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Introduction

Let (Xo, xo) be a germ of a hypersurface with an isolated singularity
which is defined over R. Such a singularity admits a semi-universal
deformation F: (X, xo) ---&#x3E; (S, so), also defined over R. We choose a nice

representative Ê: X ---&#x3E; S for F, which is invariant under complex
conjugation. The image of the critical set of F, resp. of its real part
FR: X(R) ---&#x3E; S(R), is called the complex, resp. real, discriminant and
denoted by D, resp. DR. Various people, among whom Arnol’d, Pham
and Thom conjecture that the complement of the complex dis-

criminant has a contractible universal covering. Up to now, this has
only been proved to be the case for the simple singularities. Thom
also conjectures a sort of real analogue of this, namely that the
connected components of the complement of the real discriminant are
contractible. One ef the aims of this paper is to show that this is

indeed the case for the simple singularities. We should add here that
Thom formulates his conjecture in a much stronger form than just
given: it is claimed that the members of the canonical stratification of
S(R) (for this notion, see [6], Ch. I) are contractible. This too, can be
proved for the simple singularities, but we shall not go into this matter
in the present paper.
We briefly review the various sections. In section 1, our main

results on real simple singularities are stated. The proof of these
assertions requires an investigation of real discriminants of certain
Coxeter groups, which is carried out in section 2. Since the proofs are
valid for any finite Coxeter group, we have stated the results accord-
ingly. As such, this section is completely independent’ of the previous
one. In the last section we show how the period mappihg enables us
to reduce the assertions of section 1 to the results of section 2.
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1 am much indebted to a letter of E. Brieskorn. In this letter,
Brieskorn communicated to me the result (2.2) of Tits (in its un-

twisted form) and pointed out how this might be used to describe the
connected components in question in the simple case by means of the
associated Coxeter group.

This paper was written during a visit at the Sonderforschungs-
bereich in Bonn. 1 would like to thank this institution for its support.

1. Real forms of singularities

We begin with comparing the real and the complex discriminant.
First a few general observations. Since D is the proper image of an
analytic set, D is analytic in S by Remmert’s theorem. Similarly, DR is
by the Tarski-Seidenberg theorem a closed semi-algebraic subset of
S(R). Furthermore D (resp. DR) is at each of its points of complex
(resp. real) codimension one.

(1.1) PROPOSITION: The real discriminant DR is the closure of the real
nonsingular part of D. The difference D(R) - DR is a semi-algebraic
subset of codimension -2 in S(R).

PROOF: If s is a real nonsingular point of D, then the fibre

Xs : F-’(s) has precisely one singular point. Since the singular part
of XS is invariant under complex conjugation, this point must be real.
Hence s E DR. Conversely, let s E DR and suppose that there exists a
neighbourhood of s in DR which is entirely contained in the singular
locus of D. Since such a neighbourhood contains a point where it is

locally a real codimension-one submanifold of S(R), the singular locus
of D must be somewhere of complex codimension one in S. This is of
course impossible and thus the proof of the first assertion is complete.
To prove the second statement, we observe that the first one implies
that D(R) - DR is contained in the singular locus of D. As this singular
locus is defined over R and of complex codimension ? 2 in S, it follows
that its real part is of real codimension &#x3E;2 in S(R).

(1.2) COROLLARY: The connected components of S(R) - D(R) and

S(R) - DR are in a canonical bijective correspondence.

(1.3) It is almost never true that DR and D(R) coincide. Consider for
instance the case when Xo is defined by Zk+1. Then fi is the family of
zeroes of the polynomials Zk+1 + Sk-1 Zk-l+..*+SIZ+So. ’If S=
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(so, ..., sk-1,) is real, then the roots of such a polynomial can be split
into complex conjugate pairs Z¡, Z¡, ..., Zj Zj (with Im za &#x3E; 0) and real
roots Z2j+1  .... Zk+l. Then s E D(R) iff two complex roots coincide
and s E DR iff two real roots coincide. For what follows it is good to keep
this example in mind (especially in section 2).

Let s be a point of S(R) - D(R). Complex conjugation induces an
involution on XS and hence an involution on Hn (Xs; Z), where n =

dim XS. We denote this involution by us. It is clear that u, respects the
intersection form and permutes the set of vanishing cycles. Since the
monodromy group Ws (the image of the natural representation of
1T1(S - D, s) on Hn(Xs; Z)) is generated by Picard-Lefschetz trans-
formations, us belongs to the normalizer N, of WS. The quotient group
NS/ WS is an entity which is independent of s. This allows us to drop
the index s and to write NI W.

(1.4) PROPOSITION: If n = dim Xo is even, the image of Us in NI W is
independent of the choice of s in S(R) - D(R).

PROOF: This is clear, if we let s vary in a fixed connected

component of S(R) - D(R). It therefore suffices to show that if s and
s’ lie in adjacent components C and C’ of S(R)-D(R), the cor-
responding involutions define the same element in N/ W. (We say that
two components are adjacent if their closures have a codimension-

one submanifold in common.) For this purpose we choose an R-
immersion i of the complex unit disk L1 in S such that i-’D = 101, i is
transverse to D, i(l) = s and i(-!) = s’. The family {Xi(t): t eàl in-
duced by i acquires a singularity over t = 0. This singularity is an

ordinary double point, which is locally described over R by t =

- z; - z ; + Z2@@ + ... + Z2+1 This singularity determines (up to sign)
a vanishing cycle à in Hn(X,; Z). Over Xi(E) (e&#x3E;0, small), it is

represented by the n-sphere which is defined by taking zl, ..., zÀ

purely imaginary and ZÀ+I, - - -, Zn+1 real in the above equation. Hence
us(5) = (- I)AS. Similarly, there is a vanishing cycle S’ E Hn(Xs,; Z) for
which we have uS,(5f) = (- i)n+I-À&#x26;,. In order to compare U, and us- we
fix a path which connects s with s’ in à-101. This path identifies

Hn (X,,; Z) with Hn (X,; Z) and S’ with -+- 3. For elementary geometric
reasons us and u,, coincide on the cycles not intersecting 6. By the
above formulas we have Us’U ;1(5) = (-I)n+15. Since us-u S’ also

respects the intersection form it follows that us,us’ is semi-simple
(here we use that n is even). Since the Picard-Lefschetz reflection
associated to 5 is also semi-simple and has the same eigen value
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decomposition as us’U; l, it must be equal to us-u s’. In particular, the
latter belongs to WS.

(1.5) It follows from the previous proposition that to any real form
of an even-dimensional isolated hypersurface singularity there is an

associated element u E N/ W with u’ = 1, or, if we wish to view NI W
as an abstract group, a conjugacy class of such elements.
From now on we restrict our attention to the two-dimensional

simple singularities. These are just the two-dimensional singularities
for which W is finite. Since W is generated by reflections, it is a finite
Coxeter group. The Coxeter groups which occur are AI (1 = 1, 2, ...),
Di (1 = 4, 5,...), E6, E7 and Eg, and the simple singularities are labeled
accordingly. It is well-known that N/ W is then naturally isomorphic
to the group of automorphisms of the Coxeter diagram of W. The
following table describes the real forms of the two-dimensional

simple singularities. The fourth column indicates whether or not the
corresponding element in NI W is trivial. In the nontrivial case it also
specifies when this element is represented by minus the identity.

Note that in the case of D4 the elements of order two in N/ W = L3
are all conjugate. We indicate how the above table is constructed. The
relevant real forms have been classified by Arnol’d [2], while the
groups NI W can be found in the tables of [3]. In order to determine u
one proceeds as follows. According to A’Campo [1], the correspond-
ing real singularity in the (x, y)-plane (forget the z-variable) admits a
morsification with only two critical values. Using the fact that the
suspension of a nonsingular complex fibre of the morsification is in a



55

natural way homotopy equivalent to a nonsingular fibre of the original
(two-dimensional) singularity one can easily determine the action of
complex conjugation on its homology.
We now state our main results.

(1.6) THEOREM: Recall that (Xo, 0) is a two-dimensional simple
singularity defined over R. Let u E NI W denote the element we asso-
ciated to (Xo, 0) in (1.5). Then the assignment s E S(R) - D(R) - W-
conjugacy class of Us sets up a bijective correspondence between the
connected components of S(R) - D(R) and W-conjugacy classes of
involutions in the coset Wu.

(1.7) THEOREM: With the hypotheses of (1.6), let s be any point of
S(R) - D(R) and let K denote the connected component of S(R) - DR
containing it. Then

(i) K is homeomorphic to a real vector space (of the same dimen-
sion as S(R), of course).

(ii) The image WK,s of the representation of 7r,(K - D(R), s) on
H2(X ; Z) is as an abstract group in a unique way a Coxeter

group. The representation of WK,s on H2(Xs; Z) is (up to a

trivial factor) twice the ordinary representation.
(iii) The space K - D(R) classifies the Artin group associated to

W K,s.
(iv) The restriction FR: ÊR’K ---&#x3E; K is a trivial Coo fibre bundle. The

euler characteristic of its fibre equals 1 + trace(us).

For the term Artin group we refer to [4] and [5].
The reader will find slightly more precise results in the last section.

In particular, we there give a description of WK,, in terms of us.

(1.8) THEOREM: In case the group N/W is generated by minus the

identity the real forms of the corresponding singularity have isomor-
phic real discriminants (this occurs for A*, Dodd, E6, E7 and E8).

2. Real discriminants of Coxeter groups

(2.1) Throughout this section we fix a real finite dimensional vector

space V and a finite Coxeter group W C GL(V). Our basic reference
for such groups is Bourbaki [3, Ch. 4,5].
We begin with briefly recalling the invariant theory for this situa-

tion. Via the contragredient representation W acts on the dual V* of
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V and hence on the symmetric algebra S( V*) of V*. On the other
hand, W also acts on the complexification Vc of V. The orbit space
for this action is in a natural way an affine algebraic variety whose
coordinate ring is given by the W-fixed part of S( V*), tensorized with
C. We denote this orbit space by Sw and let q : Vc - Sw be the natural
map. It is well-known that S( V*)w is a polynomial algebra in dim V
unknowns. This implies that Sw is as an algebraic variety isomorphic
t0 c dim V.
The critical set of q is of course the union of irregular orbits. In this

case it is just the union of the complex fixed-point hyperplanes of the
reflections in W. Its image in Sw is a hypersurface which is called the
discriminant. We denote it by Dw.

Since S( V*)w is defined over R, so is Sw. But sometimes there also
exist a few "twisted" real forms for Sw which we proceed to

describe. Let Nw denote the normalizer of W. By definition, W is a
normal subgroup of Nw and the quotient group Nw/ W can be

identified with the group of automorphisms of the Coxeter diagram of
W. This quotient also acts on the algebra S( V*)w (on the left) and
hence on the orbit space Sw (on the right). The real form for Sw we
are going to define will depend on an element u E Nw/ W with u 2 = 1.
Such a u will be fixed for the remainder of this section. Now, a real
form for Sw is (by definition, actually) equivalent to endowing its

coordinate ring S(V*)woC with an anti-involution. As anti-in-

volution we take here the tensor product of u and complex con-
jugation. Then z E Vc is mapped to Sw(R) if and only if for all

0 E S(V*)w, we have (k(l) =: (0 - u)(z). We shall give a more explicit
description of q-’Sw(R). For any involution u of V we let V =

V û ® V , be its eigen space decomposition and we pose Vu =
V’ (B i V- C Vc. Note that Vu is a real form of Vc in the sense that

Vc = VuEBRC.

(2.2) PROPOSITION (Tits): The union of real orbits, q-’Sw(R), is the
union of the Vu’s, where u runs over all involutions in the coset u W.

PROOF: If u is an involution of V, then u acts as complex con-

jugation on Vu. So if u is an involution in u W and z E Vu, then for

each cPES(V*)w we have 0(f) = (0 - u)(z). This proves that q(z)E
Sw(R).
Conversely, let z E VR be such that for all 0 E S(V*)w, 0(,f)

- u)(z). Choose any representative uo E Nw for u. Since

(cP . u)(z) = cP(uoz), it follows that there exists a w E W such that

z = wuoz. The stabilizer Wz of z is a Coxeter group and is clearly also
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the stabilizer of z. This implies that wuo permutes the chambers of Wz.
Since Wz acts transitively on its chambers, we can find a w’ E W,
such that wfwuo leaves a chamber of Wz invariant. Put u = w’ wuo.
The proof will be complete if we show that U 2 = 1 and u(z) = z. The
latter is clear, for uz = w’z = z. This implies that u2 E Wz. On the
other hand, u 2 leaves a chamber of Wz invariant and hence U2 = 1.

Let Dw(R) denote the real part of Dw, i.e. the intersection of Dw
and Sw(R). Proposition (1.1) suggests to define the real discriminant
Dw,R as the closure of the real nonsingular part of Dw. Then Dw,R is a
closed semi-algebraic subset of Dw(R), which at each point is of real
codimension one in Sw(R). Writing H, for the fixed-point hyperplane
of a reflection s, it follows from (2.2) and the observations in (2.1) that

q-1Dw(R) is the union of intersections Vu nHs,c, where u runs over
the involutions in Wu and s over the reflections in W. We give a
similar description for q-’Dw,,,.

(2.3) LEMMA: The inverse image q-’Dw,R is the union of inter-

sections Vu n Hs,c, where u runs over the involutions in Wu and s over
the reflections in W which commute with u.

PROOF: An element z E Vu maps to a simple point of Dw if and only if
there exists a unique reflection s, W which fixes z. Since z is also fixed by
u, it is fixed by the reflection usu-1. Hence usu-1 = s. This proves the
lemma, since for a generic point of vu n H,,c, there are no other

reflection hyperplanes than Hs,c containing it.

(2.4) We remark that although id and - id may represent different
elements in Nw/ W, the map z E Vc H iz E Vc induces an isomorphism
between the associated real orbit spaces and their real discriminants.

If u is an involution of V and s E W a reflection commuting with u,
then s leaves the subspaces Vu and Vu invariant and s acts as a

reflection on one of them and trivially on the other. We let W£ denote
the Coxeter subgroup of W generated by the reflections in W which
leave V§ pointwise fixed. It is clear that W’ x W- is a Coxeter

subgroup of W which acts as such on Vu. A chamber in Vu for this
action will be called a cell for u and is usually denoted by 16. Observe
that a cell for u determines u without ambiguity.

(2.5) LEMMA: Let u be an involution in the coset uW. Any cell for u

maps to a connected component of Sw(R) - DWR and the assignment
uH q (cell for u) sets up a bijective correspondence between W-con-
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jugacy classes of involutions in Wu and connected components of
Sw(R) - DW,R.

PROOF: That the image of a cell is a connected component of the

complement of the real discriminant follows from (2.3) and the

obvious fact that a cell is connected. If two cells ri, le’ for involutions

u, u’ 
, respectively have the same image in the orbit space, then

C’= wcg for some w E W. This implies u’ = w-’uw and hence the

correspondence is injective. Surjectivity is clear.

Our next aim is to analyse which points in a cell are identified when
we map it to the orbit space. For this purpose we fix an involution u

in uW and a cell (6 = C+ x iC- for u. This enables us to simplify the
notation a little: we write W± and V± instead of W£ and Vj.

(2.6) LEMMA: Let s be a reflection in W which leaves a point of 16
invariant. Then s and usu commute.

PROOF: As u permutes the irreducible components of W, there is

no loss of generality in assuming that W is irreducible. We do so and
we put s’ = usu. Since s has a fixed point in IË we have se W + x W -
and hence s’ # s. So the subgroup W’ of W generated by s and s’ is
of rank two. Suppose ss’ is of order -3. We distinguish three cases.

(a) rank W = 2. Since s fixes points in C+ and C-, their union is
contained in HS. But this contradicts the fact that C+ U C- generates
V.

(b) rank W &#x3E; 3 and (ss f)4 # 1. According to the classification of

Coxeter groups, this forces ss’ to be of order 3 or 5. Then the

reflection ss’s (resp. ss’ss’s) equals its u-conjugate and is therefore

contained in W+ U W-. This contradicts the fact that this reflection

has a fixed point in C.
(c) rank W &#x3E; 3 and (SS,)4 =1. Then the classification shows that s

and s’ are not conjugate in W (for W then extends to a root system
of which the roots corresponding to s and s’ have different length).
As observed earlier, u induces an automorphism of the Coxeter

diagram of W. Since the Coxeter diagram is a tree, at least one vertex
is left fixed by u. So u preserves at least one conjugacy class of
reflections in W. As there are at most two such classes, s and s’ must
be conjugate in W. Contradiction.

The above proof uses the classification in a mild way. Indeed, by
employing more subtle (and elaborate) arguments, its use can be



59

avoided altogether. The preceding lemma has an interesting
consequence for the stabilizer of a point in C.

(2.7) LEMMA: Let z E (C. Then its stabilizer Wz splits into a direct
product Wzx WZ whose factors are interchanged by conjugation with
u: WZ = uWzu.

PROOF: Suppose not. Then Wz contains an irreducible Coxeter

subgroup W’ which is normalized by u. We choose a Nw-invariant
riemannian inner product (, ) on V and we let R denote the set of
vectors r E V with (r, r) = 1 and sr = - r for some reflection s in W’.
Clearly, two such vectors are mutually perpendicular iff the cor-

responding reflections in W’ commute. Note that W’ leaves R in-

variant. For any r E R there exists a chain Sr = fro = r,..., rk = uro}
with (ri, ri+l) # 0 for i = 0,..., k - 1. We choose r and Sr such that S,,
has minimal cardinality. This minimality condition implies that

(r;, rj) = 0 for Ii - jl &#x3E; 1 and (ri, urj) = 0 for Ji, j} # 10, k - 1). Now, the

element rf : = srk-l ... Srro belongs to R and is of the form £ i=O ciri with
co = 1 and ck-1 # 0. It follows that (r’, ur’):= (ro + Ck-IurO, uro + ck-IrO) =
2Ck-,(ro, uro) # 0. This implies that sr, and usr,u don’t commute, thus

contradicting (2.6).

(2.8) COROLLARY: Let z E (6 and w E W be such that wz E 16. Then
there exists a wo E Wz with the property that wwo leaves le invariant.

PROOF: We first note that uw-1uw(z) = uw-Iw(z) = uww-’(f) = z.
Write uw-’uw as a product w’w" with w’Ei W’ and w" E W". Since
the inverse of uw-luw equals its u-conjugate we must have

W,I-IW,-l = UWfU-1 . uw"u-1. It follows from the preceding lemma that
then w’-’ = uw"u-1. Hence uw-’uw = uw"-luw", in other words WW,,-l
commutes with u. We claim that wo:= w"-’ is as desired. Since wwo
commutes with u, it permutes the cells for u. Moreover wwocg n
cg# 0. Hence wwo6 = %.

(2.9) Let p e (6 be any point on the barycentric halfline of 16. Any
element of Nw which leaves (6 invariant fixes p. We set

W(c:= f w’uw’u-’: wEi W’,I. This notation will be justified in a mo-

ment. Note that (2.7) implies that Wcg is a subgroup of W and as a

group is isomorphic to W’. Moreover u commutes with the elements
of Ww. Hence Wcg leaves Vu invariant and permutes the cells for u. As

Wcg stabilizes p it follows that W* leaves (6 invariant. Observe that
the representation of Wcg on Vu is up to a trivial factor the
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complexification of the ordinary representation of Wc c-- W p as a

Coxeter group.

(2.10) PROPOSITION: The Ww-orbit space of 16 maps bijectively
onto a connected component of Sw(R) - Dw,R. This orbit space is

homeomorphic to a vector space and its regular part is a classifying
space for the Artin group of Wc.

PROOF: To prove the first assertion, it suffices by (2.5) to show that
the induced map W*)% - q(%) is injective. Suppose z, z’EE 16 lie on

the same W-orbit. Then by (2.8) there exists a w E W with z’ = wz
and w(6 = C. Hence wp = p. We write w = w’ w" with wf E W P and
w" E WP. Since w leaves le invariant, w commutes with u and hence
w" = uw’u-’. This implies w E W* and the required injectivity
follows. Now let F denote the fixed-point set of Wg in Vu and pl- its
orthogonal complement in Vu (relative an Nw-invariant riemannian
metric). Then pl- is Ww-invariant and the action of W, on pl- is the

complexification of the Coxeter representation. Using the fact that
each intersection C n (z + pl-), z E F is starlike, it is easy to construct
a W,,-equivariant homeomorphism of 16 onto (C(¿ n P) + pl-. The last
two assertions now follow from known properties of the Ww-action
on pl-: the Wg-orbit space of pl- is homeomorphic to a vector space
(see the remarks made in (2.1 )) and according to a theorem of Deligne
the regular Ww-orbit space of F’ classifies the Artin group associated
to Wc.

3. The period mapping over the reals

Our main tool for the proof of the theorems (1.6, 7, 8) will be the
period mapping, introduced in [8]. We briefly recall its construction.
Let (XO,O) be a two-dimensional simple singularity defined over R.
Then Xo can be taken weighted homogeneous and for its semi-

universal deformation we may choose a weighted homogeneous
representative fi: X = C2+1 __&#x3E;CI = S, which is also defined over R. On
X (resp. S) we choose a nowhere vanishing holomorphic form w
(resp. a ) of maximal dimension and weighted homogeneous in an

obvious sense. Both w and a are unique up to a scalar factor. Then
on each nonsingular fibre XS of F there exists a unique holomorphic
2-form w (s ) with the property that W(S) A F*(a) = (o along Xs. Now
fix a base point s E S - D and let s’ be any other point of S - D. Then
a continuous path from s’ to s enables us to displace úJ (s) along this
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path to a 2-dimensional cohomology class on X,. The ambiguity
caused by the choice of such a path is eliminated if we assign to s’ the
Ws-orbit of this class, rather than the class itself. We thus get a map
from S - D to the WS-orbit space of H2(Xs; C), which is called the
period mapping. We denote this mapping by P and, in accordance to
the notation of the previous section, the orbit space by Sw. The

following was shown in [8].

(3.1) The period mapping is holomorphic and extends to an

isomorphism from S onto Sw which maps D onto Dw.

Now we assume that w and a are defined over R and that our base

point s is in S(R) - D(R). We let K denote the connected component
of S(R) - DR which contains s. If s’EE S(R), we write Vs’ for

H2(Xs" R) and we let V;,EB V§, be the eigen space decomposition of
us

(3.2) LEMMA: For any s’ E S(R), the cohomology class [w(s)] E
V s’,c lies in V),@ iV-1.

PROOF: Let &#x26; E H2(Xs; R) be arbitrary. Since W(Sf) has real

coefficients, we have

This clearly implies the lemma.

We endow Sw with the real structure defined by the image u of us
in NI W.

(3.3) COROLLARY: The (extended) period mapping P maps S(R)
onto Sw(R).

PROOF: The preceding lemma and (1.4) show that P maps S(R)
into the Ws-orbit space of

By (2.2) the latter equals Sw(R). It then follows from (3.1) that

P(S(R)) is a submanifold of Sw(R). As it is open and closed in Sw(R),
it must be equal to Sw(R).



62

(3.4) Now we can prove the assertions made in (1.6, 7, 8). Since P

maps D onto Dw and S(R) onto Sw(R), it follows that P maps D(R)
onto Dw(R) and DR onto Dw,R. Then (1.6) is immediate from (2.5) and
the first three statements of (1.7) follow from (2.10) and the preceding
discussion (2.9). As for ( 1 .7)-iv we observe that FR’(K) --&#x3E; K is a trivial
bundle because K is contractible. The assertion concerning the euler
characteristic of XS is a consequence of the Lefschetz fixed point
formula. Finally, (1.8) is implied by (2.4).
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