Compositio Mathematica

Eduard Looijenga

The discriminant of a real simple singularity

Compositio Mathematica, tome 37, n 1 (1978), p. 51-62
http://www.numdam.org/item?id=CM_1978__37_1_51_0
© Foundation Compositio Mathematica, 1978, tous droits réservés.
L'accès aux archives de la revue «Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

THE DISCRIMINANT OF A REAL SIMPLE SINGULARITY

Eduard Looijenga

Introduction

Let (X_{0}, x_{0}) be a germ of a hypersurface with an isolated singularity which is defined over \mathbb{R}. Such a singularity admits a semi-universal deformation $F:\left(X, x_{0}\right) \rightarrow\left(S, s_{0}\right)$, also defined over \mathbb{R}. We choose a nice representative $\tilde{F}: X \rightarrow S$ for F, which is invariant under complex conjugation. The image of the critical set of \tilde{F}, resp. of its real part $\tilde{F}_{\mathbf{R}}: X(\mathbf{R}) \rightarrow S(\mathbf{R})$, is called the complex, resp. real, discriminant and denoted by D, resp. D_{R}. Various people, among whom Arnol'd, Pham and Thom conjecture that the complement of the complex discriminant has a contractible universal covering. Up to now, this has only been proved to be the case for the simple singularities. Thom also conjectures a sort of real analogue of this, namely that the connected components of the complement of the real discriminant are contractible. One of the aims of this paper is to show that this is indeed the case for the simple singularities. We should add here that Thom formulates his conjecture in a much stronger form than just given: it is claimed that the members of the canonical stratification of $S(R)$ (for this notion, see [6], Ch. I) are contractible. This too, can be proved for the simple singularities, but we shall not go into this matter in the present paper.

We briefly review the various sections. In section 1, our main results on real simple singularities are stated. The proof of these assertions requires an investigation of real discriminants of certain Coxeter groups, which is carried out in section 2 . Since the proofs are valid for any finite Coxeter group, we have stated the results accordingly. As such, this section is completely independent of the previous one. In the last section we show how the period mapping enables us to reduce the assertions of section 1 to the results of section 2.

I am much indebted to a letter of E. Brieskorn. In this letter, Brieskorn communicated to me the result (2.2) of Tits (in its untwisted form) and pointed out how this might be used to describe the connected components in question in the simple case by means of the associated Coxeter group.

This paper was written during a visit at the Sonderforschungsbereich in Bonn. I would like to thank this institution for its support.

1. Real forms of singularities

We begin with comparing the real and the complex discriminant. First a few general observations. Since D is the proper image of an analytic set, D is analytic in S by Remmert's theorem. Similarly, D_{R} is by the Tarski-Seidenberg theorem a closed semi-algebraic subset of $S(\mathbb{R})$. Furthermore D (resp. $D_{\mathbf{R}}$) is at each of its points of complex (resp. real) codimension one.
(1.1) Proposition: The real discriminant D_{R} is the closure of the real nonsingular part of D. The difference $D(\mathbb{R})-D_{R}$ is a semi-algebraic subset of codimension ≥ 2 in $S(\mathbb{R})$.

Proof: If s is a real nonsingular point of D, then the fibre $X_{s}:=\tilde{F}^{-1}(s)$ has precisely one singular point. Since the singular part of X_{s} is invariant under complex conjugation, this point must be real. Hence $s \in D_{\mathbf{R}}$. Conversely, let $s \in D_{\mathbf{R}}$ and suppose that there exists a neighbourhood of s in D_{R} which is entirely contained in the singular locus of D. Since such a neighbourhood contains a point where it is locally a real codimension-one submanifold of $S(\mathbf{R})$, the singular locus of D must be somewhere of complex codimension one in S. This is of course impossible and thus the proof of the first assertion is complete. To prove the second statement, we observe that the first one implies that $D(\mathbb{R})-D_{\mathrm{R}}$ is contained in the singular locus of D. As this singular locus is defined over \mathbb{R} and of complex codimension ≥ 2 in S, it follows that its real part is of real codimension ≥ 2 in $S(\mathbb{R})$.
(1.2) Corollary: The connected components of $S(\mathbb{R})-D(\mathbb{R})$ and $S(\mathbb{R})-D_{R}$ are in a canonical bijective correspondence.
(1.3) It is almost never true that $D_{\mathbf{R}}$ and $D(\mathbb{R})$ coincide. Consider for instance the case when X_{0} is defined by z^{k+1}. Then \tilde{F} is the family of zeroes of the polynomials $z^{k+1}+s_{k-1} z^{k-1}+\cdots+s_{1} z+s_{0}$. If $s=$
(s_{0}, \ldots, s_{k-1}) is real, then the roots of such a polynomial can be split into complex conjugate pairs $z_{1}, \bar{z}_{1}, \ldots, z_{j} \bar{z}_{j}$ (with $\operatorname{Im} z_{\alpha}>0$) and real roots $z_{2 j+1} \leq \cdots \leq z_{k+1}$. Then $s \in D(\mathbb{R})$ iff two complex roots coincide and $s \in D_{\mathbf{R}}$ iff two real roots coincide. For what follows it is good to keep this example in mind (especially in section 2).

Let s be a point of $S(\mathbb{R})-D(\mathbb{R})$. Complex conjugation induces an involution on X_{s} and hence an involution on $H_{n}\left(X_{s} ; \mathbb{Z}\right)$, where $n=$ $\operatorname{dim} X_{s}$. We denote this involution by u_{s}. It is clear that u_{s} respects the intersection form and permutes the set of vanishing cycles. Since the monodromy group W_{s} (the image of the natural representation of $\pi_{1}(S-D, s)$ on $H_{n}\left(X_{s} ; \mathbb{Z}\right)$) is generated by Picard-Lefschetz transformations, u_{s} belongs to the normalizer N_{s} of W_{s}. The quotient group N_{s} / W_{s} is an entity which is independent of s. This allows us to drop the index s and to write N / W.
(1.4) Proposition: If $n=\operatorname{dim} X_{0}$ is even, the image of u_{s} in N / W is independent of the choice of s in $S(\mathbb{R})-D(\mathbb{R})$.

Proof: This is clear, if we let s vary in a fixed connected component of $S(\mathbb{R})-D(\mathbb{R})$. It therefore suffices to show that if s and s^{\prime} lie in adjacent components C and C^{\prime} of $S(\mathbb{R})-D(\mathbb{R})$, the corresponding involutions define the same element in N / W. (We say that two components are adjacent if their closures have a codimensionone submanifold in common.) For this purpose we choose an \mathbb{R} immersion i of the complex unit disk Δ in S such that $i^{-1} D=\{0\}, i$ is transverse to $D, i\left(\frac{1}{2}\right)=s$ and $i\left(-\frac{1}{2}\right)=s^{\prime}$. The family $\left\{X_{i(t)}: t \in \Delta\right\}$ induced by i acquires a singularity over $t=0$. This singularity is an ordinary double point, which is locally described over \mathbf{R} by $t=$ $-z_{1}^{2} \cdots-z_{\lambda}^{2}+z_{\lambda+1}^{2}+\cdots+z_{n+1}^{2}$. This singularity determines (up to sign) a vanishing cycle δ in $H_{n}\left(X_{s} ; \mathbb{Z}\right)$. Over $X_{i(\epsilon)}(\epsilon>0$, small), it is represented by the n-sphere which is defined by taking $z_{1}, \ldots, z_{\lambda}$ purely imaginary and $z_{\lambda+1}, \ldots, z_{n+1}$ real in the above equation. Hence $u_{s}(\delta)=(-1)^{\lambda} \delta$. Similarly, there is a vanishing cycle $\delta^{\prime} \in H_{n}\left(X_{s^{\prime}} ; \mathbb{Z}\right)$ for which we have $\left.u_{s^{\prime}} \delta^{\prime}\right)=(-1)^{n+1-\lambda} \delta^{\prime}$. In order to compare u_{s} and $u_{s^{\prime}}$ we fix a path which connects s with s^{\prime} in $\Delta-\{0\}$. This path identifies $H_{n}\left(X_{s^{\prime}} ; \mathbb{Z}\right)$ with $H_{n}\left(X_{s} ; \mathbb{Z}\right)$ and δ^{\prime} with $\pm \delta$. For elementary geometric reasons u_{s} and $u_{s^{\prime}}$ coincide on the cycles not intersecting δ. By the above formulas we have $u_{s} u_{s}^{-1}(\delta)=(-1)^{n+1} \delta$. Since $u_{s} u_{s}^{-1}$ also respects the intersection form it follows that $u_{s} u_{s}^{-1}$ is semi-simple (here we use that n is even). Since the Picard-Lefschetz reflection associated to δ is also semi-simple and has the same eigen value
decomposition as $u_{s^{\prime}} u_{s}^{-1}$, it must be equal to $u_{s^{\prime}} u_{s}^{-1}$. In particular, the latter belongs to W_{s}.
(1.5) It follows from the previous proposition that to any real form of an even-dimensional isolated hypersurface singularity there is an associated element $\boldsymbol{u} \in N / W$ with $\boldsymbol{u}^{2}=1$, or, if we wish to view N / W as an abstract group, a conjugacy class of such elements.

From now on we restrict our attention to the two-dimensional simple singularities. These are just the two-dimensional singularities for which W is finite. Since W is generated by reflections, it is a finite Coxeter group. The Coxeter groups which occur are $A_{l}(l=1,2, \ldots)$, $D_{l}(l=4,5, \ldots), E_{6}, E_{7}$ and E_{8}, and the simple singularities are labeled accordingly. It is well-known that N / W is then naturally isomorphic to the group of automorphisms of the Coxeter diagram of W. The following table describes the real forms of the two-dimensional simple singularities. The fourth column indicates whether or not the corresponding element in N / W is trivial. In the nontrivial case it also specifies when this element is represented by minus the identity.

type	equation	N / W	\boldsymbol{u}
$A_{2 m}$	$x^{2 m+1}+y^{2}+z^{2}$	$\mathbb{Z} / 2$	trivial
$A_{2 m}$	$x^{2 m+1}+y^{2}-z^{2}$	$\mathbb{Z} / 2$	nontrivial (-1)
$A_{2 m+1}$	$x^{2 m+2} \pm\left(y^{2}+z^{2}\right)$	$\mathbb{Z} / 2$	trivial
$A_{2 m+1}$	$x^{2 m+2}+y^{2}-z^{2}$	$\mathbb{Z} / 2$	nontrivial (-1)
$D_{2 m}$	$x^{2 m-1}-x y^{2}+z^{2}$	$\mathbb{Z} / 2\left(\mathscr{P}_{3}\right.$ if $\left.m=2\right)$	trivial
$D_{2 m}$	$x^{2 m-1}+x y^{2}+z^{2}$	$\mathbb{Z} / 2\left(\mathscr{S}_{3}\right.$ if $\left.m=2\right)$	nontrivial
$D_{2 m+1}$	$x^{2 m}+x y^{2}+z^{2}$	$\mathbb{Z} / 2$	trivial
$D_{2 m+1}$	$x^{2 m}+x y^{2}-z^{2}$	$\mathbb{Z} / 2$	nontrivial (-1)
E_{6}	$x^{4}+y^{3}+z^{2}$	$\mathbb{Z} / 2$	trivial
E_{6}	$x^{4}+y^{3}-z^{2}$	$\mathbb{Z} / 2$	nontrivial (-1)
E_{7}	$x^{3} y+y^{3}+z^{2}$	trivial	
E_{8}	$x^{5}+y^{3}+z^{2}$	trivial	

Note that in the case of D_{4} the elements of order two in $N / W \simeq \mathscr{S}_{3}$ are all conjugate. We indicate how the above table is constructed. The relevant real forms have been classified by Arnol'd [2], while the groups N / W can be found in the tables of [3]. In order to determine \boldsymbol{u} one proceeds as follows. According to A'Campo [1], the corresponding real singularity in the (x, y)-plane (forget the z-variable) admits a morsification with only two critical values. Using the fact that the suspension of a nonsingular complex fibre of the morsification is in a
natural way homotopy equivalent to a nonsingular fibre of the original (two-dimensional) singularity one can easily determine the action of complex conjugation on its homology.

We now state our main results.
(1.6) Theorem: Recall that $\left(X_{0}, 0\right)$ is a two-dimensional simple singularity defined over \mathbf{R}. Let $u \in N / W$ denote the element we associated to $\left(X_{0}, 0\right)$ in (1.5). Then the assignment $s \in S(\mathbf{R})-D(\mathbf{R}) \mapsto W$ conjugacy class of u_{s} sets up a bijective correspondence between the connected components of $S(\mathbf{R})-D(\mathbf{R})$ and W-conjugacy classes of involutions in the coset Wu.
(1.7) Theorem: With the hypotheses of (1.6), let s be any point of $S(\mathbf{R})-D(\mathbf{R})$ and let K denote the connected component of $S(\mathbf{R})-D_{\mathbf{R}}$ containing it. Then
(i) K is homeomorphic to a real vector space (of the same dimension as $S(\mathbf{R})$, of course).
(ii) The image $W_{K, s}$ of the representation of $\pi_{1}(K-D(\mathbb{R}), s)$ on $H_{2}(X ; \mathbb{Z})$ is as an abstract group in a unique way a Coxeter group. The representation of $W_{K, s}$ on $H_{2}\left(X_{s} ; \mathbb{Z}\right)$ is (up to a trivial factor) twice the ordinary representation.
(iii) The space $K-D(\mathbb{R})$ classifies the Artin group associated to $W_{K, s}$.
(iv) The restriction $\tilde{F}_{\mathrm{R}}: \tilde{F}_{\mathrm{R}}^{-1} K \rightarrow K$ is a trivial C^{∞} fibre bundle. The euler characteristic of its fibre equals $1+\operatorname{trace}\left(u_{s}\right)$.

For the term Artin group we refer to [4] and [5].
The reader will find slightly more precise results in the last section. In particular, we there give a description of $W_{K, s}$ in terms of u_{s}.
(1.8) Theorem: In case the group N / W is generated by minus the identity the real forms of the corresponding singularity have isomorphic real discriminants (this occurs for $A_{*}, D_{\text {odd }}, E_{6}, E_{7}$ and E_{8}).

2. Real discriminants of Coxeter groups

(2.1) Throughout this section we fix a real finite dimensional vector space V and a finite Coxeter group $W \subset G L(V)$. Our basic reference for such groups is Bourbaki [3, Ch. 4,5].

We begin with briefly recalling the invariant theory for this situation. Via the contragredient representation W acts on the dual V^{*} of
V and hence on the symmetric algebra $S\left(V^{*}\right)$ of V^{*}. On the other hand, W also acts on the complexification V_{C} of V. The orbit space for this action is in a natural way an affine algebraic variety whose coordinate ring is given by the W-fixed part of $S\left(V^{*}\right)$, tensorized with \mathbb{C}. We denote this orbit space by S_{W} and let $q: V_{C} \rightarrow S_{W}$ be the natural map. It is well-known that $S\left(V^{*}\right)^{W}$ is a polynomial algebra in $\operatorname{dim} V$ unknowns. This implies that S_{W} is as an algebraic variety isomorphic to $\mathbb{C}^{\operatorname{dim} V}$.

The critical set of q is of course the union of irregular orbits. In this case it is just the union of the complex fixed-point hyperplanes of the reflections in W. Its image in S_{W} is a hypersurface which is called the discriminant. We denote it by D_{W}.

Since $S\left(V^{*}\right)^{W}$ is defined over \mathbf{R}, so is S_{W}. But sometimes there also exist a few "twisted" real forms for S_{W} which we proceed to describe. Let N_{W} denote the normalizer of W. By definition, W is a normal subgroup of N_{W} and the quotient group N_{W} / W can be identified with the group of automorphisms of the Coxeter diagram of W. This quotient also acts on the algebra $S\left(V^{*}\right)^{W}$ (on the left) and hence on the orbit space S_{W} (on the right). The real form for S_{W} we are going to define will depend on an element $\boldsymbol{u} \in N_{W} / W$ with $\boldsymbol{u}^{2}=1$. Such a u will be fixed for the remainder of this section. Now, a real form for S_{W} is (by definition, actually) equivalent to endowing its coordinate ring $S\left(V^{*}\right)^{W} \otimes \mathbb{C}$ with an anti-involution. As anti-involution we take here the tensor product of \boldsymbol{u} and complex conjugation. Then $z \in V_{\mathbf{C}}$ is mapped to $S_{W}(\mathbb{R})$ if and only if for all $\phi \in S\left(V^{*}\right)^{W}$, we have $\phi(\bar{z})=(\phi \cdot u)(z)$. We shall give a more explicit description of $q^{-1} S_{W}(\mathbf{R})$. For any involution u of V we let $V=$ $V_{u}^{+} \oplus V_{u}^{-}$be its eigen space decomposition and we pose $V_{u}=$ $V_{u}^{+} \oplus i V_{u}^{-} \subset V_{\mathbf{c}}$. Note that V_{u} is a real form of $V_{\mathbf{c}}$ in the sense that $V_{\mathbf{C}}=V_{u} \oplus_{\mathbf{R}} \mathbb{C}$.
(2.2) Proposition (Tits): The union of real orbits, $q^{-1} S_{W}(\mathbb{R})$, is the union of the V_{u} 's, where u runs over all involutions in the coset $u W$.

Proof: If u is an involution of V, then u acts as complex conjugation on V_{u}. So if u is an involution in $u W$ and $z \in V_{u}$, then for each $\phi \in S\left(V^{*}\right)^{W}$ we have $\phi(\bar{z})=(\phi \cdot u)(z)$. This proves that $q(z) \in$ $S_{W}(\mathbb{R})$.

Conversely, let $z \in V_{\mathbf{R}}$ be such that for all $\phi \in S\left(V^{*}\right)^{W}, \phi(\bar{z})=$ $(\phi \cdot \boldsymbol{u})(z)$. Choose any representative $u_{0} \in N_{W}$ for u. Since $(\phi \cdot \boldsymbol{u})(z)=\phi\left(u_{0} z\right)$, it follows that there exists a $w \in W$ such that $\bar{z}=w u_{0} z$. The stabilizer W_{z} of z is a Coxeter group and is clearly also
the stabilizer of \bar{z}. This implies that $w u_{0}$ permutes the chambers of W_{z}. Since W_{z} acts transitively on its chambers, we can find a $w^{\prime} \in W_{z}$ such that $w^{\prime} w u_{0}$ leaves a chamber of W_{z} invariant. Put $u=w^{\prime} w u_{0}$. The proof will be complete if we show that $u^{2}=1$ and $u(z)=\bar{z}$. The latter is clear, for $u z=w^{\prime} \bar{z}=\bar{z}$. This implies that $u^{2} \in W_{z}$. On the other hand, u^{2} leaves a chamber of W_{z} invariant and hence $u^{2}=1$.

Let $D_{W}(\mathbf{R})$ denote the real part of D_{W}, i.e. the intersection of D_{W} and $S_{W}(\mathbf{R})$. Proposition (1.1) suggests to define the real discriminant $D_{W, R}$ as the closure of the real nonsingular part of D_{W}. Then $D_{W, R}$ is a closed semi-algebraic subset of $D_{W}(\mathbf{R})$, which at each point is of real codimension one in $S_{W}(\mathbf{R})$. Writing H_{s} for the fixed-point hyperplane of a reflection s, it follows from (2.2) and the observations in (2.1) that $q^{-1} D_{W}(\mathbf{R})$ is the union of intersections $V_{u} \cap H_{s, \mathrm{C}}$, where u runs over the involutions in $W \boldsymbol{u}$ and s over the reflections in W. We give a similar description for $q^{-1} D_{W, R}$.
(2.3) Lemma: The inverse image $q^{-1} D_{W_{\mathbf{R}}}$ is the union of intersections $V_{u} \cap H_{s, c}$, where u runs over the involutions in $W u$ and s over the reflections in W which commute with u.

Proof: An element $z \in V_{u}$ maps to a simple point of D_{W} if and only if there exists a unique reflection s, W which fixes z. Since z is also fixed by u, it is fixed by the reflection $u s u^{-1}$. Hence $u s u^{-1}=s$. This proves the lemma, since for a generic point of $V_{u} \cap H_{s . C}$, there are no other reflection hyperplanes than $H_{s, c}$ containing it.
(2.4) We remark that although id and -id may represent different elements in N_{W} / W, the map $z \in V_{\mathbf{C}} \mapsto i z \in V_{\mathbf{C}}$ induces an isomorphism between the associated real orbit spaces and their real discriminants.

If u is an involution of V and $s \in W$ a reflection commuting with u, then s leaves the subspaces V_{u}^{+}and V_{u}^{-}invariant and s acts as a reflection on one of them and trivially on the other. We let $W_{u}^{ \pm}$denote the Coxeter subgroup of W generated by the reflections in W which leave V_{u}^{\mp} pointwise fixed. It is clear that $W_{u}^{+} \times W_{u}^{-}$is a Coxeter subgroup of W which acts as such on V_{u}. A chamber in V_{u} for this action will be called a cell for u and is usually denoted by \mathscr{C}. Observe that a cell for u determines u without ambiguity.
(2.5) Lemma: Let u be an involution in the coset $u W$. Any cell for u maps to a connected component of $S_{W}(\mathbf{R})-D_{W, R}$ and the assignment $u \mapsto q$ (cell for u) sets up a bijective correspondence between W-con-
jugacy classes of involutions in $W u$ and connected components of $S_{W}(\mathbb{R})-D_{W, \mathbf{R}}$.

Proof: That the image of a cell is a connected component of the complement of the real discriminant follows from (2.3) and the obvious fact that a cell is connected. If two cells $\mathscr{C}, \mathscr{C}^{\prime}$ for involutions u, u^{\prime} respectively have the same image in the orbit space, then $\mathscr{C}^{\prime}=w \mathscr{C}$ for some $w \in W$. This implies $u^{\prime}=w^{-1} u w$ and hence the correspondence is injective. Surjectivity is clear.

Our next aim is to analyse which points in a cell are identified when we map it to the orbit space. For this purpose we fix an involution u in $u W$ and a cell $\mathscr{C}=C^{+} \times i C^{-}$for u. This enables us to simplify the notation a little: we write $W^{ \pm}$and $V^{ \pm}$instead of $W_{u}^{ \pm}$and $V_{u}^{ \pm}$.
(2.6) Lemma: Let s be a reflection in W which leaves a point of \mathscr{C} invariant. Then s and usu commute.

Proof: As u permutes the irreducible components of W, there is no loss of generality in assuming that W is irreducible. We do so and we put $s^{\prime}=u s u$. Since s has a fixed point in \mathscr{C} we have $s \notin W^{+} \times W^{-}$ and hence $s^{\prime} \neq s$. So the subgroup W^{\prime} of W generated by s and s^{\prime} is of rank two. Suppose $s s^{\prime}$ is of order ≥ 3. We distinguish three cases.
(a) rank $W=2$. Since s fixes points in C^{+}and C^{-}, their union is contained in H_{s}. But this contradicts the fact that $C^{+} \cup C^{-}$generates V.
(b) rank $W \geq 3$ and $\left(s s^{\prime}\right)^{4} \neq 1$. According to the classification of Coxeter groups, this forces $s s^{\prime}$ to be of order 3 or 5 . Then the reflection $s s^{\prime} s$ (resp. $s s^{\prime} s s^{\prime} s$) equals its u-conjugate and is therefore contained in $W^{+} \cup W^{-}$. This contradicts the fact that this reflection has a fixed point in \mathscr{C}.
(c) rank $W \geq 3$ and $\left(s s^{\prime}\right)^{4}=1$. Then the classification shows that s and s^{\prime} are not conjugate in W (for W then extends to a root system of which the roots corresponding to s and s^{\prime} have different length). As observed earlier, u induces an automorphism of the Coxeter diagram of W. Since the Coxeter diagram is a tree, at least one vertex is left fixed by u. So u preserves at least one conjugacy class of reflections in W. As there are at most two such classes, s and s^{\prime} must be conjugate in W. Contradiction.

The above proof uses the classification in a mild way. Indeed, by employing more subtle (and elaborate) arguments, its use can be
avoided altogether. The preceding lemma has an interesting consequence for the stabilizer of a point in \mathscr{C}.
(2.7) Lemma: Let $z \in \mathscr{C}$. Then its stabilizer W_{z} splits into a direct product $W_{z}^{\prime} \times W_{z}^{\prime \prime}$ whose factors are interchanged by conjugation with $u: W_{z}^{\prime \prime}=u W_{z}^{\prime} u$.

Proof: Suppose not. Then W_{z} contains an irreducible Coxeter subgroup W^{\prime} which is normalized by u. We choose a N_{W}-invariant riemannian inner product \langle,$\rangle on V$ and we let R denote the set of vectors $r \in V$ with $\langle r, r\rangle=1$ and $s r=-r$ for some reflection s in W^{\prime}. Clearly, two such vectors are mutually perpendicular iff the corresponding reflections in W^{\prime} commute. Note that W^{\prime} leaves R invariant. For any $r \in R$ there exists a chain $S_{r}=\left\{r_{0}=r, \ldots, r_{k}=u r_{0}\right\}$ with $\left\langle r_{i}, r_{i+1}\right\rangle \neq 0$ for $i=0, \ldots, k-1$. We choose r and S_{r} such that S_{r} has minimal cardinality. This minimality condition implies that $\left\langle r_{i}, r_{j}\right\rangle=0$ for $|i-j|>1$ and $\left\langle r_{i}, u r_{j}\right\rangle=0$ for $\{i, j\} \neq\{0, k-1\}$. Now, the element $r^{\prime}:=s_{r_{k-1}} \ldots s_{r_{1}} r_{0}$ belongs to R and is of the form $\sum_{i=0}^{k-1} c_{i} r_{i}$ with $c_{0}=1$ and $c_{k-1} \neq 0$. It follows that $\left\langle r^{\prime}, u r^{\prime}\right\rangle=\left\langle r_{0}+c_{k-1} u r_{0}, u r_{0}+c_{k-1} r_{0}\right\rangle=$ $2 c_{k-1}\left\langle r_{0}, u r_{0}\right\rangle \neq 0$. This implies that $s_{r^{\prime}}$ and $u s_{r^{\prime}} u$ don't commute, thus contradicting (2.6).
(2.8) Corollary: Let $z \in \mathscr{C}$ and $w \in W$ be such that $w z \in \mathscr{C}$. Then there exists $a w_{0} \in W_{z}$ with the property that $w w_{0}$ leaves \mathscr{C} invariant.

Proof: We first note that $u w^{-1} u w(z)=u w^{-1} \overline{w(z)}=u w w^{-1}(\bar{z})=z$. Write $u w^{-1} u w$ as a product $w^{\prime} w^{\prime \prime}$ with $w^{\prime} \in W_{z}^{\prime}$ and $w^{\prime \prime} \in W_{z}^{\prime \prime}$. Since the inverse of $u w^{-1} u w$ equals its u-conjugate we must have $w^{\prime \prime-1} w^{\prime-1}=u w^{\prime} u^{-1} \cdot u w^{\prime \prime} u^{-1}$. It follows from the preceding lemma that then $w^{\prime-1}=u w^{\prime \prime} u^{-1}$. Hence $u w^{-1} u w=u w^{\prime \prime-1} u w^{\prime \prime}$, in other words $w w^{\prime \prime-1}$ commutes with u. We claim that $w_{0}:=w^{\prime \prime-1}$ is as desired. Since $w w_{0}$ commutes with u, it permutes the cells for u. Moreover $w w_{0} \mathscr{C} \cap$ $\mathscr{C} \neq \boldsymbol{\phi}$. Hence $w w_{0} \mathscr{E}=\mathscr{C}$.
(2.9) Let $\rho \in \mathscr{C}$ be any point on the barycentric halfline of \mathscr{C}. Any element of N_{W} which leaves \mathscr{C} invariant fixes ρ. We set $W_{\mathscr{C}}:=\left\{w^{\prime} u w^{\prime} u^{-1}: w^{\prime} \in W_{\rho}^{\prime}\right\}$. This notation will be justified in a moment. Note that (2.7) implies that $W_{\mathscr{C}}$ is a subgroup of W and as a group is isomorphic to W_{z}^{\prime}. Moreover u commutes with the elements of $W_{\mathscr{C}}$. Hence $W_{\mathscr{C}}$ leaves V_{u} invariant and permutes the cells for u. As $W_{\mathscr{C}}$ stabilizes ρ it follows that $W_{\mathscr{C}}$ leaves \mathscr{C} invariant. Observe that the representation of $W_{\mathscr{C}}$ on V_{u} is up to a trivial factor the
complexification of the ordinary representation of $W_{\mathscr{C}} \cong W_{\rho}^{\prime}$ as a Coxeter group.
(2.10) Proposition: The $W_{\mathscr{C}}$-orbit space of \mathscr{C} maps bijectively onto a connected component of $S_{W}(\mathbb{R})-D_{W, \mathbf{R}}$. This orbit space is homeomorphic to a vector space and its regular part is a classifying space for the Artin group of $W_{¢}$.

Proof: To prove the first assertion, it suffices by (2.5) to show that the induced map $W_{\mathscr{C}} \backslash \mathscr{C} \rightarrow q(\mathscr{C})$ is injective. Suppose $z, z^{\prime} \in \mathscr{C}$ lie on the same W-orbit. Then by (2.8) there exists a $w \in W$ with $z^{\prime}=w z$ and $w \mathscr{C}=\mathscr{C}$. Hence $w \rho=\rho$. We write $w=w^{\prime} w^{\prime \prime}$ with $w^{\prime} \in W_{\rho}^{\prime}$ and $w^{\prime \prime} \in W_{\rho}^{\prime \prime}$. Since w leaves \mathscr{C} invariant, w commutes with u and hence $w^{\prime \prime}=u w^{\prime} u^{-1}$. This implies $w \in W_{\mathscr{C}}$ and the required injectivity follows. Now let F denote the fixed-point set of $W_{\mathscr{C}}$ in V_{u} and F^{\perp} its orthogonal complement in V_{u} (relative an N_{W}-invariant riemannian metric). Then F^{\perp} is $W_{\mathscr{C}}$-invariant and the action of $W_{\mathscr{C}}$ on F^{\perp} is the complexification of the Coxeter representation. Using the fact that each intersection $\mathscr{C} \cap\left(z+F^{\perp}\right), z \in F$ is starlike, it is easy to construct a $W_{\mathscr{C}}$-equivariant homeomorphism of \mathscr{C} onto $(\mathscr{C} \cap F)+F^{\perp}$. The last two assertions now follow from known properties of the $W_{\mathscr{C}}$-action on F^{\perp} : the $W_{\mathscr{C}}$-orbit space of F^{\perp} is homeomorphic to a vector space (see the remarks made in (2.1)) and according to a theorem of Deligne the regular $W_{\mathscr{C}}$-orbit space of F^{\perp} classifies the Artin group associated to $W_{¢}$.

3. The period mapping over the reals

Our main tool for the proof of the theorems $(1.6,7,8)$ will be the period mapping, introduced in [8]. We briefly recall its construction. Let $\left(X_{0}, 0\right)$ be a two-dimensional simple singularity defined over R. Then X_{0} can be taken weighted homogeneous and for its semiuniversal deformation we may choose a weighted homogeneous representative $\tilde{F}: X=\mathbb{C}^{2+l} \rightarrow \mathbb{C}^{\prime}=S$, which is also defined over \mathbb{R}. On X (resp. S) we choose a nowhere vanishing holomorphic form ω (resp. α) of maximal dimension and weighted homogeneous in an obvious sense. Both ω and α are unique up to a scalar factor. Then on each nonsingular fibre X_{s} of F there exists a unique holomorphic 2-form $\omega(s)$ with the property that $\omega(s) \wedge F^{*}(\alpha)=\omega$ along X_{s}. Now fix a base point $s \in S-D$ and let s^{\prime} be any other point of $S-D$. Then a continuous path from s^{\prime} to s enables us to displace $\omega(s)$ along this
path to a 2-dimensional cohomology class on X_{s}. The ambiguity caused by the choice of such a path is eliminated if we assign to s^{\prime} the W_{s}-orbit of this class, rather than the class itself. We thus get a map from $S-D$ to the W_{s}-orbit space of $H^{2}\left(X_{s} ; \mathbb{C}\right)$, which is called the period mapping. We denote this mapping by P and, in accordance to the notation of the previous section, the orbit space by S_{W}. The following was shown in [8].
(3.1) The period mapping is holomorphic and extends to an isomorphism from S onto S_{W} which maps D onto D_{W}.

Now we assume that ω and α are defined over R and that our base point s is in $S(\mathbf{R})-D(\mathbf{R})$. We let K denote the connected component of $S(\mathbf{R})-D_{\mathbf{R}}$ which contains s. If $s^{\prime} \in S(\mathbf{R})$, we write $V_{s^{\prime}}$ for $H^{2}\left(X_{s^{\prime}}, \mathbf{R}\right)$ and we let $V_{s^{\prime}}^{+} \oplus V_{s^{\prime}}^{-}$be the eigen space decomposition of $u_{s^{\prime}}^{*}$.
(3.2) Lemma: For any $s^{\prime} \in S(\mathbb{R})$, the cohomology class $[\omega(s)] \in$ $V_{s^{\prime}, \mathrm{c}}$ lies in $V_{s^{\prime}}^{+} \oplus i V_{s^{\prime}}^{-}$.

Proof: Let $\delta \in H_{2}\left(X_{s^{\prime}} ; \mathbf{R}\right)$ be arbitrary. Since $\omega\left(s^{\prime}\right)$ has real coefficients, we have

$$
\int_{u_{s^{\prime}(\delta)}} \omega(s)=\int_{\delta} \overline{\omega(s)}=\overline{\int_{\delta} \omega(s)}
$$

This clearly implies the lemma.
We endow S_{W} with the real structure defined by the image u of u_{s} in N / W.
(3.3) Corollary: The (extended) period mapping P maps $S(\mathbb{R})$ onto $S_{W}(\mathbb{R})$.

Proof: The preceding lemma and (1.4) show that P maps $S(\mathbf{R})$ into the W_{s}-orbit space of

$$
\cup\left\{V_{u}^{+} \oplus i V_{u}^{-}: u \in u W \text { and } u^{2}=1\right\}
$$

By (2.2) the latter equals $S_{W}(\mathbf{R})$. It then follows from (3.1) that $P(S(\mathbb{R}))$ is a submanifold of $S_{W}(\mathbf{R})$. As it is open and closed in $S_{W}(\mathbf{R})$, it must be equal to $S_{W}(\mathbb{R})$.
(3.4) Now we can prove the assertions made in (1.6, 7, 8). Since P maps D onto D_{W} and $S(\mathbb{R})$ onto $S_{W}(\mathbf{R})$, it follows that P maps $D(\mathbb{R})$ onto $D_{W}(\mathbf{R})$ and $D_{\mathbf{R}}$ onto $D_{W, \mathbf{R}}$. Then (1.6) is immediate from (2.5) and the first three statements of (1.7) follow from (2.10) and the preceding discussion (2.9). As for (1.7)-iv we observe that $\tilde{F}_{\mathrm{R}}^{-1}(K) \rightarrow K$ is a trivial bundle because K is contractible. The assertion concerning the euler characteristic of X_{s} is a consequence of the Lefschetz fixed point formula. Finally, (1.8) is implied by (2.4).

REFERENCES

[1] N. A'Campo: Le groupe de monodromie etc. I, Math. Ann. 213 (1975) 1-32.
[2] V.I. Arnol'd: Normal forms of functions etc., Funkt. i ego Pril. 6: 4 (1972) 3-25.
[3] N. Bourbaki: Groupes et Algèbres de Lie, Ch. 4, 5 et 6 Hermann, Paris (1968).
[4] E. Brieskorn, K. Saito: Artin-Gruppen und Coxeter-Gruppen, Inventiones Math. 17 (1972) 245-271.
[5] P. Deligne: Les immeubles des groupes de tresses généralisés, Inventiones Math. 17 (1972) 273-302.
[6] Gibson et al.: Topological stability of smooth mappings, Lecture Notes in Math. 552, Springer, Berlin etc. (1976).
[7] J. Lipman: Rational singularities etc., Publ. Math. de l'IHES 36 (1969) 195-280.
[8] E. Looijenga: A period mapping for certain semi-universal deformations, Comp. Math. 30 (1975) 299-316.

Mathematisch Instituut Katholieke Universiteit Toernooiveld Nijmegen - The Netherlands

