{n-2} = f_{n-2} \circ q$, $f_{n-1} = (b \circ q) \cdot z_{n-2} - (a \circ q)$ the theses (1) and (2) are verified for the curve C together with the lines L_0, \ldots, L_{n-2} if $b(0) = 0$ or the lines L_0, \ldots, L_r if $b(0) \neq 0$.

Lemma 2: Let C be as in Lemma 1 and $n \geq 3$; there exists a coordinate system in C^n verifying (i).

Moreover if E is a measurable subset of $C^n \setminus \{0\}$ with Hausdorff measure $H_r(E) = 0$ for each $r > 2$, the coordinate system can be chosen in such a way to have:

$$(L_1 \cup \cdots \cup L_{n-2}) \cap E = \emptyset$$

Proof: For each n-uple of lines $L = (L_1, \ldots, L_n)$ in general position and for each $i = 1, \ldots, n-1$ let’s write $V_{L,i} = L_1 + \cdots + L_n$ and let’s denote $p_{L,i} : C^n \to V_{L,i}$ and $q_{L,i+1} : V_{L,i} \to V_{L,i+1}$ the natural projections.

Since $p_{n-1} = (q_{n-1}) \circ \cdots \circ (q_2)$, if p_{n-1} is not injective on C in any neighborhood of 0, then some of the projections q_{i+1} (where $i = 1, \ldots, n-2$) is not injective on the set $p_i(C)$ in any neighborhood of 0; therefore for each integer $j \geq 1$ there exist two points z_j and z'_j of C such that $p_i(z_j)$ and $p_i(z'_j)$ are different, non zero, $|p_i(z_j)| < 1/j$, $|p_i(z'_j)| < 1/j$ and $(p_i(z_j) - p_i(z'_j)) \in L_i$.

Then the intersection $L_i \cap (p_i(C) - p_i(C))$ has interior part not empty in L_i, this set is in fact the image of the holomorphic map $d| : d^{-1}(L_i) \cap (C \times C) \to L_i$ where $d : C^n + C^n \to V_i$ is defined by $d(z', z'') = p_i(z') - p_i(z'')$ which is of rank one at least in some point containing in its image the sequence $\{(p_i(z_j) - p_i(z'_j))\}_{j \geq 1}$ infinite and converging to 0.

Written $G = \{g \in C^* : g = e^{a+bi}$ with $a, b \in \mathbb{Q}\}$, $S_i = p_i(C) - p_i(C)$, $S'_i = \cup_{g \in G} g \cdot S_1$ we have $L_i = \cup_{g \in G} g \cdot (L_i \cap S_i)$ and therefore $L_i \subset S'_i + (L_0 + \cdots + L_{i-1})$.

Let’s prove at this point that for each $i = 1, \ldots, n-2$ and for each $L' = (L_0, \ldots, L_{i-1}) \in \{L_0\} \times (\mathbb{P}^{n-1})^{i-1}$ (where $L_0 = \{0\}$) the set $R_{L'} = \{L \in \mathbb{P}^{n-1} : L \subset S'_i + L_0 + \cdots + L_{i-1}\}$ has measure zero in \mathbb{P}^{n-1}.

In fact written $T_{L'} = \cup_{L \in R_{L'}} L$, because $T_{L'} \subset S'_i + L_0 + \cdots + L_{i-1}$ and $H_r(S'_i) = 0$ if $r > 4$, it must be $H_r(T_{L'}) = 0$ for $r > 4 + 2(i - 1)$ and therefore $H_r(R_{L'}) = 0$ if $r > 2 + 2(i - 1) = 2i$ since $T_{L'} \cup \{0\} \approx R_{L'} \times C^*$, so we can conclude $\mu(R_{L'}) = H_{2n-2}(R_{L'}) = 0$ because $2n - 2 > 2i$.

We are able now to prove that for each $k = 1, \ldots, n-2$ there exist k lines L_1, \ldots, L_k in general position such that $(L_1 \cup \cdots \cup L_k) \cap E = \emptyset$ and for each $l = 1, \ldots, k$ written $L'_l = (L_0, \ldots, L_{l-1})$ we have $L'_l \notin R_{L'}$.

A. Cassa [6]
For $k = n - 2$ the lemma will result proved.
For $k = 1$ we have to find $L_0 \in \mathbb{P}^{n-1}$ such that $L_1 \not\subseteq R_{L_0} \cup E'$ where E' is the image of E in \mathbb{P}^{n-1} for the natural quotient map. It is possible to find L_1 since the set of directions to avoid has measure zero in \mathbb{P}^{n-1}.

Given the lines L_1, \ldots, L_{k-1} with the properties listed above we have to find a line L_k in general position in respect with the others and in such a way $L_k \not\subseteq R_{L'} \cup E'$.

Again it is possible to choose L_k since the set of directions to avoid has measure zero.

THEOREM 1: Let X be a Stein manifold of dimension $n \geq 3$, A a Runge and Stein open set of X and C a curve of A.

For each relatively compact open set B of A there exist a curve D of X and functions g_1, \ldots, g_{n-1} holomorphic on B such that:

1. $\{x \in B : g_1(x) = \cdots = g_{n-1}(x) = 0\} = (C \cup D) \cap B$
2. The germs $g_{1,x}, \ldots, g_{n-1,x}$ generate the stalk $\mathcal{T}_{C,x}$ for each $x \in C \cap B - S$, where $S = \{x \in C \cap B : C$ is not complete intersection at $x\}$.

PROOF: Enlarging B we can suppose it a Runge and Stein open set yet relatively compact in A.

The set S contained in $\text{sing}(C) \cap B$ is finite; if $S = \emptyset$ the curve $C \cap B$ is locally complete intersection (ideal theoretically) and therefore it is complete intersection in B (see [8] page 162, the Remark (b) to Corollary (2) of Theorem (9).

If $S \neq \emptyset$ let's write $S = \{x_1, \ldots, x_p\}$; we show that however fixed an integer $r = 1, \ldots, p$ for each $j = 1, \ldots, r$ there exist a curve D_j of X, an open neighborhood U_j of D_j and functions $f_{j,1}, \ldots, f_{j,n-1}$ holomorphic on U_j such that:

A. $\{x \in U_j \cap B : f_{j,1}(x) = \cdots = f_{j,n-1}(x) = 0\} = (C \cup D_j) \cap U_j \cap B$
B. The germs $f_{j,1,x}, \ldots, f_{j,n-1,x}$ generate $\mathcal{T}_{C,x}$ for each $x \in C \cap U_j - \{x_j\}$
C. $D_j \cap C \cap B = \{x_j\}$
D. $U_k \cap U_j \cap B = \emptyset$ for each $k < j \leq r$.

Let's proceed by induction on r. Let $r = 1$; it is possible to find a holomorphic map $R : X \to C^n$ regular in x_1 and such that $R^{-1}(0) = \{x_1\}$ (see [8] page 161, Corollary 1 of Theorem 9). Replacing R with another map (denoted again by R) near enough to R we can have (see [9] page 168, Theorem 4):

1. for all the points x of a neighborhood W of $x_1 : R^{-1}(R(x)) \cap \overline{B} = \{x\}$
2. $R(x_1) = 0$
(3) \(\dim(R^{-1}(R(x))) = 0 \) for each \(x \in X \).

(4) \(R \) establishes a biholomorphism between \(W \) and \(W' = R(W) \) open set of \(C^n \).

Applying the Lemmas 1 and 2 to the curve \(C' = R(C \cap W) \) of the open set \(W' \) of \(C^n \) and to the set \(E = R(C) - \{0\} \), it is possible to find a coordinate system \((z_1, \ldots, z_n) \) in \(C^n \) whose coordinate axes we denote by \(L_1, \ldots, L_n \) \((L_0 = \{0\})\), a neighborhood \(V' \) of 0 contained in \(W' \), an integer \(s = 0, \ldots, n - 2 \), a neighborhood \(U' \) of \(L_0 \cup \cdots \cup L_s \) and functions \(f_1, \ldots, f'_{n-1} \) holomorphic on \(U' \) such that:

1. \(\{z \in U' : f_1(x) = \cdots = f'_{n-1}(x) = 0\} = (C' \cap V' \cap U') \cup (L_0 \cup \cdots \cup L_s) \)

2. the germs \(f_{1,z}, \ldots, f'_{n-1,z} \) generate \(\mathcal{O}_{C^n,z} \) for each \(z \in C' \cap V' \cap U' - \{0\} \)

3. \((L_0 \cup \cdots \cup L_s) \cap R(C) = \{0\} \).

Let's put \(D_1 = R^{-1}(L_0 \cup \cdots \cup L_s) \), since \(D_1 \cap C \cap \bar{B} = \{x_1\} \) we can find a neighborhood \(U_1 \) of \(D_1 \) contained in \(R^{-1}(U') \) such that \(C \cap (U_1 \cap \bar{B}) \subset C \cap W \); on \(U_1 \) let's define the functions \(f_{i,1} = f_{i,1} \circ R, \ldots, f_{i,n-1} = f_{i,n-1} \circ R \).

For these sets and functions the conditions (A) (B) (C) and (D) listed above are verified.

Let's suppose now \(r > 1 \) and we have found for each \(j = 1, \ldots, r - 1 \) a curve \(D_j \) of \(X \), a neighborhood \(U_j \) of \(D_j \) and functions \(f_{j,1}, \ldots, f_{j,n-1} \) satisfying the conditions (A) (B) (C) and (D) and let's show how to add a curve \(D_r \) a neighborhood \(U_r \) of \(D_r \) and functions \(f_{r,1}, \ldots, f_{r,n-1} \) in such a way the properties (A) (B) (C) and (D) are verified for each \(k < j \leq r \).

Again we consider an holomorphic map \(R_r : X \to C^n \) such that:

1. for all the points \(x \) of an open neighborhood \(W_r \) of \(x \), we have \(R_r^{-1}(R_r(x)) \cap \bar{B} = \{x\} \)

2. \(R_r(x_r) = 0 \)

3. \(\dim R_r^{-1}(R_r(x)) = 0 \) for each \(x \in X \).

As above we apply the Lemmas (1) and (2) to the curve \(C'_r = R_r(C \cap W_r) \) of the open set \(W'_r = R_r(W_r) \) of \(C^n \) and the set \(E_r = R_r(C \cup D_1 \cup \cdots \cup D_{r-1}) - \{0\} \); written \(D_r = R_r^{-1}(L_0 \cup \cdots \cup L_{s_r}) \), again we can find a neighborhood \(U_r \) of \(D_r \) such that \(C \cap U_r \cap B \subset C \cap W_r \) and define \(f_{r,1} = f_{i,1} \circ R_r, \ldots, f_{r,n-1} = f_{i,n-1} \circ R_r \); moreover since \(D_i \cap D_j \cap B = \emptyset \) if \(i \neq j \leq r \) we can choose \(U_i, \ldots, U_r \) in such a way to have \(U_i \cap U_j \cap B = \emptyset \) for each \(i \neq j \leq r \), and again these sets and functions satisfy the conditions (A) (B) (C) and (D).

Arrived with \(r \) to \(p \), let's put \(D = D_1 \cup \cdots \cup D_p \) and let's define for each \(i = 1, \ldots, p \) a coherent sheaf \(\mathcal{F}_i \) on \(U_i \cap B \) putting:

\[
\mathcal{F}_i = f_{i,1} \cdot \mathcal{O}_{|U_i \cap B} + \cdots + f_{i,n-1} \cdot \mathcal{O}_{|U_i \cap B}
\]
For each \(x \in U_i \cap B - D \) we have \(\mathcal{I}_{lx} = \mathcal{I}_{C,x} \).

We can now define a sheaf \(\mathcal{I} \) on \(B \) writing:

\[
\mathcal{I}_x = \begin{cases}
\mathcal{I}_{lx} & \text{if } x \in B \cap U_i \\
\mathcal{I}_{C,x} & \text{if } x \in B - D
\end{cases}
\]

The sheaf \(\mathcal{I} \) is well defined and coherent; moreover

\[
\dim L_x(\mathcal{I}) = \begin{cases}
1 & \text{for each } x \in B - (C \cup D) \\
n - 1 & \text{for each } x \in (C \cup D) \cap B
\end{cases}
\]

therefore the sheaf \(\mathcal{I} \) has limited rank on \(B \).

To complete the theorem’s proof we have to check that the rank of \(\mathcal{I} \) is just \(n - 1 \).

For what has been reported in §1 since we have:

\(Y_0(\mathcal{I}) = Y_1(\mathcal{I}) = B, \quad Y_2(\mathcal{I}) = \cdots = Y_{n-1}(\mathcal{I}) = (C \cup D) \cap B \) and

\(Y_r(\mathcal{I}) = \emptyset \) for each \(r \geq n \), we have to prove that for each \(q \geq 1 \):

\[
H^{q+1}((C \cup D) \cap B; \pi_q(W_{n-1,1})) = 0
\]

and

\[
H^{q+1}(B, (C \cup D) \cap B; \pi_q(W_{n-1,1})) = 0
\]

The first cohomology groups vanish because \((C \cup D) \cap B \) is a Stein curve; for the second we have \(W_{n-1,1} \approx S^{2n-3} \), therefore \(\pi_q(W_{n-1,1}) = 0 \) for each \(1 \leq q \leq 2n - 4 \).

For \(q \geq 2n - 3 \geq n \geq 3 \) from the exact sequence:

\[
\cdots \longrightarrow H^q((C \cup D) \cap B; G) \longrightarrow H^{q+1}(B, (C \cup D) \cap B; G) \longrightarrow H^{q+1}(B; G) \longrightarrow H^{q+1}((C \cup D) \cap B; G) \longrightarrow \cdots
\]

where \(G = \pi_q(W_{n-1,1}) \), it follows:

\[
H^{q+1}(B, (C \cup D) \cap B; G) \cong H^{q+1}(B; G) \cong 0
\]

because \(H^{q+1}((C \cup D) \cap B; G) = 0 = H^{q+1}(B; G) \) for each \(q \geq n \geq 3 \) (see [2] and [12]).

When \(X \) is an open set of \(\mathbb{C}^n \) we can prove something more precise:

Theorem 1: Let \(X \) be a Stein open set of \(\mathbb{C}^n \) \((n \geq 3) \), \(A \) a Runge and Stein open set of \(X \) and \(C \) a curve of \(A \).
If the set:
\[S = \{ x \in C : C \text{ is not complete intersection at } x \} \]
is finite, then for each \(x \in S \) there exists a finite family of lines \(L_{x,0}, \ldots, L_{x,s_x} \) through 0 such that the curve:
\[((C \cup \bigcup_{i=1}^{s_x} L_{x,i})) \cap A \]
is a set-theoretically complete intersection in \(A \).

More precisely there exist functions \(g_1, \ldots, g_{n-1} \) holomorphic on \(A \) such that:

1. \(\{ x \in A : g_1(x) = \cdots = g_{n-1}(x) = 0 \} = (C \cup \bigcup_{i=1}^{s_x} L_{x,i}) \cap A \)

2. the germs \(g_{1,x}, \ldots, g_{n-1,x} \) generate the stalk \(\mathcal{T}_{C,x} \) for each \(x \in C - S \).

PROOF: As in the theorem 1 forgetting about \(B \) or \(\bar{B} \) and using as maps \(R_x : X \to C^n \) the translations sending the points \(x_r \) in 0.

THEOREM 2: Let \(X \) be a Stein manifold of dimension \(n \geq 2 \), \(A \) a Runge and Stein open set of \(X \) and \(C \) a curve of \(A \).

For each relatively compact open set \(B \) of \(A \) there exist a holomorphic map \(g : B \to C^{n-1} \) and a positive 1-cycle \(D \in Z_1^+(X) \) such that:

\[V_1(g) = C|_B + D|_B. \]

PROOF: Let's prove first the theorem when \(n \geq 3 \); enlarging \(B \) we can suppose it Runge and Stein in \(A \). For the Theorem 1 there exist a map \(g : B \to C^{n-1} \) and a curve \(D \) of \(X \) such that:

1. \(\{ x \in B : G(x) = 0 \} = (C \cup D) \cap B \)

2. \(g_{1,x}, \ldots, g_{n-1,x} \) generate \(\mathcal{T}_{C,x} \) for each \(x \in \text{reg}(C) \cap B \).

Let's denote by \(D \) the sum of the components of the cycle \(V_1(g) \) not contained in \(C \); \(D \) is a cycle of \(X \) and we have:

\[V_1(g) = m_1 \cdot (C|_B) + \cdots + m_r \cdot (C|_B) + D|_B \]

where \(C_1, \ldots, C_r \) are curves contained in \(C \cap B \) decomposing it in its irreducible components, and \(m_1, \ldots, m_r \) are positive integers.

We have just to prove that \(m_1 = \cdots = m_r = 1 \); let \(i = 1, \ldots, r \) and \(x_i \in \text{reg}(C_i) \cap B \), at \(x_i \) we can find a coordinate system \((z_1, \ldots, z_n) \) such
that \(g_1 = z_1, \ldots, g_{n-1} = z_{n-1}; \) in this coordinate system \(V_1(g) \) is the \(n \)th axis counted only once.

If \(n = 2 \), enlarging in case the open set \(B \) we can suppose it Runge and Stein in \(X \) and with smooth boundary. Therefore (see [2]) we have \(H_3(X, B; \mathbb{Z}) = 0 \) and the group \(H_2(X, B; \mathbb{Z}) \) is free of finite rank; then the restriction map:

\[
r : H^2(X; \mathbb{Z}) \longrightarrow H^2(B; \mathbb{Z})
\]

is surjective.

Therefore there exists a positive divisor \(D \) of \(X \) such that \(r(c(D)) = -c(C_{|B}) \), that is \(c(D_{|B} + C_{|B}) = 0 \).

Since the divisor has Chern class zero, there exist a holomorphic map \(g : B \to \mathbb{C} \) such that: \(V_1(g) = C_{|B} + D_{|B} \).

§3. Approximation of curves

Theorem 3: Let \(X \) be a Stein manifold of dimension \(n \geq 2 \), \(A \) a Runge and Stein open set of \(X \) and \(C \) an irreducible curve of \(A \).

There exists a sequence of irreducible curves \(\{C_k\}_{k \geq 1} \) such that:

\[
\lim_{k \to \infty} (C_k \cap A) = C
\]

in the space of positive 1-cycles \(Z_1^+(A) \).

Proof: Let \(\{B_i\}_{i \geq 1} \) be a sequence of relatively compact open sets of \(A \) which are Runge and Stein and invade \(A \).

For each \(i \geq 1 \) for the Theorem 3 we can find irreducible curves \(D_{i1}, \ldots, D_{is_i} \) of \(X \) and a map \(g : B_i \to \mathbb{C}^{n-1} \) such that:

\[
V_1(g_i) = (C \cap B_i) + m_{i1} \cdot (D_{i1} \cap B_i) + \cdots + m_{is_i} \cdot (D_{is_i} \cap B_i).
\]

Let’s write \(T_i = (\mathcal{T}_{D_{i1}})^{m_{i1}} \cap \cdots \cap (\mathcal{T}_{D_{is_i}})^{m_{is_i}} \), since \(g_i \in [\Gamma(B_i, \mathcal{T}_{\mathcal{T}_{B_i}})]^{n-1} \) for theorem 11 at page 241 of [9] there exists a sequence of maps \(\{g^{(k)}_i\}_{k \geq 1} \subset [\Gamma(X, \mathcal{T}_i)]^{n-1} \) converging to \(g_i \) on \(B_i \); therefore for the prop. 7 of [5] we have:

\[
V_1(g_i) = \lim_{k \to \infty} (V_1(g_i^{(k)}))_{|B_i}.
\]

Let’s denote by \(T_{ik} \) the sum of the terms of \(V_1(g_i^{(k)}) \) whose support
is not in $D_i = D_{i_1} \cup \cdots \cup D_{i_l}$; we can write:

$$V_i(g_i^{(k)}) = T_{ik} + m_{i_1}^{(k)} \cdot D_{i_1} + \cdots + m_{i_l} \cdot D_{i_l}$$

where $m_{ij}^{(k)} \geq m_{ij}$ for each $k \geq 0$ and $j = 1, \ldots, s_r$.

Let's fix a point $x_{ij} \in \text{reg}(D_{ij}) \cap B_{ij}$ and choose in a neighborhood of x_{ij} a coordinate system where D_{ij} is the first coordinate axis; let's call R and L respectively a cube of center x_{ij} and L the normal hyperplane to D_{ij} in x_{ij}; for the Bochner–Martinelli formula (see [10]) we have:

$$m_{ij} = \int_{L \cap 0R} \frac{\lambda(g_i)}{|g_i|^{4n+2}} \quad \text{and} \quad m_{ij}^{(k)} \leq \int_{L \cap 0R} \frac{\lambda(g_i^{(k)})}{|g_i^{(k)}|^{4n+2}}$$

for k big enough, where $\lambda(g)$ is a form whose coefficients are polynomials in g and its derivatives.

For the integral continuity for k big enough we have $m_{ij} \geq m_{ij}^{(k)}$.

Therefore:

$$V_i(g_i^{(k)}) = T_{ik} + m_{i_1} \cdot D_{i_1} + \cdots + m_{i_l} \cdot D_{i_l}$$

and then subtracting the common terms between $V_i(g_i^{(k)})$ and $V_i(g_i)$:

$$C \cap B_I = \lim_{k \to \infty} (T_{ik}|_{B_I}).$$

For the convergence is a local property (see [5]) we have:

$$C = \lim_{i \to \infty} (T_{ii}).$$

To complete the proof we need only to prove the following:

Lemma: Let X be a manifold of dimension $n \geq 2$, A an open set of X and C an irreducible curve of A.

If there exists a sequence of 1-cycles $\{T_k\}_{k \geq 1} \subset Z_1'(X)$ such that:

$$C = \lim_{k \to \infty} (T_{k|A})$$

then there exists a sequence of irreducible curves $\{C_k\}_{k \geq 1}$ of X such that:

$$C = \lim (C_k \cap A).$$
LEMMA’S PROOF: It’s enough to prove the lemma for each relatively compact open set B of A.

Let x be a regular point of C, we can find a coordinate system in a neighborhood of x making C a line; let P_x be a polycylinder with center x in this coordinate system. For k big enough the analytic set $(\text{supp}(T_k)) \cap P_x$ is regular because each normal plane to C meets, in P_x, the space $\text{supp}(T_k)$ in a simple point for the Bochner–Martinelli formula; moreover $(\text{supp}(T_k)) \cap P_x$ is a connected manifold and there exists an irreducible curve C_{k_x} of X such that $T_{k|P_x} = C_{k_x|P_x}$ for each k bigger than a suitable k_x.

Let’s fix in $\text{reg}(C)$ a sequence of connected compact sets invading $\text{reg}(C)$ (such a sequence can be constructed using a triangulation of the connected smooth manifold $\text{reg}(C)$); let’s call U a compact neighborhood of $\text{sing}(C) \cap B$ small enough to be contained in a Stein open set of B.

Since the set $(B - U) \cap \text{reg}(C)$ is relatively compact in $\text{reg}(C)$ there exists a connected compact set K of $\text{reg}(C)$ containing the set $(B - U) \cap \text{reg}(C)$ and it is possible to find a finite number of points x_1, \ldots, x_m of K and polycylinders P_{x_1}, \ldots, P_{x_m} centered in those points such that $P = \bigcup_{i=1}^{m} P_{x_i} \supset K$; therefore we have $C \cap B \subset P \cup U$.

Moreover whenever $P_{x_i} \cap P_{x_j} \neq \emptyset$ we can find a point $x_{ij} \in P_{x_i} \cap P_{x_j}$, a polycylinder P_{ij} centered in x_{ij} contained in $P_{x_i} \cap P_{x_j}$ and an integer big enough k_{ij} such that $(\text{supp}(T_k)) \cap P_{ij}$ is non-empty and irreducible for each $k \geq k_{ij}$.

Since P is connected for $k \geq k = \max\{k_{x_i}, k_{ij}\}$ the irreducible curve representing T_k in each P_{x_i} must be the same, that is there exists an irreducible curve C_k of X for each $k \geq k$ such that: $T_{k|P} = C_k|P$.

Moreover for k big enough we have $(\text{supp}(T_k)) \cap B \subset (P \cap U) \cap B$ (see the Remark 5 of [5]); then $T_{k|B \cap U} = C_{k|B \cap U}$, that is $T_{k|B - U} = C_{k|B - U}$ and at last $T_{k|B} = C_{k|B}$.

THEOREM 4: Let X be an holomorphically convex open set of \mathbb{C}^n ($n \geq 2$), A a Runge and holomorphically convex open set of X and C an analytic irreducible curve of A. There exists a sequence of algebraic curves $\{C_k\}_{k \geq 1}$ of \mathbb{C}^n irreducible in X such that:

$$\lim_{k \to \infty} (C_k \cap A) = C$$

in the space of positive analytic 1-cycles $Z_1^+(A)$.

}[13] A theorem on complete intersection curves 201
PROOF: Trivial for $n = 2$.

For $n \geq 3$ following Theorem 3 let’s observe that, being X an open set of \mathbb{C}^n, we can take as curves D_{i_1}, \ldots, D_{i_k} some lines of \mathbb{C}^n as in Lemma 1 and therefore the section of the sheaf $\mathcal{F}_j = (\mathcal{F}_{D_{i_1}})^{\mu_{i_1}} \cap \cdots \cap (\mathcal{F}_{D_{i_k}})^{\mu_{i_k}}$ are generated by some polynomials p_{i_1}, \ldots, p_{i_k} of \mathbb{C}^n; that is for each $j = 1, \ldots, n - 1$ it holds:

$$ (g_j) = \sum_{i=1, \ldots, n} h_{ijl} \cdot p_{il} $$

for some functions h_{ijl} holomorphic on B_i.

Moreover we can choose the open sets B_i to be Runge in \mathbb{C}^n and then find sequences of polynomials $\{q_{ijl}^{(k)}\}_{k \geq 1}$ of \mathbb{C}^n converging to h_{ijl} on B_i.

Denoting $(g_{ijl})_k = \sum_{i=1, \ldots, n} q_{ijl}^{(k)} \cdot p_{il}$, the positive 1-cycles $\{T_{ik}\}$ are algebraic and even more so the curves $\{C_k\}_{k \geq 1}$.

REFERENCES

(Obblato 2–XII–1976) Università degli Studi
Istituto Matematico U. Dini
Vialé Morgagni 571A
I-50 134 Firenze, Italia.