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1. Introduction

In this paper we study skew product extensions of irrational

rotations on the circle by the group of integers. Such extensions are
determined by an integer valued Borel function on the circle. Even

though ’most’ such functions define ergodic extensions (cf. [6,
Theorem 9.11 ]), it is in general difficult to check whether a particular
function gives rise to an ergodic extension.
Here we consider the integer extension of an irrational rotation of

the circle which is given by the function which takes values + 1 and
-1 on complementary halves of the circle. The corresponding skew
product transformation is associated with the irregularity of dis-

tribution of the multiples of the irrational number (mod 1) defining the
rotation. Throughout the paper we shall write Z for the integers, R
for the real line, and [a, b) for an interval which is closed at a and

open at b.

2. A cylinder flow and its properties

Let X = [0, 1) = RIZ denote the additive group of real numbers
modulo 1 and let u be the Lebesgue measure on X. By T we denote
the transformation of X given by

for every x E X, where
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Consider the function f : X ----&#x3E; Z given by

We write À for the Haar (= counting) measure on Z and put X =
X x Z and p = 1£ x A. The function f defines a Z-extension S of T by
setting

Clearly S is a measure preserving automorphism of the measure

space (X, p). Our aim is to show that S is ergodic. Let, for every
n&#x3E;I,xEX,

If we put a (o, x ) = 0 and a (- n, x ) _ - a ( n, T -"x ), Aï&#x3E;l, x E X, we
obtain a map a : Z x X ---&#x3E; Z which satisfies the cocycle equation

for every m, n E Z, x E X, and we also have

for every k E Z, (x, n) E X.

PROPOSITION 2.1: Let E(a) be the set of all integers k which have the
following property: For every Borel set A C X of positive measure,

Then the following is true:
(1) E(a) is a subgroup of Z,
(2) S is ergodic if and only if E(a) = Z.

PROOF: See Theorem 3.9 and Corollary 5.4 in [6].

The first step in our proof of the ergodicity of S will be to show
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that

For every N&#x3E;0 we consider the numbers f -nao + t/2 (mod 1):0
n  N, t = 0, 1} and arrange them in increasing order: f3) = 0  f3BN) 
2  .....  2N+l = 1, say. It is easy to see that f3f’) = 0(’) +1 - 1/2 for
every k:5 N. For every x E X and every N ? 0 we choose kN(x) such
that

and put

and

whenever 1:5 kN(x):5 2N. If kN(x) = 0, we define l k(x) by (2.9) and
replace (2.10) by

For kN(X) = 2N + 1, we define IUx) by (2.9) and set

Furthermore we define

and

LEMMA 2.2:

PROOF: Let (pnI q", n &#x3E;- -2) be the sequence of best approximations
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of the irrational number 2ao = (V5 - 1)/2. It is given by q-2 = P-1 = 0,
P-2 = q-, = 1, and q. = qn-2 + qn-h Pn = Pn-2 + Pn-l for n 0. For any
y E R we write ((y)) for the distance of y from the nearest integer. A
classical result (see [3, p. 13]) states that

Consider now, for every n, the numbers f 2kao (mod 1): k = 1,..., qn}.
We arrange them again in increasing order and denote this arrange-
ment by y;n’  y2  ...  y. Finally we put l’Õn) = 0 and y%§ii = 1. It
is easy to see that

Hence we have, for all sufficiently large n,

In order to estimate J.L(Ik(x»IJ.L(IMx» we first note that, for every N,

and

where n is chosen so that qn  N :5 qn+1. For every x E X we thus

have

for all sufficiently large N. The lemma is proved.

LEMMA 2.3:
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PROOF: This is clear from Lemma 2.2.

LEMMA 2.4: Let A C X be a Borel set with &#x3E;(A) &#x3E; 0. Then there
exists an integer n such that

PROOF: For every x E A, consider the sequences of intervals

It(x), k = 1,..., 4, N = 1, 2,.... By a well known theorem of Lebesgue
we have, for every k = 1, ..., 4,

for J.L -a. e.x E A. We can thus choose a subset Ao C A of positive
measure and an integer No &#x3E; 0 with

for every x e Ao, k = 1, ..., 4, N &#x3E; No. Since f a ( 1, x) d&#x3E; (x) = 0, there
exists an integer m &#x3E;- No such that

(cf. [1] or [6, Theorem 11.4]). Let B = Ao n T-m Ao n{x: a(m, x) = O}.
Since m &#x3E; No, we have, for every x E B, k = 1, 2,

and

(2.15), (2.16), (2.18) and (2.19) together imply the following:
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provided that No (and hence m ) is sufficiently large. Similarly one
proves that

This implies that, for every x E B,

Having established (2.20), let us take a look at the function a(m, .).
Obviously a (m, .) is discontinuous exactly at the points f3 km), k =

0, ..., 2m + 1, and at each of these points we have

Moreover, Cm = {x: a(m, x) = 01 is a union of disjoint right half-open
intervals of the form [(3 km), 6(m», and none of the points 6(m) lies in
the interior of Cm. It follows immediately that for every x E Cm, and
for every y E Ifl(x))Ià(x), la(m, y)l = 2. (2.20) implies now (2.17), and
the proof is complete.

LEMMA 2.5: For every Borel set A C X with J.L(A) &#x3E; 0 there exists an

integer m such that

In other words, 2 E E(a).

PROOF: Using (2.17) we can find an integer mo with &#x3E;(A n T -mo A n

{x : /a(mo, x)/ = 2}) &#x3E; o. If J.L(A n T-moA n{x : a(mo, x) = 2}) &#x3E; 0, the

lemma is proved. Otherwise we put B =

AnT-m’Anix: a (mo, x) = -2}, and see that J.L(B) &#x3E; 0. For every y E

TTnoB we have T-mOy E A, and a (-mo, y) = - a (mo, T-mOy) = 2. This
shows that TTnoB = A n TTnoA n{x: a(-mo, x) = 2} has positive
measure and proves the lemma.

Having proved (2.8) we now proceed to show that E(a ) also

contains 1. To do this we consider the group Z2 of integers mod 2 and
the map à: Z X X ---&#x3E; Z2 given by ii (n, x) = a (n, x) (mod 2). As before
we define an extension S of T which now acts on Y = X x Z2:
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for every (x, k) E Y. If À denotes the measure on Z2 which assigns to
each point mass 1/2, we see that S is an isomorphism of Y which
preserves the measure p bt x Ã. It is very easy to check that S is

ergodic. This implies

THEOREM 2.6: Let X = [0, 1) = R/Z be the group of real numbers
modulo 1, and let it be the Lebesgue measure on X. If À denotes the
counting measure on Z, consider the measure space (X x Z, g xk)
and the measure preserving automorphism S of (X x Z, J.L x A) given
by

where

and

Then S is ergodic.

PROOF: We have already shown that E(a ) contains 2 (cf. Lemma

2.6). If E(a) Z, it must be equal to 2Z = {2n : nEZ}. Lemma 3.10 in
[6] (or a simple direct proof) shows that this would force the

automorphism S in (2.22) to be nonergodic, which is absurd. Hence
E(a ) = Z, and S is ergodic by Proposition 2.1. The theorem is proved.

3. Concluding remarks

One of the main problems in the theory of uniform distribution is
the question how well a sequence of the form (na (mod 1), n =

1, 2, ...), a irrational, is distributed in the unit interval X. To measure
the regularity of distribution one defines the discrepancy DN of the
sequence by
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for every N _&#x3E; 1, where X[a,b) denotes the characteristic function of the
interval [a, b). This immediately leads to an investigation of the

functions cô : Z x X ---&#x3E; R given by

Such functions satisfy the cocycle equation (2.5) for the irrational
rotation Tx = x + a (mod 1). From [5] it follows that the sequence

(c (n, x), n = 1, 2, ...) is unbounded for every irrational a, every

x E X, and for every 8 which is not of the form Q = ma (mod 1) for
some m. Theorem 2.6 in this note gives a more precise result

concerning the irregularity with which the numbers nao, n = 1, 2, ...,
fall into the two halves [0, 1 /2) and [1/2, 1) of the unit interval. An

equivalent formulation of Theorem 2.6 is the following statement:

For every pair of sets A, B of positive measure in the unit interval X
and for every integer k we can find an integer n and a point x E A such
that

( 1 ) x + nao (mod 1 ) E B,
(2) c -’ (n, x) = kl2.

The property of ao which was used in the proof of Theorem 2.6 was
that limn inf n«nao» &#x3E; 0, and the proof will work for any irrational a
with this property. Since this paper was written, the result of

Theorem 2.6 has been extended to all irrational numbers a (cf. [4] and
[6, Theorem 12.8]). Further results in this direction have been

achieved in [2].
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