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Introduction

In this paper we prove two main results about Eisenstein series and

then use these to obtain information about fields of definition for

algebraic models of arithmetic quotients of bounded symmetric
domains. Our results are valid for tube domains with zero-dimen-

sional rational boundary component; however, for the sake of

simplicity, in this introduction we consider only the case of a

congruence subgroup T of Sp(2n, Z) acting on Siegel’s half space
D = Sp(2n, R)l U(n) of quadratic forms on Cn with positive definite
imaginary part.

Firstly, we attach Eisenstein series to the various point-cusps (§2)
and show that all their Fourier coefficients lie in a cyclotomic number
field. For congruence subgroups of SL(2, Z), this generalizes results
of H. Petersson [30]. Also, our results include some results of H.

Klingen, [25], for congruence subgroups of the Hilbert-Blumenthal

groups. Our method is reduction to the special case previously treated
by Tsao, [36], and by Baily, [7]. The proof is completed in §5.

Secondly, we characterize those arithmetic subgroups T such that
the field kr of F-automorphic functions is generated by weighted
homogeneous quotients of Eisenstein series. Namely, we show in §6
that the Eisenstein series generate kr if and only if F is maximal

among those arithmetic subgroups with a given set of cusps. We call
such F saturated. Using this characterization, L.-C. Tsao has shown
how to recover some results of U. Christian; see §6. Our proof is a
recasting of an argument used by Siegel and, more recently, by Baily
in [4].

* Supported in part by National Science Foundation grants GP-36418X and MPS75-
07055.
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As a consequence of the above results, we obtain a cyclotomic field
of definition k for the Satake compactification B(T) of FBD whenever
T is a saturated congruence subgroup. The field k is natural in the

following sense: we may identify the homogeneous co-ordinate ring
of %(T) with a subalgebra of T-automorphic forms, and then the
k-rational functions are precisely the automorphic forms with all their
Fourier coefficients in k. Furthermore, certain morphisms are defined
over Qab and we use this to show that the cusps of T and the Shimura

variety FBD are also defined over Qab.
In the case of Siegel’s upper half-space, for example, Shimura has

more precise results about fields of definition; see [32] and [33].
Furthermore, Shimura’s methods apply to classical domains not

treated in this paper. However, computations of Tsao show that our
methods apply to the exceptional domain of complex dimension
twenty-seven, which has not been treated by Shimura’s methods; see
§6. Hopefully, some of our techniques will be of use for a unified
treatment of these problems on a larger class of domains.
The research leading to this paper was done largely while the

author was visiting the Institute for Advanced Study in Princeton. It
is a pleasure to acknowledge the hospitality of the Institute and to
thank A. Borel, G. Prasad, M. Schlessinger and L.-C. Tsao for fruitful
conversations and correspondence. Special thanks are due to W.L.
Baily, Jr., who read a preliminary version of this paper and offered
suggestions that led to several improvements.

§0. Notation and Conventions

0.1: As usual, Z, Q, R and C denote, respectively, the ring of
integers and the fields of rational, real and complex numbers. If n E Z
let Z(&#x3E; n ) = {j E Z : j &#x3E; n }. Let Zp be the ring of p-adic integers and let
Z = IIp Zp with p ranging over the rational primes. Let Qab be the
compositum of all cyclotomic fields in C. Fix a square root (-1 )1/2 of
-1 in C.

0.2: Suppose that F is a field. If F’ is a finite algebraic extension of
F, let 9! F/F be the ground field restriction functor of Weil [40; 1.3]. If
E is any normal algebraic extension of F, let Gal(E/F) be the Galois
group of the extension and endow it with the Krull topology.
Suppose that F is a number field and let V(F), Voo(F) and Vna (F)

be, respectively, the sets of all praces of F, all archimedean places of
F and all non-archimedean places of F. If v E V(F), then Fu is one of
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the completions of F that constitute the equivalence class v. We let

FA be the ring of F-adèles and if x is an F-idèle we let ixl,4 be the idèle
modulus of x ; cf. [41; Chap. IV].

0.3: Suppose that G is a group. If g, x E G, let Int(g)x = g - je g-’.
If H is a subgroup of G, let IG(H) (resp. XG(H» be the centralizer
(resp. normalizer) of H in G. Thus, ’CG = IG(G) is the center of G. If
M is a subset of G, we let ’M = Int(x)M and Mx = x-1 . M . x for
x E G. Let SG = [G, G be the commutator subgroup of G.
A character X of G is a homomorphism from G to the multi-

plicative group C"; X is a unitary character if it takes its values in the
unit circle {z E e: zz = 1}. Let e be the unitary character

x H exp(21T( -1)1/2 . x) of R.
In case G is a topological group, GO is the connected component of

G containing the identity element la. A character of a topological
group is understood to be continuous.

0.4: All our algebraic groups are linear, and we follow the notation
of Borel’s book, Linear Algebraic Groups, [12]. In particular, if R is a
subring of a field F and if G is an F-group, then G(R) is the group of
R-rational points of G. We let Gv = G (Fv ) if v is a place of F; Lie(G)
is the Lie algebra of G. Each object defined for abstract groups or
topological groups in 0.3 has an obvious analogue for algebraic
groups.

0.5: The phrase ’for almost all’ will mean ’for all but finitely many’.

§ 1. Preliminaries

1.1: The situation that we investigate generalizes the following
familiar one. The symplectic group G = Sp(2n) has real points G(R)
acting by linear fractional transformations on the Siegel half-space Dn
of n-rowed symmetric matrices with positive definite imaginary part;
the subgroup of real affine transformations x H A(x) + B is the group
P(R) of real points of a parabolic Q-subgroup P of G ; an element of
P, expressed as a 2-by-2 tableau of four n-by-n blocks, has lower left
corner zero.

With respect to the maximal Q-split torus T of diagonal elements in
G, the root system is of Cartan-Killing type C, and P is the standard
parabolic subgroup associated to the set © of short simple roots, as in
[14; 4.2]. Namely, P is generated by the positive root groups and by
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the centralizer Ze of Te, the largest torus on which all roots in 0 are
trivial. Elements of Te, expressed as tableaux, have scalar matrices as

upper left and lower right corners.
Let In be the n-rowed identity matrix, so on = (_ 1 ) 112J n lies in the

half-space Dn. The isotropy group of on in G (R ) is a maximal compact
subgroup isomorphic to the unitary group U(n, R). Let Koo= U(n).
Then the canonical automorphy factor

maps (g, x) to cx + d if g = (g d) in block form ; see [ 11; p. 202]. In [34],
Siegel considered the automorphy factors (g,jc)=det(3(g,jc))’ for
even integers 6 &#x3E; n + 1. He showed the Eisenstein series

where F = Sp(2n, Z), converges normally to a T automorphic form. It
is easy to see that Ee has a Fourier expansion

where À runs through a certain lattice of Q-rational characters on U,
the unipotent radical of P. Siegel showed that each a (A) is a rational
number.

Replacing the full Siegel modular group T = Sp(2n, Z) by the

congruence subgroup T(m ) of 2n-rowed symplectic matrices

congruent to the identity matrix modulo m, we construct additional
Eisenstein series and show that their Fourier coefficients a (À) are

cyclotomic numbers. It is convenient to use an adèlic setting, as in
[32], for example, so we actually work with a compact open subgroup
K of the group G (Ana ) of finite adèles instead of working directly
with T(m ).

For us, a subgroup à of G(Q) is a congruence subgroup if

For example, we realize T(m ) in this way by choosing K = K(m ), the
subgroup of 2n-rowed symplectic matrices g with entries gii in Î
satisf ying gii - 03B4ij E mZ, where both m and the Kronecker symbol Sij
are viewed as rational adèles. Similarly, Hecke’s congruence sub-



125

groups To(m ) Ç SL(2, Z) arise by taking as K the subgroup

This discussion also extends to Hilbert-Siegel modular groups: one
applies to Sp(2n ) Weil’s ground field restriction functor g¡¡,kIQ, with k a
totally real number field, to obtain G; then T and P are naturally
derived for G from the corresponding subgroups in Sp(2n). We
identify G(A) with Sp(2n, kA) as in [40; 1.33] and thus obtain a

subgroup K(m ) for each integral adèle m of k. If m is the integral
ideal of k that corresponds to the adèle m, and if n = 1 so that we are
in the Hilbert modular case, then K - G (R)° fl G (Q) is the group r(m)
of [25].

Later we shall refer to the choices of G, T, P and K just described.
However, our methods work in a broader setting to be described in
detail in § 1.2. We start with a reductive algebraic group G defined
over Qand such that the connected Lie group G(R)o acts transitively
on a bounded symmetric domain D. For simplicity we assume that G
modulo its center is Q-simple. Also, we must require, roughly, that D
have product structure compatible with the complex structure of D
and with the Q-structure of G. More precisely, we require that D be a
tube R" x (-1 )1/20152 C en over a positive open homogeneous cone OE in
Rn and that the real translations of D C C" generate an algebraic
Q-subgroup U of G. This requirement insures that each automorphic
form on D has a Fourier expansion like (2). Baily has called D a
rational tube domain and has shown that a bounded symmetric
domain D under the action of G(R)° is a rational tube domain if and only
if the relative Q-root system of G is of Cartan-Killing type C; see [7],
[28; 4.4, Remark, p. 294] and [9; 2.9].
Let P be the normalizer of U in G, so P is a parabolic Q-subgroup

with unipotent radical U. To define Eisenstein series we must assume
that

for each finite rational prime p. This is actually not restrictive, but
rather amounts to a convenient choice of co-ordinates; see 1.3.0.

Generally, it is best to have all our assumptions stated in terms of G
and its subgroups rather than in terms of the domain D. In particular,
instead of fixing a holomorphic factor of automorphy on D analogous
to (det 0 03BC )-, we fix a rational character analogous to the character
det-t on GL(n, C) in the example above.
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1.2. We are now prepared to introduce the configuration to be

studied. It is a quintuple 9Ï = (G, T, P, p, K), where G is a connected
reductive matrix group defined over Q, T is a maximal Q-split torus,
P is a maximal parabolic Q-subgroup of G containing T, p is a

rational character of P defined over Q, and K is a compact open
subgroup of G(Z) = IIp G(Zp), with p running through the finite

rational primes.
We make the following assumptions:

(AO) For each finite rational prime p, G(Zp) is a good maximal
compact subgroup of *G(Qp) in the sense of Bruhat-Tits [16; 4.4.1].
In particular, for each parabolic Q-subgroup P’ of G there is an

Iwasawa decomposition

(AI) The symmetric space D of maximal compact subgroups of
G(R) carries a G(R)o-invariant complex structure that makes it an

hermitian symmetric space of non-compact type.
(A2) The relative Q-root system !(T, G) of T in G, [14; 5.1], is

connected and reduced (i.e., the double of a root is never a root),
hence of type C, see [9; 2.9].

(A3) For some ordering of X(T, G), P is the standard parabolic
Q-subgroup associated to the subset 0 of all short simple roots of
£(T, G ) as in [ 14; 4.2]. That is, the largest subtorus T8 of Ton which
all roots in f) are trivial has centralizer Z8, which is a Levi component
of P.

(A4) p(b) &#x3E; 0 for each b E P(R) nG(R)O.
Let M be a maximal compact subgroup of G(R). Then owing to

(AO) there is a function tp = 03A8M defined on G(A) by .p(gCù) = ’p(g )1.4
for g E P (A ), Cù E MG (Z ).

(A5) The series

converges normally on G(A).

1.3: Now we discuss the various assumptions in greater detail.

1.3.0: We owe to A. Borel a proof of the existence of co-ordinates
on G satisfying (AO). More precisely, one has the following.
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Let F be a global field with ring of integers o F. If v is a place of F,
let Fv be the corresponding completion and 0 v the valuation ring in Fv.
Now suppose that G is an arbitrary semi-simple affine F-group, and
let T be a maximal F-split torus of G. Then G has an embedding,
which is defined over F, into some GL(n), and which satisfies for
each finite place v of F:

(i) G (o v ) is a special maximal compact subgroup of G(Fv).
(ii) T(o v) is the greatest compact subgroups of T(Fv ).
This result extends to reductive groups by an easy argument on

lattices over F, as in [41; V, §2]. We leave this to the reader. Note that
(ii) is not used until §5.

1.3.1: Assumptions (Al) and (A2) are basic, (AI) concerning the
geometry of the domain D and (A2) concerning the relation between
the geometry of D and the Q-structure of G. By contrast, (A3) simply
describes P. Both (A4) and (A5) are needed when we define the
Eisenstein series. Since we obtain a holomorphic factor of automor-
phy by composing the canonical automorphy factor (or, rather, a

Cayley transform of it) with p, specifying p amounts to specifying the
weight of the Eisenstein series. Thus, (A4) corresponds to Siegel’s
requirement that the weight be even and (A5) corresponds to the
requirement that the weight be high enough to give convergence of
Eisenstein series. By [21; Theorem 3], we obtain a suitable character

p from any rational character po defined over Q simply by choosing a
suitable power of po.
Each of our assumptions is compatible with passage to the boun-

dary. In particular, we have avoided restricting ourselves to powers
of the functional determinant as automorphy factors because the
automorphy factor induced on a boundary component by such a
power need not be of the same type; see [9].

1.4. ROOTS, JORDAN ALGEBRAS AND CARTAN INVOLUTIONS: We
now take a closer look at how the geometry of D relates to the

Q-structure of G. It is easy to check that the unipotent radical U of P
is abelian, [14; 2.5], hence U carries naturally the structure of a
vector space over Q; see [14; 3.17]. We denote by Into(T8) the image
of Te, the greatest torus on which all short simple roots of 1(T, G)
are trivial, in the group Int(G) of inner automorphisms of G. The
proof of the following lemma was suggested by G. Prasad; see also
[14; 3.17]. We use this lemma in §5.

1.4.1. LEMMA: If G satisfies assumptions (AI) and (A2), then there
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exists a one-parameter Q-subgroup p, : GL(l) ---&#x3E; Inta(T8) such that for
each s E GL(1), the action of 03BC(s) on U is just scalar multiplication
by s.

The action Int of Te on U is given by the character X correspond-
ing to the long simple Q-root. The action of Te on the opposite
horocycle U- is given by X-’. Since SG is Q-simple and since U and
U- generate a normal Q-subgroup of @G, it follows that U and U-

generate SG. Therefore, Int is trivial on the kernel of X, so X induces
an isomorphism from Into(T8) to GL(1). Let 03BC, : GL(l) --&#x3E; IntG (T,9) be
the inverse morphism.

1.4.2: as indicated in 1.1, assumptions (A1) and (A2) imply that D
can be realized as a tube Rm x (_ 1) 112OE over some homogeneous
positive open clone 6 in Rm. Let L and B be the algebraic subgroups
of G generated by the real linear maps preserving D and by the real
translations, respectively. Then L is a Levi complement to V in the
parabolic R-subgroup L . V. Since IntG (L) is the algebraic subgroup
of GL(m) generated by elements of GL(m, R) that preserve 0152, the
relative R-root system of L has Cartan-Killing type A ; see [1; II,
§3.8]. It follows that L - V is conjugate to P and that L is conjugate
to Ze = I(T,9) by an element of G(R). This enables us to embed D in

U(C) so that, writing the group law additively, each u E U(R) acts on
D C U(C) by taking x E D to x + u, and so that the action of Ze(R)
on D is R-linear. In fact, the action of z E Ze(R) on D is conjugation:

We remark that, presupposing (A2), then assumption (AI) is

equivalent to requiring that P (R ) have an open orbit Int(P (R» - e
under conjugation on U(R) and that the stabilizer of e in Ze(R) be
maximal compact; see [1; II, § 1.3, Prop. 6].

1.4.3: By the work of Vinberg [39] and Koecher, one knows that,
corresponding to the clone 6 and to any choice of base point e E 6, U
carries a unique formally real Jordan algebra structure J defined over
Q, with identity element e, and characterized by

where expj is the Jordan algebra exponential; see [1; II, §2]. The

geodesic symmetry U = Ue of the Riemannian symmetric space OE,
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with respect to the base point e, is the birational map of U that sends
each x EE (E to its J-inverse, which we denote simply J(x). Moreover,
u induces an analytic involutive automorphism of Lie(Ze) and hence of
Ze, the Cartan involution o-*, and 03C3#is Q-rational, [1; II, §3]. We owe this
remark to Baily.

Similarly, the geodesic symmetry L of D with respect to the point
o = (-I)1/2e induces a Cartan involution" # of G. By [24; Prop. 3.5, p.
177], the two involutions, o-’ and L * coincide on Ze n,-DG. In particular,
i(Z) = -J(Z) if Z E D.

Referring back to the example described in 1.1, G = Sp(2n), we see
that via its decomposition into root spaces, U, the unipotent radical of
P, is naturally identified with the vector space of n-rowed symmetric
matrices. The cone OE in this case is just the set of positive definite
quadratic forms, and the Jordan algebra corresponding to this cone
with the identity matrix e of rank n as base point has product
X 0 y = 1(xy + yx), where xy is the ordinary matrix product of x and y.
The geodesic symmetry at e is realised by the element w of G(Q)
given by the tableau (0 e ô). Moreover, conjugation by w takes each
diagonal matrix t E T to its inverse. These facts generalize.
We claim that, for suitable choice of base point e, the geodesic

symmetry is realized by an element w in G (Q) fl G (R )° and that
Int(w) acts as inversion on T nG. Indeed, let w = e - L "(e) - e. For
x E D, then w(x) = e - J(e - J(x + e)). By Hua’s identity, [35; 3.9 (16),
p. 43], w(x) = -J(x), as required. By [1, II, §3.7] we can find a

maximal Q-split torus S in @G n Z8 that is stable under the Cartan
involution L" and such that i*(t) = t-1 for each t E S. Now S and
T n eG are conjugate by some element g E Z8(Q) fl @G : T rl 2G =

gSg-’. Since the centralizer of S meets all connected components of
H(R), where H = Z8 n,-DG, cf. [14; 14.4], we may assume that g E

H(Q) f1H(R)°. Then the base point g(e) = geg-1 E U(Q) fl cor-

responds to the Cartan involution gt"g-’, which acts as inversion on
T n -0G, as required.

1.5: For our purposes it is best to circumvent Harish-Chandra’s

realization of D and, instead, work directly with the embedding of D
in U(C) described above. We can do this by using an idea of Borel;
see [35; 2.2.], also [4; 4.3] in a special case.

1.5.1: We can describe the action of G(R)° on D algebraically as
follows. Let P- be the parabolic subgroup opposite to P, so P fl P- -
Ze. Then the multiplication map U x P - --&#x3E; G is injective and has
Zariski-dense image UP -. Therefore, if g E G then g . x - P - f1 U is
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non-empty for x in a Zariski-open subset of U and must then consist
of a single point which we call Ag(x). It is easy to see that

Ag (Ag-(x )) = Agg/(x) in the obvious sense.
If x E U, u E U and z E Ze, then Au (x ) = x + u while Az(x) = zxz-1.

Thus, the birational map Ag is everywhere defined if g E P. If,
moreover, g E P rl G (R )°, then Ag coincides with the usual action of g
on D.

To show that Ag gives the usual action of g on D for each
g E G (R )°, it suffices to check this f or g = w and to show that w and
P (R )° generate G(R)’. Since P(R)’ is an open subgroup of P (R ) and
the map (x, y)-&#x3E; xwy of P (R ) x P (R ) into G (R ) is submersive, the
double coset P(R)° . w . P(R)’ is open in G(R)o. Therefore, w and
P (R)° generate an open, hence closed, subgroup of the connected Lie
group G(R)°, so they generate G(R)°. Let x E D. Then the Jordan
algebra inverse J(x) exists and we must show that Aw takes x to
J(x)-’, i.e., wx E J(x)-’P- or, equivalently, wJ(X)WXW-l E P. It

suffices then to show that the element

lies in Zo, i.e., that Q(x) acts linearly on D. Write the group law on U
additively. Then w takes y E D to -J(y). Consequently, Q(x) takes y
to x-J(J(x)-J(x-J(y»). By Hua’s identity, [35; 3.9 (16), p. 43],
x - J(J(x) - J(x - J(y))) = xyx, where the Jordan algebra product
xyx = (xy)x = x(yx). Clearly, Q(x ) is linear, as required.

1.5.2: We can now define a rational factor of automorphy

by gx E Ag(x) - a(g, x) U- whenever Ag (x ) is defined, (g E G, x E U).
The cocycle relation

follows immediately because
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For each g E G(R)° the map x /+3(g, x) from D to Ze(C) is

everywhere defined and rational, hence holomorphic.
As one can verify by using a suitable Cayley transform, [28; §6],

our rational automorphy factor 3 is the canonical automorphy factor
described, for example, in [11; §4].
For a tableau g = (,, c d b) in Sp(2n), and x E Dn, we have 3(g, x) =

cx + d, an element of GL(n, C).

1.5.3: To obtain the usual C"-valued holomorphic automorphy
factors, such as powers of the functional determinant, we compose 3
with any rational character of Ze (or, equivalently, of P); see [7; p.
28]. Letj=po3.
We obtain one such character of P as follows. Let detj(x) denote

the generic norm of an element x E U with respect to the Jordan
algebra structure J. Define the character XJ : :P -&#x3E; GL(l) by setting

Then XJ (g ) detJ (x ) = detJ (g (x )) for each g E G (R )° fl Ze and each x in
D; see [35; 1.5].

Define âj(g, x) X. o a(g, x) for g E G, x e U, provided 3(g, x)
exists. If x E D, then 3J(w, x) = detJ(x)-2 because 3(w, x) = w-’Q(x)w
maps y E U to J(x)yJ(x), and XJ(3(w, x)) = detJ(J(x)2) = detJ(x)-2.

Since detj is positive on the cone OE, and since Ze rl G(R)’ preser-
ves OE, it follows that Xj(b) is positive for each b in P fl G (R )°. That
is, all the powers of XJ satisfy assumption (A4).

This much is enough for our present needs, but it is also true, in

case *G is simply connected, that yj is the square of a rational

character PI/2 defined over Q. First note that the simple connectivity
of -5ÈG implies that 1-5èG(R) is a connected Lie group; this is well

known and follows easily from [24; VI, Th. 1.I(iii)] by applying [24;
VIII, Th. 7.2] to complex conjugation on a maximal compact sub-
group H of G(C) such that H f1 G(R) is a maximal compact subgroup
of G(R). We owe the above remark to Baily. Let S be a maximal
torus of Ze defined over Q and containing T. Note that S n,-Dzo is

connected since it centralizes its connected component (S f1*Ze)°,
which is a maximal torus of qjJZ8. Since 1.DG(R) is connected, XJ must
be positive on Ze(R) and its restriction to S must therefore be the

square of a character po defined over Q. Since po is invariant under

conjugation by elements of Ze, the argument on page 16-04 of [17]
shows that po is trivial on the torus S n,-Dzo; therefore, po extends to
a character pi/2, which is defined over Q, on Ze, as required.
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1.5.4. ROOT SPACES AND THE PEIRCE DECOMPOSITION: Having
established an algebraic action of G on U, we can see that the

decomposition of U into root spaces for the maximal Q-split torus T
is also a Peirce decomposition for the Jordan algebra structure J on
U. We may assume that G is a simply connected semi-simple group.
In case G = Sp(2n) with T as in 1.1, the identification of Peirce and

root-space decompositions is apparent. In general, we choose a

maximal set of orthogonal idempotent elements el, ..., en in U(Q)
corresponding to the maximal Q-split torus T as in [1; II, §3.7]. For
each e; there is a one-parameter Q-subgroup ai: GL(l) ---&#x3E; T such that
ei = ia(I)ei where ai = (d/ds)a.(s); indeed, by [1; II, § 3 .2], there is

such a map into Intz8(T), and we can lift it back to T. Furthermore,
the ai’s are a basis of the vector space of one-parameter Q-subgroups.
Let a 1, ..., an be the dual basis of the lattice of rational characters of

T defined over Q; this is legitimate because Ze is simply connected.
If T E T, then T = IIi=l a;(s;) with s; = a;(T).

Let U = (Bt;j U;; be the Peirce decomposition with respect to the
set of idempotents le,, ..., en}. That is, u E Uij if ek - u = !(8k + 8;k)u,
(Kronecker 8). By definition, ak(s) acts on U as exp(2log(s)ek) so, if
u E Uij then ak(S)U = Sd _ u with d = 12(&#x26;ik + Sik)- In particular, r(M) =
a;(T)a;(T)u if u E Uij. Thus, the characters ai + aj are roots of T in U.
The identification of Peirce and root-space decompositions is clear.

The roots of T in Z are calculated in [1; II, §3.8]; they are the
characters ai - aj with i# j. Therefore, one basis of simple roots is
{al - a2, a2 - a3, ..., an - an-1, 2£tnl-

1.6. EXPONENTIAL SUMS: Let F be a non-archimedean local field

with valuation denoted ord, valuation ring o and prime ideal p. Let 17"

be a generator for p and let X be a non-trivial character of Flo.
Suppose that the characteristic of F is zero. Let W be a finite-

dimensional vector space over F, let E = EndF( W) be the ring of
F-linear endomorphisms of W, and let H’ be a compact open sub-
group of the F-rational points H (F) of some F-subgroup H of
SL(W). Suppose that W(o) is an F-lattice in W, cf. [41; Ch. III, §2,
Definition 2], and that W(o) is H’-stable. Let T be an F-linear

functional on W and suppose that, on W(o), T takes values in o.

Then, for any w E W(o), define fw : E - F by setting f,,,(T) = r(T(w»
for each T E E.

Let E(o) be the stabilizer of W(o) in E. If a E H, let aH be the
linear subspace of E such that aH + a is the embedded tangent space
of H at a. Let p(a ) = aH (F) and, for w E W(o), put
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If g, h E E, v Cz Z, write h = g(mod pV) whenever h - g E 7r’E(o).
Suppose that for each a E H’, fw# 0 on p(a). From [3; Prop. 1] it

follows that the map a H ma ( w ) is locally constant. Since H’ is

compact and open it is possible to find k E Z and ai, ..., ar E H such
that H’ is covered by the pairwise disjoint family of open discs
ai + irkE(o) and such that a H ma ( w ) is constant on each disc. Let

K ( w ) be the smallest such k. If f w = 0 on some P(a), then m (w)
and we set K ( w ) = 0.

1.6.1. LEMMA: There is a constant Po independent of w E W(o) and
such that, for each integer v &#x3E; Po + 2m(w) + K(w),

This is [3; Theorem 2] except that we have replaced H n W(o) by
the compact open subset H’. The proof is the same, using a version of
Hensel’s Lemma to linearize the problem.

1.6.2. DEFINITION: A vector v E W(o) is said to be primitive with

respect to W(o) if vÉ 1TW(O).

1.7: Suppose that F is a number field, v is a place of F and x E F§.
Choose an additive Haar measure on Fv and let Ixlv be the modulus of
multiplication by x. If v is a non-archimedean place, then the ring of
integers of Fv is

We normalize additive Haar measure dvx on F so that the volume of

0, is 1. If F, = R, we let dvx be ordinary euclidean measure; if Fv = C,
we let dvz = (-1)1/2 dz - df.

For any x E FA and any place v of F, let xv be the projection of x
on Fv. If T is a set of places of F, let

Then AT is the union of open sets carrying the convergent product
measure II vET d,x,, so there is a unique additive Haar measure dTx
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induced on AT by TIvET d,x,; see [40; 2.1.2]. If T and T’are disjoint
subsets of V(F), then AT x AT= ATUT’ and dTx - dT,x = d TUT’X- In case
the symbol u is generic for an element of the unipotent radical U of
P, we let dTu be the measure induced on UT = U (AT ) by the co-
ordinates of G.

Suppose that Flk is a finite extension of fields. Then the usual trace
and norm from F to k extend to maps TRFIK: FA --&#x3E; kA and NFIK: FA &#x3E;
kA, respectively.
Each character 03C8 of the additive group kA restricts to a character

of kv = A{v}. Let E be the unitary character of A that is trivial on QZ
and restricts to e on Qoo; see 0.3. Define a unitary character EF of FA
by letting EF = E 0 Tr FIQ.

§2. Eisenstein Series

2.0: In this paragraph we define the point-cusps, attach an Eisen-
stein series of given weight to each of them, and show that the
generic Fourier coefficients of these Eisenstein series are integrals
over U(A). The Fourier expansion is taken with respect to the cusp at
infinity, i.e., it is taken along U.

2.1: We begin by recalling some standard material about boundary
components. With s?.f = ( G, T, P, p, K ) as in 1.2, we put G °° - G (R )°
considered as a subgroup of G(A), K+ = G(R)’ - K’CG(A) Ç G(A), and
T = G ( Q) n K’, so r is an arithmetic subgroup of G ( Q) and G (R)°.
We embed D in its compact dual; see [24; V, §2]. Then the natural
boundary of D decomposes into analytic subsets called boundary
components; see [9; 1.5]. These are permuted by the natural action of
G (R )° on the boundary. The normalizer Ne of a boundary
component If is a parabolic subgroup of Goo. That is, N,* = G°° n P,,
for some parabolic R-subgroup P,* of G ; Py is uniquely determined.
If Py is defined over Q, then the boundary component @ is called
rational.

To each parabolic R-subgroup Q is attached a unique boundary
component = D(Q) such that Q = P,*. We let G(R)’ act on the set
of R-subgroups of G by conjugation. The correspondence between
parabolic R-subgroups of G and boundary components is then

equivariant with respect to the natural action of G (R )° on the

boundary. By [10; §7] there are only finitely many orbits for the
action of F on the set of rational boundary components. These orbits
are the cusps of r, and to each cusp Int(F) - 3C is attached a space
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r nPgFBf¥. These spaces are assembled to form the boundary
for Satake’s compactification of FBD; see [9; §4].
The zero-dimensional cusps or point-cusps correspond to r-con-

jugacy classes among the parabolic Q-subgroups that are G(Q)-
conjugate to P. Since P is its own normalizer, the point-cusps also
correspond to double cosets P(Q)xT with x E G(Q). We let

and identify it with the set of point-cusps.

2.2: Translation of the above material to adèlic language is

straightforward. Let Koo be the normalizer of a maximal compact
subgroup of G(R), so D is identified with G(R)IK.. Then X =

G(Q)BG(A)/(Koo x K) has finitely many connected components, each
of them identified with an arithmetic quotient grg-lBD, where g E
G(Q); see [10; §2]. The connected component °X =

G(Q)BG(Q)G(R)KIKooK is then identified with FBD.
In case G’, the derived subgroup of G, is simply connected, then

the connected components of X correspond to those of

T’(A)IT’(Q)T’(R)v(K), where T’ = GIG’ and v : G --&#x3E; T’ is the quo-
tient map; see [20; §2]. For example, if G is obtained from GL(2) by
ground field restriction from a totally real number field k, then

T’= -ô kIQ(GL(l». Hilbert’s modular group G(R)° f1 G(Z) corresponds
to K = G(Z); v is the determinant and v(K) is the set of integral
idèles of k with components equal 1 at all infinite places; thus, the
number of connected components of X is the ideal class number of k.

2.2.1: We let - = P(Q)BG(A)/G(R)K; it represents all the point-
cusps of X and is finite by a lemma of Godement, [10; 7.2]. The

point-cusps of the connected component °X = TBD of X then cor-
respond to the double cosets G(Q) . x - K’ with x EE G(Q)K+, and we
identify °3 with G(Q)BG(Q)K+/K+.

Suppose, again, that the derived group of G is simply connected.
Then it is easy to check that the derived group of Ze is also simply
connected; hence by strong approximation and the fact that 1-5Z,(R)
is connected

Now P(A)G(É) D G(Ana) by assumption, and strong approximation
for U allows us to replace Ze by P everywhere in (1). Therefore, we
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can choose representatives for the double cosets P(Q)BG(Q)K+/K+
from the set Te(A)G(Z).

In particular, if K = G(Z), then we may choose representatives for
P(Q)BG(Q)K+IK+ from T8(A). Let T" = Into(T8). Then the cusps
correspond to cosets tT "(Q) T "(R ) T "(Z) with t E T"(A). For the Hil-
bert modular group attached to a totally real field k, we have T" =

ekIQ(GL(l»; it follows that °X has number of cusps equal to the class
number of k.

As another example, take G = SL(2) and K = Ko(p) as in 1.1 (3).
The domain D is just the upper half-plane, and the set of rational
boundary components in Q UI-1. There are two cusps; one is the

orbit Q nzp of fo(p) corresponding to the double coset P(Q)K+
consisting of g = (gv)v E SL(2, A), gp = (*c d) with Iclp  Idlp.

2.2.2: If R is a commutative ring, let S(R) be the R-module of
R-valued functions on 3 and let °S(R) be the R-submodule of

functions supported on °3. When we wish to emphasize dependence
on the configuration 9t, we write 3BJI, Sa, etc.

2.3. ADELIC EISENSTEIN SERIES: By assumption (AO) of 1.2, if

g E G(A), then g = b - o) - g for some choice of b E P(A), Cù E G(Z)
and gOO E Goo. Let N (g) = N ,!(g) = ’p(b )IA. This well-defined because,
by assumption (A4) of 1.2, we have p(b ) &#x3E; 0 if b EE P(R) n G(R)’.
Suppose s E S(C). We let 0(g) = j(gOO, o)N(g), c = so and

By assumption (A5) of 1.2, the series (1) converges normally. Clearly,
0, is invariant under G(Q) on the left and under K on the right.
Furthermore, if g E G (A) and m E Koo, then

Corresponding to the Eisenstein series tPs on G(A) there is an

automorphic form E, on the domain D. If z E D, choose g E Goo such
that z = g(o) and let

Using (2) one checks easily that E, is well-defined. Also, E, is

holomorphic; see below. The set of Es, with sEES(C), forms a
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subspace of the space of automorphic forms with respect to (F, j) i.e.,
E,(yz) = j(y, z)-IEs(z) for y E r, z E D. We call this subspace OEW the
space of holomorphic Eisenstein series on X attached to U, and we let
° OE* be the space of all Es with s E °S(C).
We now verify that when G = SL(2) and r is a principal

congruence subgroup of SL(2, Z), then the space °01522{ of holomorphic
Eisenstein series on °X = FBD is spanned by certain Eisenstein series
defined by Hecke and by Kloosterman; see [26].
For any G and any a E G(Q), let d (a ) = P (Q)aK+. If z E D, we

choose g E G°° with z = g(o). Note that yg e A (a) if and only if

y E P (Q)aT = G(Q) fl 4 (a ). Therefore,

The series on the right of (4) converges normally, so E, is holomor-

phic. Let ra = T na-1Pa. The map taking Fa - y E TaBT to P(Q)ay E
P (Q)BP (Q)aT is bijective. Both s and N are r-invariant on the right.
Thus,

If G = SL(2), then the inner sum is the classical Eisenstein series

attached to the cusp Int(r) . P a. Note that N(a) E Q and N(lc) = 1.

2.4. FOURIER EXPANSION ON U(R): Recall that U(R) acts on D C
U(C) via real translations. Suppose that F is an arithmetic subgroup
of G. Then T fl U(R) is a lattice in the vector space U(R). Suppose
that h is a F n U(R)-invariant holomorphic function on D. Let L be the
lattice dual to F n U(R), i.e., L is the lattice of all Q-linear forms on
U(C) that take integer values on T f1 U(R). Then

In particular, the function Es has such a Fourier expansion and we let
a,(,k) or a (À) denote its coefficients.

2.5. FOURIER EXPANSION ON U(A): Recall that E is the unitary
character on A that is trivial on Qî and that satisfies Eco = e. For each
g E G (A ) and each r E U ( Q), then 0, (rg) = 0, (g), so the function
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u H tPs(u) on U(A) has Fourier expansion

where À : u /+ Au ranges over all the Q-linear A-valued forms on the
free A-module U(A). Since 0, is invariant under right translation by
elements of K fl U(A), we have b(,k) = 0 unless e o A - 1 on K f1

U(A), i.e., unless À takes K n U (A) into Z. If r = G(Q) n K+, then
under restriction to U, such A map to forms in L.

Conversely, if we first fix a basis for the lattice U(R) Qf, then we
can extend each AGI. uniquely to a Q-linear map k: U (A)--&#x3E; A such
that À’(K fl U (A» C Î. We can therefore compare the two Fourier
expansions, 2.4 (1) for Es and 2.5 (1) for 0,. Suppose that À is a

Q-linear form on U (A). If À E L, i.e., E 0 A - 1 on K fl U (A), then

Otherwise, b (À) = 0. Rather than study a (,k), we study b(,k).

2.6. BRUHAT DECOMPOSITION: The results of 1.5.4 lead to ex-

plicit representations for the double-coset decomposition
P(Q)BG(Q)IP(Q). Recall that there is a maximal set eh..., en of

mutually orthogonal Q-idempotents of the Jordan algebra U. Let

ri = ei£"(ei)ei, where t’ is the Cartan involution. Then Ad(ri) restricted
to Lie(r) is reflection in the hyperplane that annihilates ans, (i =

1, ..., n). We claim that ri and rj commute modulo the center of G,
i.e., r¡rjri1 ri1 E Cf60. For this it suffices to show that

for each x E D; but (1) follows from the Jordan algebra identity

which is easily established. Similarly, from (1) we have for any subset
I C 11, 2,..., nl

for some g E Cf60, where r, = II;EI r; and el = Yjcj e;. Let wi = r,r2 ... r;.

Then wn coïncides with w modulo Cf60, i.e., Into(wn) = Into(w).
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The relative Q-Weyl group W(T, G) = XG(T)IeG(T) of G is

generated by the permutations and sign changes of the strongly
orthogonal Q-roots 2al,..., 2an ; see 1.5.4. Let W8 be the subgroup of
W(T, G) consisting of the permutations of 2a 1, ..., 2an, and let Z8 be
the centralizer in G of Te. Then the relative Q-Weyl group of Ze can
be identified with We. Clearly,

By [14; 5.15], it follows that

Let U; be the Jordan subalgebra generated by root spaces cor-
responding to the roots a, + as with both r, s &#x3E; n - i. Let -L U; be the
vector subspace generated by the other root spaces that occur in U, i.e.,
corresponding to a, + as with either r:5 n - i or s --5 n - i. For i =

1, ..., n we have wi (-L Ui) w i ’C P, hence

2.7. DEFINITION: The Q-rank rkQ(A) of a non-zero Q-linear form k
on U is the smallest positive integer m such that, for each g E P(Q),
the restriction of A o Int(g) to 1 U; is non-zero for 0s i  m. If

rkQ(A) = n, then we call both k and a(A) generic. We put rkQ(O) = 0.

2.8. If k is a generic character on U, then

where dû is the Haar measure on U(Q)) U(A) with total volume 1.

Let 9 E G(A). Let C(i) = P(Q)BP(Q)w¡P(Q) for i = 1, ..., n. By 2.6

(4), P(Q)BG’(Q) = II ’=1 1 C (i). Therefore, 0 = 1 l= 1 ou, where

Since Inta(wn) = Into(w) normalizes Ze(Q) and since Int(w)U in-
tersects P trivially, we may identify C(n) with w - U(Q). Thus, it
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suffices to show that, unless i = n,

Fix i  n and look at one term of (Pi(g), say c( w’Yg) =
s (wiyg)4, (wi-ig) with some y E P(Q). It is enough to show that the

integral

vanishes. Choose x e -L Ui such that E(-A 0 Int(y-l)(x» # 1, and let
v = y-lxy. Then c(wiyuv) = c(wiyu) for all u E U, so 9 = E(-Av).j. It
follows that 0 = 0, as required.

2.8.1. COROLLARY: Ifk is a generic character of U, then

where the Haar measure du is norrualized so that the volume of a
fundamental domain for U(Q) in U(A) is 1.

This follows at one because the integral

is absolutely convergent.

3. Adelic Integrals

3.1: The first major step in our investigation of the Fourier

coefficients as (A ) of Es, s E S(Q), is to show that as (A ) is cyclotomic
if the character A is generic. Our method is reduction to the case

s --- 1, where the work of Tsao [36] and Baily [7] applies. The main
problem is that the double cosets P(Q)xK+, on which s is constant,
are not restricted direct products. Our solution is to show first that s
is invariant by G(Qp) for all but finitely many primes p, i.e., s(x)
depends only on finitely many of the components xp. Then we find an
open subgroup H of P (A) such that
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(1) H is the restricted direct product of groups Hv C P(Qv);
(2) Hp = P (Q,) for almost all finite primes, and H. = P (R)’;
(3) the map u /+ s(wu) is invariant under H acting as affine trans-

formations as in 1.5.1.

Finally, we show that the integrals of u t-+ e(-Ao)c(wu)e(-Au) over
the orbits of H have cyclotomic values and that almost all of them
vanish.

3.2: To show that s(x) does not depend on the component xp, i.e., s
is G(Qp)-invariant, the crux is to show that s is invariant on the left

under T(Q,). For this we prove two easy lemmas.

Let H = x - K’ - x-’, so à = P(Q)H - x-1. Then strong ap-

proximation shows that U(A) = u(Q)(u nH). Thus, U(A)P(Q)H =

P(Q)H, and it follows that U(A),à = A.

3.2.2. LEMMA: If H is an open subgroup of Ze(A) and contains
@Ze(R)°, then Ze(Q)H is a normal open subgroup of Z8(A).

It suffices to show that the derived group of Ze(A) is contained in

Ze(Q)H. Let Y be the simply connected cover of qjJZ8, so that Y(R) is a
connected Lie group. Then the required fact follows from real ap-
proximation for Ze, [20; 0.4], and from strong approximation for Y
combined with the proof of [27; Satz 6.1]. For a similar argument, see
5.5.2. Note that Ze is never of type E8, so the facts we need about strong
approximation were established by Kneser. For a proof of strong
approximation independent of classification, see [31].

3.2.3. LEMMA: For a double coset d = P(Q)xK+ with x E G(A), let
Nà be the normalizer of à in P(A) for left multiplication. Then N¿i is
an open subgroup of P(A) and contains U(A).

PROOF: Again, let H = x - K’ - x-1. It suffices to show that (Z8 n

H)U(A)P(Q)H = P(Q)H. We have

by Lemma 3.2.2. By Lemma 3.2.1, U(A)Z8(Q)H = P(Q)H.
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3.2.4. THEOREM: For all but finitely many primes p, the group

G(QP) leaves each s E S(C) invariant under left multiplication.

It suffices to show, for each of the finitely many double cosets
d = P(Q)xK’ with x E G(A), that G(Q,) -,à = à for all but finitely
many p.

Clearly, Nà f1 T is an open subgroup of T (A) and contains r(Q).
Since T splits over a finite extension of Q, it follows from the

finiteness of class number, [41; IV, §4], that T(Qp) C Na for almost all
p. Fix such a prime p.

If a is a root of T in Ze and if Va is its root-group, then Va f1 Na is
an open subgroup of V,,,,(A). We identify Va with its Lie algebra via
the exponential map. Then the action of Int(t) is identified with scalar
multiplication by a (t) El Q’ for each t E T(Qp). Since the image of
T (Qp) under a contains elements of arbitrarily large p-adic order, the
union over all t E T(0p) of Int(t)(Va(Qp) f1 Nà) must exhaust V«(Qp).
Thus, Va(Qp) C NJ1 for each root a. It follows that Z8(Qp) C NJ1 for
almost all rational primes p.
Combined with Lemma 3.2.1, this shows that P(Qp) - A =,à for

almost all p. On the other hand, G(Zp)xK+ = xK’ for almost all p.
Thus, for almost all rational primes p,

since

3.3: The primes p for which G(Q,) -,à = A for each double coset
A = P(Q)xK+, x E G(A), we call good primes. The remaining finite
collection of primes we call bad primes. Let Hoo = P(R)O, Hp = P(Qp)
for each good prime p  00 and Hp = (Ze n x - K’ x-1)U(Zp) for each
bad prime. The restricted direct product of the Hv’s with respect to
the subgroups Hv np(zp) is then an open subgroup of P(A). In 1.5.1
we defined an algebraic action of P acting as affine linear trans-

formations on U. Under this action the orbits of H on U(A) are open.
For each orbit H - u, we choose a representative x with xv = 0 for all
good places v (including v = oo).
According to 2.8.1 and 2.5 (2)

The integral is absolutely convergent and breaks up as a sum of
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absolutely convergent integrals over the orbits H - x. Now,

and for good places v the integral is

Tsao [36] and Baily [7] have proved that, for all finite primes p, Jp is
rational, and also, that e( - Ao) times the product of Jv over all places
v is rational. Therefore, e( -Ao) II v good Iv is also rational. If p is a bad
prime, then u H OP(wu) is constant on Hp - xp, so

Since Ep is invariant under Zp, we see at once that the right side of (4)
lies in Qab. Thus,

3.4: It remains to show that almost all the orbital integrals 3.3 (5)
vanish. For this it will suffice to show that, for each bad prime p, the
integral

fails to vanish for only finitely many orbits H, - xp. We fix such a bad

prime p. Now the problem is purely local, so we suppress the

subscript p wherever possible.
Define a p-adic lattice A = Kp fl U(Zp) and let the height of an orbit

be defined as follows:

The orbits are open, so only finitely many have given height; thus, it
is enough to show that, whenever height(H - x) exceeds some bound,
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The existence of such a bound will follow from Lemma 1.6.1 applied
to H, = z,, n H. First, however, we must embed Ze as an algebraic
Qp-subgroup of some special linear group.

Recall that Ze is embedded in GL( U) by IntG- We define an

embedding a of GL( U) into SL( U EB U) by letting g E GL( U) take
(u, v) E U EB U to (g(u), g-1(v)). The composition 6 = a olnto then
embeds Ze as a Qp-subgroup of SL( U O) U), and 8 is a submersion
from Ze to its image. Thus, viewing Ze as a Q-subgroup of

SL( U EB U), we see that H’ = Hp n zo is an open compact subgroup
of Zo(Q,).
We view the endomorphism ring End(U (D U) as an algebraic

algebra E, with p-adic points E(Qp) containing a p-adic lattice f2,
defined to be the stabilizer in E of the p-adic lattice A EB A. Then
H’C n. For ME U, define a linear map fu : E ---&#x3E; U q) U by letting
fu(T) = T(u, 0) for each T E E. If u E A, then f u maps f2 into A and,
for each positive integer v, induces a map

Extend A to a linear functional L on U EB U by letting L(u, v ) =,k(u)
and let r,,(T) = -L(T(u» for each ME U and T E E. Note that if

Z E Z8, then Tu (z) = -A(z(u». If height(H. x) = m, let y = pmx.
Choose v large enough so that H’+ p’f2 = H’. Then

with some q E QX. If the kernel of 1/1" has order t, then it follows

from (2) that

To use Lemma 1.6.1 we must have estimates of m ( w ) and K(W) for
w = (u, 0) E U EB U. This will follow from the next lemma and some
calculations of Tsao. Write m(u) = m(w), K(u) = K(W).

Recall that u E A is primitive if ue pA. By standard facts

about ground field restriction, it follows from [36; Lemma 9.6] that
there is a positive integer v such that, for each primitive vector u E A
and each sufficiently large positive integer m, there exists g E H’
satisfying: (i) g --- 1 E(mod p’f2), and (ii) Tu (g) # Tu ( l E)(m°d pm+v).
One can even take g E H’ fl G. Given a primitive vector u E A, let
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v(u ) be the smallest positive integer v such that, for each sufficiently
large m EZ(&#x3E;0), conditions (i) and (ii) hold for some g E H’. From
the proof of Lemma 9.6 of [36], it is clear that v(u) depends on u only
modulo pA for some small fixed integer k.

3.5. LEMMA: With notation as in 1.6 and 3.4, ma (u ) = v(a - u ) - 1,
(a E H’, u primitive in A).

Since ra .,,(g) = -,k (g(a - u» iru(g - a) for each g E H’, we may
choose g E H’ such that 9=IE(modpmf2) but r,,(g-a)Oi-u(a)
(mod p m+v(a . u». Note that g - a E H’and that g - a = a + p m y for some
y E.o because f2 is H’-stable. By [3; Cor. 2] there is a constant

li E Z(? o) independent of m and such that, for some z E.o, b =

p m y + p 2m-wz lies in p(a), cf. 1.6. Clearly, then

If m is sufficiently large, then b Epmn but r,, (b) 4 0 (mod p "’(a - u».
In particular, Tu(p-mb)jiO (modpv(aou», so ma(u) v(a. u), cf. 1.6

(1).
Conversely, if t’ = Ma (U) + 1, then we can find y F= p(a) n n such

that ru(y)00 (modp’), so Tu (p my ) 0 (mod p "+m ). By [3; Cor. 2]
there exists z E D such that

If m is large enough and if x E Z8(Qp), then x = a(mod pm) implies
x E H’. Thus, we may assume that b E H’. Now a -1 E H’ C n, so if

g = ba 1, then 9=IE(modp’f2) but Ta . u(g) Ta . u(IE)(mod p m+v).
Consequently, ma(u) + 1 - v(a - u). Since ma(u)  i,(a - u ), we have
ma(u) = v(a - u) - 1, as required.

3.6. LEMMA: There is a constant mp such that if height(Hp . x) &#x3E;

mp, then

We need to use Lemma 1.6.1. Since v(u) depends on primitive
u E ll only modulo pk A for some integer k, we see that the map
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a - Ma (U) = v(a - u) - 1 is constant on the cosets of the open sub-

group

of H’. With K as in 1.6, then K(u) S k for each primitive u E A.

Moreover, m(u) exists and is bounded so we can apply Lemma 1.6.1
to finish the proof.

3.6.1. COROLLARY: There is a finite set B of non-archimedean
rational primes such that, given a generic character k E L(n), there
exist an open compact subset Y = Y(A) of UB and a rational number
q = q(A) satisfying

for each s E S. Moreover, we may assume that Y is normalized by
P(z) f1 PB and that Y has rational volume.

Let B equal the set of bad primes p, i.e., p such that some s E S is
not invariant by G(Qp). Let Ho = H n PB and let Y be the union of
orbits HB - x in UB with height(Hp - xp) S m ( p ) for each p E B. Then
Y has the required properties.

3.6.2. COROLLARY: For each s E S(Q) and each generic character
,k E L(n), the Fourier coefficient as(A) E Qa6.

The integrand in 3.6.1 (1) is locally constant and its values lie in Qab-
Thus, for some positive integer k, the compact open set Y is parti-
tioned by a finite family of cosets ui + p kA on which the integrand
u H c(wu)e(-Àu) is constant. The corollary follows.

§4. Cyclotomy of the Fourier coefficients

4.0: This paragraph is devoted to proving that all the Fourier

coefficients of E, lie in the field Qab whenever s E S(Q). We have
shown already that a,(,k) E Qab for each generic character A. The main
idea is to reduce to this case by using the natural fibration of D over
its boundary components. More precisely, we show that if A does not
have maximal rank, then as(Á) appears as a generic coefficient in the
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Fourier expansion of an Eisenstein series induced from E, on one of
the rational boundary components of D, say D*.

Since the rational boundary components of D* are naturally
identified with rational boundary components of D, we can restrict
our attention to D* of rank n - 1. Namely, we can proceed in-

ductively if we establish that as (À ) = as.(À *), the Fourier coefficient of
an Eisenstein series E,. on D* attached to a character k* with the
same rank as À. This method is easier to describe than direct descent

to an arbitrary rational boundary component but amounts to the same
thing.

4.1. A STANDARD BOUNDARY COMPONENT: We now construct the

standard rational boundary component of rational rank n - 1. Recall
that there is a basis of strongly orthogonal Q-roots, {2a 1, ..., 2an},
such that the simple roots of T in P are al - a2, ..., an-1 - an, 2an. Let
U.,,, be the unipotent subgroup of P generated by the root groups of
T and P. Let T# be the largest subtorus of T on which all the simple
roots of T in P, except for al - a2, are trivial, let G * be the

centralizer of T # in G, and let P * = G * Umax be the standard

maximal parabolic Q-subgroup attached to a, - a2. Then G * is a Levi
component of P#, and with respect to T, the Dynkin diagram of G *
has type Cn-1; it is obtained from that of G by deleting the vertex
corresponding to a i - a2.
The boundary component corresponding to P # is the symmetric

space D* attached to G*, so it is a rational tube domain of rank n - 1
over Q. Its boundary point at infinity corresponds to the maximal
parabolic Q-subgroup P * = P fl G * of G * . Let U * be the unipotent
radical of P * . We note that U * is the Jordan subalgebra Un-i of U
introduced in 2.6; see [14; §4].
Each integral automorphic form F on D, e.g., F = Es, induces an

automorphic form Ind* F on D* via extension to the boundary as in
[9, §8]. By the argument of [6; 7.2], if F has Fourier expansion

then, for z E D*,

where L* = {A E L: À( 1 Un-1) = 01. It will suffice to show that Ind* E,
is an Eisenstein series on D*.
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4.2: There is a canonical fibration 17" *: D D* defined in [9; 1.7].
Recall that j is commensurable with the functional determinant;
hence, by [9; 1.11 ], the function z H j (g, z) is constant along the fibres
of 17"* whenever g G PP* f1G(R)°. Furthermore, if gePP#, then
j(g, z) tends to zero as z tends to the boundary of D in a suitable
Siegel set, see [9; 7.7(ii)]. Since (PP")(Q) = P(Q)P"(Q), we have for
g E G(R)° and z = g(o)

where the sum ranges over y in (P (Q) n p #(Q»BPO(Q).
Since we identify G, with U"BP* and we have G*(Q) =

U#(Q)Bp#(Q), it follows that the sum on the right side of (1) can be
taken over all y in P*(Q)BG*(Q). For y E G*, however, j(y, z)
depends only on 1T*(Z), and we write j(y, z) = j’(y, 1T*(Z». For z* E
D* we can find g E G*(R)’ such that z* = g(ir*(o», hence

4.3: Let p* = p ) P* and K* = K f1 G*. Then K* is a compact open
subgroup of G *(Z), and, according to Bruhat-Tits theory, G *(Zp) is a
special maximal compact subgroup of G(Qp) for each finite prime p.
To show that the right side of 4.2 (2) is an Eisenstein series

attached to ’à* = (G *, T, P *, p*, K*) it suffices to check that j’ is the
automorphy factor attached to ’à*.

4.3.1: Recall that there is a rational map a: G x U ---&#x3E; U x Zo
defined by setting a(g, x) = (Ag(x), 3(g, x)) if gx E Ag(x) - 3(g, x) U-;
see 1.5. The automorphy factor j is defined by j(g, x) = p(3(g, x».
Similarly, one defines a rational map a * : G * x U* --&#x3E; U * x (Zg n G,),
and a * is clearly the restriction of a to G * x U *. The restriction of
j(g, x) to G* x U is thus the automorphy factor j * attached to ’à*. To
see that j’ = j* we must verify that j(g, ir*(x» = j(g, x ) for a Zariski-
dense set of pairs (g, x) E G* x U. For this, it suffices to see that 17" * is

the restriction to D of the projection U - Un-, arising from the Peirce
decomposition with respect to the idempotent e,, i.e., ir* is the

projection onto Un-, with kernel 1. Un-I. Indeed, then j(g, x) = j(g, x’)
whenever x - x’ E 1. Un-I because j is algebraic.

4.3.2: To verify the above identification is routine in principle but

complicated in practice. We begin by decomposing each of the



149

Q-idempotents ei as a sum of R-idempotents eij to get a maximal set
of orthogonal R-idempotents. As in 1.5.4, this gives rise to a maximal
R-split torus RT, which contains T. The root system of RT in G can
then be identified with the root system RtP(a, g) considered by Baily
and Borel in [9; 1.2], where g = Lie(G(C)), a = Lie(RT(C)). In parti-
cular, we may assume that the idempotents e,, correspond in some
order to the root vectors Xi of [9; l.l, p. 448]. Let à = {X), ..., XI be
the set of all the X;’s where t is the rank of G as a semisimple group
over R. To each X = Xi e A one attaches an element cx =

exp«ir/4)(E-j-Ei», as in [9; 1.1], and to each subset oCà one

attaches the product c, of those cx’s such that X E u. Let b =

le,,,: 1£ = n - 11, and let a be the complement of b in à. The standard
boundary components correspond to certain subsets oCA, and to
each boundary component is attached an unbounded realization
r,: D ---&#x3E;P’ obtained from Harish-Chandra’s realization ro by using the
partial Cayley transform c,. Here p+ is the Lie algebra of a vector
subgroup P’ of G(C); P’ is the unipotent radical of a parabolic
subgroup KcP’.
According to [9; 1.7], Int(cà)P(R)’CKcP’, hence P+ C

Int(ca) U(C). Since D embeds as an open subset of p+ and also as an
open subset of U(C), dimension considerations show that P+ -

Int(c,à) U(C). Our identification of root systems allows us to identify
Ad(c,)-’pb with Lie( Un-,(C)) and Ad(ca )-’ qb with LieC1Un-I(C).

4.3.3: To complete the argument, it remains to pass from the

realization rb, used by Baily and Borel in [9; 1.7] in defining the
canonical fibration 17" *, to the tube realization ra. The main point is to
characterize qb. Let Ab be the R-subtorus of exp(a) corresponding to
the Lie subalgebra of a generated by root vectors in b. Then qb is

spanned by root vectors on which Int(ca)Ab acts non-trivially. There-
fore, there is a one-parameter subgroup y in Ab such that, for v E qb,

In fact, (1) characterizes qb as a subspace of p+.
For each subset a of A, let Su = r,(A) and let Su be the closure of

Su in the natural topology of p+. Let P: Sb--&#x3E; Sà be the map such that

rd = v 0 rb. Then v has meromorphic extension v’ to p+, and the

restriction of v+ to pb gives the Cayley transform from the bounded
realization of the standard boundary component D* to the tube

realization of D*. In particular, P’(0) is well-defined. We must show
that v( ’1b n Sb) C qb + v(O).



150

The natural action of g E Ab on SI takes x E Sa to Ad(cà . g . c§’)x.
Since ca centralizes Ab, the action of g E Ab on Sb, which takes x E Sh
to Ad(Cb ’ 9 - cb’)x, is linear and coincides with the action of Ab on Sa.
In particular, Ab fixes 0 E p+, and if x E qb, then

at t - 0. Therefore, v(x) - v(0) lies in qb whenever x does, so v(qb f1
Sb) C qb + v(0) as required.
We have now shown that j(g, ir*(x» = j(g, x) for g E G * and x E

U ; theref ore, j * is the automorphy factor attached to (G*, T *,
P *, p*, KI*) 

4.4: If A E L and A (1. Un-1) = 0, then as (A ) appears in the Fourier

expansion of Ind*(E,) on G * by 4.1 1 (2). Furthermore, we have just
verified that Ind*(E,) =,AE,. In particular, if rkQ(A) = n - 1 and

A(1.Un-) = 0, then À has maximal rank as a character on U*, and this
implies that as (A) E Qab. Moreover, by applying 3.6.1 to %* in place of
’à, one has an expression for as(A) as a rational number times a
certain finite exponential sum. We now extend this result to all

characters k E L. We begin by observing that the Eisenstein series
B}lEs does not depend on the choice of torus T, nor even on the choice
of Levi component Ze, because the construction of the automorphy
factor j did not use T. That is, if U _ (G, T’, P, p, K), then B}J,Es = ’)tEs
for each s E Sa = S%,.
Now suppose that À has rank k. Recall that this means that

(À 0 Int(z»(1 Uk) = 0 for some z E Z8, and A 0 Int(z)1 Uk is generic. By
changing T to Int(z-1) T we may therefore assume that k (-L Uk) = 0 and
that À j 1 Uk is generic. Let Gn = G and successively define Gi = (Gj,,)*
for j = n - 1, n - 2,..., 1,0. Then as (A) appears as a generic coefficient
in the Fourier expansion of an Eisenstein series IX(k)E, on Gk, where
ç2l(k) = (Gk, T, P nC’k, p j 1 p n Ob K f1 Gk). One can apply 3.6.1 to %(k).
In particular we have shown that all the Fourier coefficients of E, lie in
Qa6. We summarize what we have proved in the following lemma.

4.5. LEMMA: For each E L there is a Q-subspace U * of U, an
element w E G(Q), a finite set of non-archimedean rational primes B
and an open compact subset Y of U *8 = IIpEB U*(Qp) such that
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The Haar measure d*u on U *8 is normalized so that the volume of
U*B f1 U(Z) is rational.

4.6. REMARK: It is convenient to call any field containing all the
Fourier coefficients of an automorphic form F a field of definition for
F.

§5. Galois action

5.1: Our next goal is to show that the Eisenstein series me, is

defined over a cyclotomic number field, which can be chosen in-

dependently of s E S(Q) and of the character p. To do this we study
the effect of replacing each Fourier coefficient with its conjugate by a
fixed element T in the Galois group 0153 of the maximal abelian

extension Qab over Q. The main result is that this galois action

replaces an Eisenstein series with respect to K by an Eisenstein
series with respect to another compact open subgroup of G(A.a)-
Information on the field of definition then follows because the iso-

tropy group of each Eisenstein series is open in OE.

We identify Ci with GL(l, Z) as usual and write the action of ? on
Qab exponentially so that a’ is the image of a E Qab under the action
of T E @. For T E OE and x E A let X""" T . x denote multiplication by
the idèle T. Note that E(x) E Qab and that E(x)’ = e(T . x). By Lemma
1.4.1 there is a one-parameter Q-subgroup g:GL(l)--&#x3E;lntG(T,9) such
that J;L(T) maps each u E U(A) to its scalar multiple r - u, T G OE =

GL( 1, Z). In particular, if k E L, then E(-Àu)’ =,E(-,k - 1£(,r)(u».

5.2: Fix % = (G, T, P, p, K) and suppose that r E ? and s E Sm. To

emphasize the rôle of % we write *E in place of Es. Let u, (T)G be the
algebraic group G endowed with co-ordinates such that (1£(,r)G)(Î) =
1£(,r)(G(-Î», and let r - A = (g(,r)G, T, P, p, ..t(T)K). For any function
f on G(A) define T* f by

We shall prove that T, acting on Fourier coefficients, takes Es to "..E"..s.
First we need two lemmas.

5.2.1. LEMMA: For any commutative ring R and any T E 0153,
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More precisely, if x E G(A), we claim that

Indeed, by Lemma 3.2. 1,

and this is mapped byu, (T) to

Since Int(w) acts as inversion on Te n 2G, the center of @G meets
Te in a subgroup of order _ 2. Therefore, ..t(T)-2 = Into(t) for some
t E Te(Ana). Clearly, t lies in the greatest compact subgroup of

Te(Ana), so lp(t)1,4 = 1. Calculating locally, we see that if g E G(A)
then

Thus, T*f (g) = f (t - £ (,r)-’(g». If g E G(Ana), then g = btu with b E

P(A) and W E 1£(,r)G(Î). A brief calculation shows that

as required.

5.2.3. THEOREM: Suppose that T E 0153 and that the Eisenstein series
,me, has Fourier expansion

Then a,(,k) E Qab for each À E L and

That is, T. ’lia T*S(À) = (’lias (À »T for each k E L.
Replacing W by (G, T’, P, p, K) for suitable z E Z8(Q), we may

assume that À (-L U) = 0 and rkQ(A) = i for some i s n. Furthermore, the
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action of T* commutes with restriction from G(A) to Gi(A), so

replacing W by W(i) = (Gi, Ti, Pi, pi, Ki), as in 4.4, and s by its

restriction to Gi(A), we may assume that A is generic.
Let c = sO as in 2.3. There is a finite set B of non-archimedean

places of Q such that

for some rational number q = q(,k) and some compact open subset
Y = Y(,k) C UB; see 4.5. We can take Y to be normalized by 1£(,r) as
in 3.6.1. Since the integrand is locally constant, the integral in (1)
reduces to a finite sum. Thus,

A change of variable replaces the integrand of (2) by

so the theorem follows from Lemma 5.2.2, i.e.,

5.3. THEOREM: If s E S, then its isotropy group Qi, in (M is open
and each T in (M s n J{ 0153( G(Z» fixes the Fourier coefficients of Es. In
particular, if s E S(Q), then the Eisenstein series Es is defined over the
finite cyclotomic extension of Q corresponding to (M s n J{ 0153( G(Z».

Clearly, the normalizer of G(Z) in (9 is open. Thus, in view of 5.2.2,
the only point that needs to be checked is that (Ms is open. Since the
set of cusps is finite, it suffices to show that the condition, on T E (M,

is open for each x E G(A). This follows at once from 5.2.1 (1) because
the condition M(,r)K = K is open, K being both compact and open.

5.3.1. COROLLARY: There is a root of unity Y, which depends only
on K, not on p, such that each Eisenstein series Es is defined over the
number field generated by Y and by the finite set of values s(G(A)).
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Indeed, the character p appears nowhere in the description of 0153s. If
s E S(C), then s = Yi aisi for some a; E C, where the si’s give the
basis of S(Q) corresponding to the point-cusps; ai = s(x) for some
x E G (A ), and E, = li aiE,,,.

5.3.2. REMARK: The value %P,,(f) of an automorphic form f at a

cusp à (a) = P(Q)aK+ is defined in [9; §81, for instance. By a result of
Baily [4; (9) on p. 146] and by 2.4 (5), we have

In the statement of Corollary 5.3.1, since N (a) (=- Q, we may replace
the values of s by the values of E, at the various cusps.

5.4: We now give some concrete examples in which we can specify
the order of Y in Theorem 5.3. The key point is to find criteria for
T E (M to fix a given element s E Sx. It is convenient here to make two
additional assumptions about 9t:

(A6) The character 1£ factors through T 8;
(A00) Co-ordinates on G are chosen so that T8(Z) is the greatest

compact subgroup of T 8(Ana); see 1.3.0.

We can then identify (M with a subgroup of Te(Z). Condition (A6)
holds whenever G is an adjoint group; however, it is more convenient
to deal with examples of the following type. Let G be a group
satisfying assumptions (AO) to (A5) of 1.2 plus assumption (AOO)
above. Then GL( 1 ) acts on G via an isomorphism tt:GL(l)--+
IntG(Te), and we can use this action to form the semi-direct product
G * = GL( 1 ) x G. Withe obvious choice of co-ordinates, G* satisfies
(AO) and (AOO). Extend p to a character of P* = GL( 1 ) x P by letting
p*(t,b)=t.p(b). Let T* = GL(1) x T and let K* _ ,N’ x K, where N
is the normalizer of K in (b = GL( 1, Z). Then (G*, T*, P*, p*,
K*) satisfies (Al) to (A6) as well as (AO) and (AOO). For example, if
G = SL(2), then G * = GL(2), while if G = Sp(2n ), then G * = Gp(2n ),
as in [32]. This gives examples of %, as in 1.1, but for Gp(2n) instead
of Sp(2n). We shall refer to these examples of % as standard.

5.4.1: View (M as embedded in Te. A brief calculation shows that
the double coset P(Q)xK+ is fixed by r in the sense of 5.2, i.e.,
P(Q)w . Tw-’xK+,r-’= P(Q)xK+, if both

1(a) T normalizes K;
1(b) the commutator lies in K.
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In particular, if K is normal in G(Z) and if s is the characteristic
function of P(Q)wK+, then the corresponding Eisenstein series has
rational Fourier coefficients. This occurs, for instance, if G = GL(2)
and W is standard with K = K(m ) for a positive integer m ; cf. [22; (4)
on p. 48] and [29; IV - 30, Prop. 17] with d = 0. Moreover, this shows
that whenever the corresponding arithmetic group T has only two
cusps, their Eisenstein series must both be defined over Q since the
sum of the Eisenstein series certainly is by 5.3.2. For example, this
occurs if G = GL(2) and K = Ko(p) with p a prime number; see [23;
Satz 11 ].

Since rwrw-’ lies in the center of G, a brief calculation shows that
1 (a) and 1 (b) both follow from

In particular, if s is the characteristic functions of P(Q)xK+, then
T*s = s whenever T satisfies 2).

5.4.2: Suppose that the derived group of G is simply connected.
Then, by 2.2.1 we can choose representatives for the double cosets
P(Q)BG(Q)K+IK+ from the set T8(A)G(Z). Suppose also that K is
normal in G(Z). If T E T8 n K, then it follows from 5.4.1(2) that

T*s = s for each s E S%(Q). One can use what has been shown to
treat the following explicit examples.

Firstly, if G is itself semi-simple and simply connected and if

K = G(Z), then the Eisenstein series attached to the various cusps
are defined over Q. Their sum is E, with s = 1 and was treated by
Tsao [36] and by Baily [7].

Secondly, one can handle principal congruence subgroups of any
Hilbert modular group. Suppose that G is obtained from GL(2) by
restricting from a totally real ground field k down to Q. Let o denote
the maximal order of k, let t) be an integral ideal of k with index N(p)
in o, and let F(P) denote the subgroup of G(Z) = GL(2, o ) consisting
of matrices congruent to the identity modulo o. Then one checks
readily that for each cusp, the corresponding Eisenstein series is

defined over the field generated by the N(o)-th roots of unity. This
result was first proved by H. Klingen in [25]. Our techniques also
yield analogous results for principal congruence subgroups of Hilbert-
Siegel modular groups.

5.5. IN THIS SECTION WE ASSUME THAT G NORMALIZES G(Z): Even

so, the Eisenstein series attached to individual cusps are usually not
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defined over Q. However, we shall prove that both OE and ’OE have
bases of Eisenstein series defined over Q. In other words, the spaces
OE and "@ are defined over Q.
For any Qab subspace V of S let OEv denote the space of Eisenstein

series Es with s E V. Note that if V = °S, then @v is just °@, cf. 2.2.2.

5.5.1. LEMMA: If V is a CM-invariant Qab-subspace of S, then 0152v
has a basis of Eisenstein series defined over Q.

The action of OE on S was chosen so that, for À any rational
character on V defined over Q, the linear map s H as (l ) is OE-

equivariant. By Theorem 5.3 it therefore suffices to show that V is

generated over Qab by the Q-subspace V0153 of all @-invariant elements
of V. Note that every character X on the compact group OE satisfies
,Y(u)’ = x(aT) for cr, r EE CM. It follows that for each such X, the map
that takes s E V to

is a projection onto VGJ. Note that (*s )" is the Fourier transform of

the function * s : T F-+,r*s from OE to S. By Fourier inversion, it is clear
that VGJ must generate V over Qab, as required. Note also that the
integral in (1) is actually just a finite sum.

5.5.2. LEMMA: For each T E 0153, the Qab-subspace ’S of S is in-

variant under the endomorphism T* of S.

Recall that OE is identified with a subgroup of (Int G)(A) and that
°S(Q) is spanned by P(Q)BG(Q)K+IK+. Since K+ contains (CG(A) =
’WG(A) and since wT(w-’G(Q)K+) = G(Q)K+ if T(G(Q)K+) = G(Q)K+,
it suffices to show that IntG(G(Q)K’) is a normal subgroup of

(Int G)(A). The following proof is just a slight variation on Kneser’s
proof of Satz 6.1 in [27].

Real approximation shows that G(Q)G(R) is contained in G(Q)K+;
see [20; 0.4]. Also the complement of G(Q)K+, as a union of cosets of
K+, is clearly open; hence C(6l(G(Q)G(R», the closure of G(Q)G(R)
in G(A), is contained in G(Q)K+. Let F be the derived subgroup of
G, and let f : E- F be a simply connected cover of F. Then using
strong approximation for E, we have
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Thus,

However, INIG - f is the simply connected cover of Int G, so Kneser’s
proof of Hilf satz 6.2 in [27] shows that the derived group of

(Int G)(A) is contained in IntG(G(Q)K’), hence the normality of

IntG(G(Q)K’), as required.

5.5.3. THEOREM: Suppose that 0153 normalizes G(Z). Then each of
the spaces E and °OE has a basis of Eisenstein series defined over Q.

This follows at once from 5.5.1 and 5.5.2.

5.6: Let H denote the group of all holomorphic isometries of the
domain D; it is a Lie group though possibly not connected. We wish
to extend Theorem 5.3 to certain arithmetic subgroups of H, cf. [9;
3.3(i)]. For this we need some terminology and facts.

Fix (G, P) as in 1.2 and assume that G has trivial center. Then H°
is isomorphic to G°°. We fix an isomorphism and henceforth identify
HO with Goo. Let H-(Q) = G(Q) n H’ and let H(Q) = KH(HO(Q».
Let BO=PnHo, B = .N’H(B°), B(Q)=BnH(Q) and B°(Q) _
B n H’(Q). Then H(Q) = B(Q). HO(Q), cf. [4; p. 145]. The reader
should keep in mind that, despite the notation here, H is not an

algebraic group.
Suppose that T is an arithmetic subgroup of H. Then T C H(Q), cf.

[4; §4], and there is a finite subset X of HO(Q) such that

If g E H and z E D, let J(g, z) be the jacobian determinant of g at z.
There is then an integer d = d(f) divisible by the order of B/B ° and
such that, for a E X,

cf. [8; pp. 239-240]. Let ra =rna-1Ba.
If à is any arithmetic subgroup of F, then there is a finite subset Y C T

such that F = Il.,.Yn - £ù - 4. For each w E Y we can find b = &#x26;(o) E
B(Q) such that bcv E HO(Q). For each g E H let g(w) = bgCù. Then
a (w) E H°(Q) for each a E X because bH°(Q)W = HO(Q).
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Given y E F we choose (o E Y, v E Ta and -y’EE à such that y =

vCùy’. Then ay = av . b-1 - a (Cù )y’. If z E D, then J(av, Z)d = 1 and

J(b-’, z) is independent of z. Let c(Cù) = J(b-’, z). Then J(ay, Z)d =
C (Cù )d J (a (Cù )y’, Z )d. It is easy to verif y that Fa - w - y’ H 4 (.)y’ gives a
one-to-one correspondence between right cosets of Fa in Tamà and
right cosets of in A. If e is an integer divisible by d, then it

f ollow s that least formally that, for z E D,

Now let à = F n H’. If e is a sufficiently large positive integer, then
a criterion of Godement, cf. [8; Chap. 11, sec. 2], show that each inner
sum on the right side of (2) converges normally to a 21-automorphic
form 6&#x3E;,. Thus, the sum on the left side of (2) also converges
normally, this time to a F-automorphic form 6a.

5.7. DEFINITION: If r is an arithmetic subgroup of H such that
r nHo is a congruence subgroup of G, then F is called a congruence
subgroup of H.

5.9. THEOREM: Given a congruence subgroup r of H there exists a
root of unity Y = Y’(T) and integers to and d(F) such that, for each
even integer t&#x3E; to and divisible by d(F), the Eisenstein series rQe is
defined over the field Q(Y’).

From [9; Theorem 1.11] it follows that b -&#x3E; J(b, *), (b E B’), is the
restriction to B ° of a rational character po on P. Choose eo such that,
if 6&#x3E; 60 and if d(T) divides t, then 5.6 (2) converges to a F-

automorphic form rî,,,e for each a E X C H’(Q». Fix such an e and
let p = (po)-e, let à = T f1H°, and choose K as in 1.2 such that

4 = G(Q) n K+. Then W = (G, T, P, p, K) satisfies (AO) to (A5) of 1.2,
and jx = J--e, cf. [7; § 1]. From 5.6 (2) we have

where Y is a finite subset of r. Note that c(w)e = J(b-1, *)e = J(b-e, *)
where b = b (cv ) E B (Q). Since the order of B/B ° divides t, b -e E

P(Q), hence c(m l’ = po(b-e) E Q.
Fix m E Y and let s be the characteristic function of the double

coset P(Q) ’ a(w) - K+. Then JiC;at = N(a(w»wE, and N(a(Cù» E Q, cf.
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2.3. Furthermore, ÇZIEs is defined over some cyclotomic field Q( Y’)
which, by Corollary 5.3.1, is independent of e. The theorem now

follows.

§6. Arithmetic quotients

6.1: We now turn to the problem of determining a field of definition
for the Satake compactification 8(F) of the arithmetic quotient FBD,
where T is a congruence subgroup of H = Hol(D), cf. 5.6. We shall
present a partial solution by providing a condition on F that is

necessary and sufficient for certain polynomials in the Eisenstein
series 6 to generate the field kr of all T-automorphic functions. As
an application of the results of §5, we show that if T satisfies this

condition (specified in 6.3) then ?(7") is defined over some cyclotomic
field Q(Y). In fact, the important point is to check that a variety or
morphism is defined over Qab since it then follows immediately that it
is defined over Q(Y) for some root of unity Y. In some cases one can
give upper bounds on the degree of Y.

In this paragraph pr will denote projective space of dimension r.

Let d = d (T) and eo both be as in Theorem 5.9, and let j = J-’, where
J is the jacobian determinant. Suppose that Vil, - . Vi, are T-

automorphic forms of weights wl, ..., wri respectively, with respect to
j. Then the monomial .pl ....pr is said to have weight WI + ... + w,. If
f e) is a polynomial in the .03C8is then it is said to be isobaric of
weight w if all its terms are monomials of weight w. We call a quotient
of two isobaric polynomials of the same weight an isobaric rational
function.

6.2: Let ?* = S(r) be the Satake compactification, as in [9; 10.4],
of FBD. Then the sheaf 91 of germs of holomorphic functions on FBD
extends to an ample sheaf SP* on ?*, and by [8; 8.5] each Eisenstein
series (in the notation of §5)

extends to a section r’l:t of 9*. For each positive integer w letri(w)
be the module of all isobaric polynomials of weight w in the sections
’W,,*,,e, where d divides e, e &#x3E;,eo and a runs through a finite set

X = X(T) of representatives in H°(Q) for the double cosets

BO(Q)BH(Q)lr, cf. 5.6.



160

For infinitely many positive integers m, the sections of 9* belong-
ing to TI(m) have no common zeros, [4; Proposition 1]. For each such
m, choose a basis (fli, ..., fl rm&#x3E;) of monomials in ’-I(m). For such a
basis there is a map T1JI’ m : e * ___&#x3E; p r(m)- that takes z E ?* to the point in
pr(m)-1 with homogeneous co-ordinates [bi(z): ... : Pr(m)(Z)I. Each T’If m
is a morphism of complex spaces, so its image Sm is a projective
variety. The function field of ?* is then a finite algebraic extension of
the function field of SB. Let dm be the degree of this extension. Then
dm is monotone decreasing as m tends to infinity, so dm reaches a
stationary value, which we denote dco(r’). Let q : D TBD be the

quotient map.

6.3: DEFINITION: Let r be an arithmetic subgroup of H. We call a

T conjugacy class of subgroups H(Q)-conjugate to B a cusp of type B
for r, or sometimes, a point-cusp for r. If r’ is another arithmetic
subgroup of H that has precisely the same point-cusps as r, then we say
that T and T’ are B-isocuspidal subgroups. In case no arithmetic
subgroup A of H(Q) properly containing jT is B-isocuspidal with r, then
we say that F is B-saturated or, simply, r is saturated.

6.3.1. REMARKS: (1) The point-cusps of r correspond to the zero-
dimensional rational boundary components adherent to a given
fundamental domain for F in D.

(2) F and T’ are B-isocuspidal precisely when thn double-coset
decompositions B(Q)BH(Q)IF and B(Q)BH(Q)/4 coincide. That is,
B(Q)AF = B(Q)AA for each a E H(Q).

(3) It is easily seen that doo(r) = 1 if and only if the field of

F-automorphic functions is generated by isobaric polynomials in the
Eisenstein series. We next show that if two arithmetic groups fcf

are isocuspidal, then they have the same Eisenstein series, and finally,
that d.(F) = 1 precisely when F is saturated.

6.4. LEMMA: Suppose that 7 E H and that F is an arithmetic sub-

group of H. Let 4 = (,r, r) be the subgroup of H generated by 7 and r.
If d is arithmetic and isocuspidal with r, then T1Jt m 0 q 0 7 = T1Jt m 0 q for
each sufficiently large integer m divisible by the constant d(F).

It is sufficient to prove that for each a E H(Q) and z E D we have

for each t divisible by d(F). However, Ta BT is in one-to-one cor-
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respondence with B (Q)BB (Q)aT and aa B4 is in one-to-one cor-

respondence with B(Q)BB(Q)aA. Since B(Q)AF = B(Q)aà, we have
(1), and the lemma is proved.

6.5. LEMMA: We use the notation of 6.2. Suppose that à is an

arithmetic subgroup of H containing r, that T E H and that

’re,,, - q -,r = r1Jt m 0 q for each sufficiently large integer m divisible by
the constant d(F). Let à* be the subgroup of H generated by T and 4.
Then d * is arithmetic and is B-isocuspidal with A.

Suppose that à* does not have properly discontinuous action on D.
Then some orbit 9 of 4 * has an accumulation point, which lies in the
interior of some fundamental domain F for T. Therefore, for some m
there are infinitely many distinct points in 9 fl F all mapped to a
single point of en by r1Jl’ m 0 q. This, however, contradicts the finite-
ness of the fibres of r1Jt m * q ; see [2; Lemma 2].

Therefore, the action of 4 * on D must be properly discontinuous.
It follows that A* is discrete and since d BH has finite invariant

volume, d is of finite index in à*. Hence, A * is arithmetic and must
lie in H(Q); see [4; p. 144].

Let e be an even integer greater than eo and divisible by both d(T)
and d(d *). Let

By 5.6 (2) the series above converges normally to a A*-automorphic
form lying in rl(t). Since r’Pe - q -,r = r’l’ t 0 q, it follows that for each
a E H(Q), radCùt is a 4 *-automorphic function; hence, each ’-W,,,,e is

actually an automorphic form with respect to d *, not just F.
Suppose that A* is not B-isocuspidal with d. Then there exist two

zero-dimensional rational boundary components fi and 2 that are
d *-equivalent but not à-equivalent. A fortiori °1 and 2 are not
F-equivalent. Every d *-automorphic form that vanishes at l must
also vanish at 2. However, f2 is the boundary component normal-
ized by Int(a)B for some a E X, hence "W,,,,e vanishes at 1 but not at
2; see [4; §5 (1)]. Since ra is A *-automorphic, this contradicts the
assumption that à* is not B-isocuspidal with A and completes the
proof.

6.5.1. COROLLARY: Suppose T C d are arithmetic subgroups of H
and T E H. If F* = (r, T) is arithmetic and isocuspidal with r, then
2t* = (à, T) is arithmetic and isocuspidal with A.
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This follows immediately from 6.4 and 6.5. G. Prasad has given an
algebraic proof of the corresponding statement with H replaced by an
algebraic Q-group G and B replaced by any parabolic Q-subgroup P
of G.

6.5.2. COROLLARY: If rand r’ are saturated arithmetic subgroups
of H, then so is r f1 T’.

Suppose A = T f1T’ is not saturated. Then d is properly contained
in an arithmetic group 4 * _ (A, T) that is isocuspidal with 4. It follows
from 6.5.1 that (r, T) and (F’,,r) are both arithmetic and that they are
isocuspidal, respectively, with T and with T’. Since T and T’ are both
saturated, it follows that T E T f1 T’, contradiction.

6.5.3. REMARK: Corollary 6.5.2 was suggested by L.-C. Tsao.

6.6. THEOREM: Suppose that r is an arithmetic subgroup of H.
Then the following are equivalent :

(i) There is a saturated arithmetic subgroup r’ of H containing r
and such that if à is a subgroup of r’ properly containing r, then

(ii) doo(r) = 1 ;
(iii) F is saturated.

It is obvious that (iii) implies (i).
(i) implies (ii): Suppose that d.(F) 7é 1. Then Lemmas 3 and 4 of [4]

show that there exists T E H such that - q -,r r1fl’m 0 q for every
sufficiently large integer m divisible by d(l) but Té F. Let à be the
subgroup of H generated by T and by T. Then Lemma 6.5 shows that
B(Q)BH(Q)/i! = B(Q)BH(Q)/r and T E r’. Thus (i) implies (ii).

(ii) implies (iii): Suppose that r is not saturated, i.e., r is properly
contained in an arithmetic subgroup d of H such that T and à are
B-isocuspidal. It follows that F and à have precisely the same

Eisenstein series. Thus rI (m ) _ °I (m ), and we may assume that

’e,,, = for each pertinant m, cf. 6.2. Suppose that F(4 ) is a

fundamental domain for d and that Ut, ..., an form a complete set of
left-coset representatives for T in à. Then U’in=l oif(à) is a

fundamental domain for T, so d.o(jT) &#x3E; [d : FI &#x3E; 1, which shows that (ii)
implies (iii). The theorem is proved.
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6.7. DEFINITION: If for each even integer 6 &#x3E; 60 and divisible by
d(T) the space generated by all 6,, where a E H(Q), has a basis of
forms defined over a field F, then we say that F is a field of definition
for r.

6.8. THEOREM: Suppose that r is a saturated arithmetic subgroup
of H and that F is a field of definition for r. Then the Satake

compactification lll(T) has a projective model e(F) defined over F. In
particular, if r is also a congruence subgroup, then W(T) is defined
over the cyclotomic field Q(Y) for some root of unity Y

In view of Theorem 5 it suffices to construct a projective model
SB(r) of B(r) defined over F. Since T is saturated, Theorem 6.5
shows that d(T) = 1, i.e., we can find an even integer m &#x3E;,eo, divisible
by d(T) and such that r1Jl’m (T) pr-’ has degree 1 for every choice

of basis in ’’I (m ). In other words, r1/l’m is a birational morphism onto
its image.
Choose a basis B of rl (m ) such that each /3 E B is defined over F.

Since 8(F) is a normal variety [9; 10.11 ], Zariski’s Main Theorem
shows that r1/l’ m : (r) -+ m is a normalization. It follows that the

graded C-algebra A of integral T-automorphic forms (with respect to
j) is integral over the C-algebra generated by B.
By [5] the algebra sl is generated over C by a finite number of

automorphic forms /&#x3E;1, ..., tPs each defined over F. In view of [9;
10.11], we can then choose a basis 03A81, ..., Vit of the space of integral
T-automorphic forms defined over F, of some suitably large weight e,
such that the map 1/1’* that takes z E 3(F) to the point of P‘-’ with
homogeneous co-ordinates [ipl(z): ... : .pt(z)] is embedding of 3(F)
into 4P‘-1. The module of relations among any finite set of automor-

phic forms defined over F is easily seen to be defined over F as well.
Let aB(r) be the image of (r) under the embedding 1/1’*. Then S8(r)
is clearly defined over F.

6.9: Let F be an arithmetic subgroup of H and suppose T E H. Let
à = Int(T) . T. Then the isometry x H ,,-1 . x of D induces a map To
from dBD to FBD. The next lemma shows that, if T E H(Q), then à is
arithmetic. It follows then that To extends to a map  T* : W(à ) - W(T)
for each T E H(Q). Notice that the lemma is not entirely trivial

because the group H is not an algebraic group; see 5.6.

6.9.1: LEMMA: If T E H(Q), then Int(T)T is an arithmetic subgroup
of H.
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Since this is a question of commensurability, we may assume that
T C H°(Q). Choose a Q-group G such that H’(Q) = G(Q) n G(R)’
and a faithful finite-dimensional matrix representation p of G. Let A
be the matrix ring generated by p(T). Then the action of H on
A Q9z R by conjugation defines an embedding r : H --&#x3E; GL(A, R). Since
G(Q)CA(g)zQ, cf. [4; §4], and since T normalizes G(Q) n G(R)O,
which clearly generates the algebra A Oz Q, it follows that r(T) E
GL(A, Q). Now r(r) is an arithmetic subgroup of r(G), and

r(Int(,r) - F) = Int(r(T)) - r(T) is arithmetic in r(G) ; therefore, Int(T). r
is arithmetic in G (and in H), as required.

6.9.2. THEOREM: Suppose that r is saturated and that T E H(Q).
Then 4 = Int(T)T is saturated and, if F is a field of definition for ail
the Eisenstein series rea,, and ’eae (a E H (Q), t  to and divisible by
d(F», then T* : ---&#x3E; %(T) is defined over F.

It is clear that à is saturated, so it suffices to show that, for each
rational function 0 on SB(r) defined over F, the function

L(T)O: x - 4&#x3E;(,r-’ - x) on (L1) is also defined over F. For some

positive integer d, the field of rational functions defined over F on

3B(F) is generated over F by the automorphic functions

It therefore suffices to check that L(,r)O is defined over F for each

such 0. We have

thus,

The theorem now follows because ’î,,,.ed and Â b’,d are both defined
over F.

6.9.3. DEFINITION: Let T be an arithmetic subgroup of H. If F

contains a normal subgroup F’ that is a saturated congruence sub-

group of H, then F is said to be ample.

6.9.4. COROLLARY: Let T be an ample arithmetic subgroup of
H(Q), and let T E H(Q). Then à = Int(T)T is ample and T* : e(à) --&#x3E;
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%(r) is defined over Qab. In particular, if T normalizes r, then T* is an
automorphism of %(r) defined over Qab-

It is clear that A is ample, and from 6.9.2 we have 3B(f") defined
over Qab. There is a natural finite and surjective morphism li from
38 = 2(F’) to 2 = 3B(r) and the fibres of 1£ are orbits of the finite
group T/T’ whose elements act as automorphisms of 2(F’) defined
over Qab. The homogeneous co-ordinate ring P[SB] can be identified
with the C-algebra of r-automorphic forms whose weights are

divisible by some suitable integer, and similarly for P[SB’]. We may
identify P[SB] with the ring of invariants of rlr’ in P [’]. By
classical invariant theory, 38 is therefore defined over Qab, and it is

obvious that T* is also defined over Qab.

6.9.5. REMARK: The proof of 6.9.4 shows that 3B(F) (resp. T*) is

defined over any field of definition for r’ (resp. r’ and Int( T )r’).

6.10. SUBVARIETIES: Suppose that r is ample. We now show that
b is a field of definition for certain subvarieties of 28(F), for

example, FBD and the various cusps. Since there are only finitely
many G(Q)-orbits among the parabolic Q-subgroups and since there
are only finitely many cusps for T, in view of Theorem 6.9.2 it suffices
to show the following lemma.

6.10.1. LEMMA: Let Q be a standard maximal parabolic Q-sub-
group for the order chosen on ( T, G ). Let k be a field of definition for
%(F). Then the image in %(F) of the boundary component D(Q) is an
irreducible algebraic subvariety 28Q defined over k.

Firstly observe that if F is a r-automorphic form on D, then there
is a positive integer n = n(Q) such that the form induced by F on the
boundary component D(Q) has Fourier coefficients corresponding to
characters A of U that vanish on U". This follows easily from the
discussion in §4.1.

Secondly, note that we may view the ring of F-automorphic forms
of non-negative weights divisible by some suitable integer d = d (T) as
the homogeneous co-ordinate ring P[SB] of the variety % = %(F).
Each rational character A on U then gives a k-linear form on the
space of automorphic forms, namely, F-&#x3E;(,k,F), where (A.F)
denotes the Fourier coefficient (of the form F) indexed by A.
The family of k-linear forms on P[2B] just described, call it L,

separates homogeneous co-ordinates on SB. Moreover, a co-ordinate
F is k-rational if and only if (A, F) E k for each A E L.
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Let LQ be the subset of L consisting of all characters vanishing on
U". Then the set

is the homogeneous ideal defining the image 28Q of D(Q) in 36(7").
Clearly, 1 is defined over k as a vector subspace of P[SB] and hence
as a homogeneous ideal. Indeed, dimension considerations show that

SBo is defined by the vanishing of a finite family of k-rational

co-ordinates.

6.10.2. THEOREM: Suppose that r is an ample arithmetic subgroup
of G(R)O. If Q’ is any parabolic Q-subgroup of G, then the image in
SB = 3B(r) of the boundary component D(Q’) is an irreducible al-

gebraic subvariety Q, defined over a cyclotomic field Q( Y).

Let r’ be a saturated normal congruence subgroup of r. Choose an
element T E H(Q) such that r-’Q,r = Q is a standard parabolic Q-
subgroup of G with respect to our ordering of I(T, G). Then 4’ _
Int( T)r’ is saturated, A = Int( T)r is ample and there is a cyclotomic
field k = Q(y) such that all the Eisenstein series "e,,,e and "Z,,,e (with
a E H(Q), e &#x3E; to and divisible by d(F» are defined over k. By
Theorem 6.9.2 and Remark 6.9.5, then the isomorphism T* :%(à)-
3B(7") is defined over k. The variety 28(A)Q is defined over k, hence its
image SB(7")o = SB is defined over k as well.

6.10.3. COROLLARY: If F is ample then there is a cyclotomic field of
definition for the Shimura variety FBD considered as an open sub-
variety of 38(7").

This is clear because the complement in 3B(f) of TBD is the union
of all cusps.

6.11. EXAMPLES: (1) Hecke-type congruence subgroups of Siegel
modular groups are always saturated. Indeed, suppose that G =

Gp(2m ) as in §5.4 and make the standard choice for Let N be any
non-zero integer and let x be the block-matrix (1 N° 1) E G(Q), where I
is the m-rowed identity matrix. Since G(Z) is known to be maximal
arithmetic in G(R), both G (Z ) and xG(Z)x-1 are saturated. By 6.5.2,
if we let the Hecke congruence subgroup of level N be
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then To( N ) is a saturated subgroup of G(R). Since G(Z) and its

conjugate are congruence subgroups, so is To(N ). This gives one
family of examples where the theorems of §5 and §6 apply. In

particular, the Satake compactification 8(fo(N)) carries a natural

Qab-structure. Similar examples can be constructed for other groups
by using Lemma 1.4.1.

(2) In [19], Christian determined the principal congruence sub-

groups r of Sp(2m, Z) for which the Eisenstein series rae generate
the field of modular functions for r; thus, he determined which T are
saturated. His result is that all the principal congruence subgroups are
saturated in case the rank m is odd; however, in case m is even, the

only principal congruence subgroups that are saturated are those of
level 1, 2, 4, p a or 2p a, where p a is a power of an odd prime. Tsao has
recovered Christian’s results by some brief calculations. Moreover,
when the principal congruence subgroup F(q) of level q is not

saturated, Tsao has calculated the smallest saturated group T(q )
containing F(q); F(q) is the saturation of F(q). It exists by Corollary
6.5.2.

Tsao has also investigated saturation for principal congruence
subgroups of Baily’s modular group, which acts on the exceptional
tube domain of complex dimension 27, and principal congruence
subgroups acting on type A domains. In the former case T(q) is

always saturated, while in the latter case, as in the case G = Sp(4n ),
the saturations T(q) do not form a cofinal family of arithmetic

subgroups even when the groups T(q) do. In the latter case, the

saturated congruence subgroups do not form a cofinal family of

arithmetic subgroups.
(3) In [38], Tsao has determined which normal congruence sub-

groups of SL(2, Z) are saturated.
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