COMPOSITIO MATHEMATICA

NICOLE ARTHAUD

On Birch and Swinnerton-Dyer's conjecture for elliptic curves with complex multiplication. I

Compositio Mathematica, tome 37, nº 2 (1978), p. 209-232 <http://www.numdam.org/item?id=CM_1978_37_2_209_0>

© Foundation Compositio Mathematica, 1978, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 37, Fasc. 2, 1978, pag. 209–232 Sijthoff & Noordhoff International Publishers – Alphen aan den Rijn Printed in the Netherlands

ON BIRCH AND SWINNERTON-DYER'S CONJECTURE FOR ELLIPTIC CURVES WITH COMPLEX MULTIPLICATION. I.

Nicole Arthaud

Introduction

Let K be an imaginary quadratic field, and E an elliptic curve with complex multiplication by the ring of integers of K. Assume that E is defined over a finite extension F of K, and let L(E/F, s) be the Hasse-Weil zeta function of E over F. Deuring has proven that L(E/F, s) can be analytically continued over the whole complex plane, by identifying it with a product of Hecke L-series with Grössencharacters (see [7], Theorem 7.42). The conjecture of Birch and Swinnerton-Dyer asserts that L(E|F, s) has a zero at s = 1 of order equal to g_{F} , the rank of the group E(F) of points of E with coordinates in F. Recently, Coates and Wiles [4] made some progress on a weak form of this conjecture. Namely, they showed that if K has class number 1 and F = K, then $g_F \ge 1$ implies that L(E/F, s) does indeed vanish at s = 1. The aim of the present paper is to extend Coates and Wiles' proof to the case in which K has class number 1, Eis still defined over K, but the base field F is now an arbitrary finite abelian extension of K.

THEOREM 1: Let K be an imaginary quadratic field with class number 1, and E an elliptic curve defined over K, with complex multiplication by the ring of integers of K. If F is a finite abelian extension of K such that E has a point of infinite order with coordinates in F, then L(E/F, s) vanishes at s = 1.

In a subsequent, but considerably more technical, paper [1] in preparation, we shall prove an analogous result when (i) no restriction is made on the class number of K, (ii) the base field F is again supposed to be an abelian extension of K, and finally (iii) the torsion

points of E are assumed to generate over F an abelian extension of K (see Theorem 7.44 of [7] for a necessary and sufficient condition for (iii) to be valid for E). Since the methods of [4] depend crucially on the explicit knowledge of class field theory for abelian extensions of K, there seems to be little hope at present of proving results like Theorem 1 without hypotheses (ii) and (iii) above.

The broad outlines of the proof of Theorem 1 follow fairly closely the arguments in [4]. However, there are some significant and interesting innovations in dealing with an arbitrary finite abelian extension of K as base field. In particular, certain partial Hecke *L*-functions with Grössencharacters play a natural role in the proof. This is in striking analogy with the theory of cyclotomic Z_p -extensions, where the values of partial *L*-functions formed with characters of finite order give the coefficients of Stickelberger ideals (see [2]). Also, we have simplified the proof of [4] in several cases (cf. the proof of Theorem 19).

In conclusion, I wish to thank John Coates for his guidance with this work.

1. Notation

To a large extent, we follow the notation of [4]. Thus K will denote an imaginary quadratic field with class number 1, lying inside the complex field C, and \mathcal{O} the ring of integers of K. As in the Introduction, E will be an elliptic curve defined over K, whose ring of endomorphisms is isomorphic to \mathcal{O} . We fix a Weierstrass model for E

(1)
$$y^2 = 4x^3 - g_2x - g_3$$
,

where g_2 , g_3 belong to \mathcal{O} , and where the discriminant of (1) is divisible only by the primes of K where E has a bad reduction, and (possibly) by the primes of K above 2 and 3. Let $\varphi(z)$ be the associated Weierstrass function, L the period lattice of $\varphi(z)$, and $\xi(z) = (\varphi(z), \varphi'(z))$. Choose $\Omega \in L$ such that $L = \Omega \mathcal{O}$. We identify \mathcal{O} with the endomorphism ring of E in such a way that the endomorphism corresponding to $\alpha \in \mathcal{O}$ is given by $\xi(z) \mapsto \xi(\alpha z)$. If $\alpha \in \mathcal{O}$, we write E_{α} for the kernel of the endomorphism α of E. Let ψ be the Grössencharacter of E over K as defined in [7], §7.8. We denote the conductor of ψ by \mathfrak{f} , and write f for some fixed generator of \mathfrak{f} .

Let F be an arbitrary finite abelian extension of K, which will be fixed for the rest of the paper. We write S for the finite set consisting of 2, 3, and all rational primes q which have a prime factor in K, [3]

which is either ramified in F, or at which E has a bad reduction. Henceforth, p will denote a rational prime, which splits in K, and which does not belong to the finite exceptional set S. We write p and \bar{p} for the factors of p in K, and put $\pi = \psi(p)$. Thus, by the definition of ψ , π is a generator of the ideal p. Finally, let g denote the least common multiple of the conductor of ψ and the conductor of F/K.

2. Computation of conductors

We now compute the conductors of various abelian extensions of K which occur in the proof of Theorem 1. The arguments are similar to those in §2 of [4]. If $\alpha \in \mathcal{O}$, recall that E_{α} is the group of α -division points on E.

LEMMA 2: Let $\mathfrak{h} = (h)$ be any multiple of the conductor of ψ . Then $K(E_h)$ is the ray class field of K modulo \mathfrak{h} .

PROOF: By the classical theory of complex multiplication, the ray class field modulo \mathfrak{h} is contained in $K(E_h)$. To prove the converse, we use the notation and results of Shimura [7]. Let $U(\mathfrak{h})$ be the subgroup of the idèle group of K as defined on p. 116 of [7], and let x be any element of $U(\mathfrak{h})$ with $x_{\infty} = 1$. Since the conductor of ψ divides \mathfrak{h} , it follows from Shimura's reciprocity law (cf. the proof of Lemma 3 in [4]) that the Artin symbol [x, K] fixes E_h . Thus $K(E_h)$ is contained in the ray class field modulo \mathfrak{h} , and the proof of the lemma is complete.

Recall that g is the least common multiple of the conductor of ψ , and the conductor of F/K. Also, p is any rational prime, not in S, which splits in K, say $(p) = \wp \bar{\wp}$.

LEMMA 3: For each $n \ge 0$, the conductor of $F_n = F(E_{\pi^{n+1}})$ over K is equal to $\mathfrak{f}_n = \mathfrak{g} p^{n+1}$. Moreover, if \mathcal{R}_n denotes the ray class field of K modulo \mathfrak{f}_n , then \mathcal{R}_n is the compositum of F_n and $H = K(E_g)$, and $F_n \cap H = F$.

PROOF: Let g_n denote the conductor of F_n/K . Since $F_n \subset K(E_{g\pi^{n+1}})$, and the conductor of this latter field is $f_n = g p^{n+1}$ by Lemma 2, we conclude that g_n divides f_n . On the other hand, it is clear that the conductor of F over K divides g_n . Also, as E has a good reduction everywhere over F_n (see Theorem 2 of [4]), the Grössencharacter of E over F_n must be unramified. As the Grössencharacter of E over F_n is the composition of the norm map from F_n to K with ψ , it follows that the conductor \mathfrak{f} of ψ divides \mathfrak{g}_n . Combining these last two facts, we conclude that \mathfrak{g} divides \mathfrak{g}_n . But \wp^{n+1} divides \mathfrak{g}_n because F_n contains the ray class field modulo \wp^{n+1} . As $(\wp, \mathfrak{g}) = 1$ by hypothesis, we deduce that $\mathfrak{g}_n = \mathfrak{f}_n$, as asserted. To prove the final statement of the lemma, we recall that $\Re_n = K(E_{\mathfrak{g}\pi^{n+1}})$ by Lemma 2, and thus \Re_n is certainly the compositum of F_n and H. Now \wp is totally ramified in $K(E_{\pi^{n+1}})$ by the rudiments of Lubin-Tate theory. As \wp does not divide the conductor of F over K, it follows that each prime of F above \wp is totally ramified in F_n . Since \wp does not divide \mathfrak{g} by hypothesis, and His the ray class field modulo \mathfrak{g} by Lemma 2, we deduce that $F_n \cap H =$ F, as required.

3. p-Adic logarithmic derivatives

We use the same notation as [4] for the formal groups \hat{E} and \mathscr{E} . Thus \hat{E} is the formal group giving the kernel of reduction modulo \wp on E, and \mathscr{E} is the Lubin-Tate formal group for which $[\pi](w) = \pi w + w^p$. By Lubin-Tate theory, \hat{E} and \mathscr{E} are isomorphic over the ring \mathcal{O}_{\wp} of integers of the completion K_{\wp} of K at \wp . For a fuller discussion, see §3 of [4].

Choose a fixed algebraic closure \bar{K}_{ρ} of K_{ρ} . We can assume that E_{π} lies in \bar{K}_{ρ} , and we define the extension Φ of K_{ρ} by

$$\Phi = K_{\rho}(E_{\pi}) = K_{\rho}(\mathscr{C}_{\pi}).$$

Put $G = G(\Phi/K_p)$. Of course, G is endowed with the canonical character χ , with values in \mathbb{Z}_p^{\times} , giving the action of G on E_{π} , or equivalently, on \mathscr{C}_{π} . Thus, if A is any $\mathbb{Z}_p[G]$ -module, it has a canonical decomposition

(2)
$$A = \bigoplus_{k=1}^{p-1} A^{(k)},$$

where $A^{(k)}$ is the submodule of A on which G acts via the k-th power of χ .

Let u be a fixed generator for \mathscr{E}_{π} , so that u is a local parameter for Φ . Let U be the group of units of Φ which are $\equiv 1 \mod u$. For $1 \le k \le p - 2$, we define homomorphisms

(3)
$$\varphi_k: U \to \mathcal{O}_p/p$$

as follows. If $\alpha \in U$, we choose any power series $f(T) = \sum_{k=0}^{\infty} a_k T^k$, with $a_k \in \mathcal{O}_p$, such that $f(u) = \alpha$. We then define $\varphi_k(\alpha)$ to be the residue class in \mathcal{O}_p/\wp of the coefficient of T^k in the power series $T(d/dT) \log f(T)$. Since $1 \le k \le p - 2$ and the ramification index of Φ over K_p is p - 1, it is easy to see that $\varphi_k(\alpha)$ is independent of the choice of f(T), and so is well defined.

REMARK: In defining φ_k in [4], one insisted that the power series f(T) had $a_0 = 1$. It is more convenient for the arguments in §4 to work with power series whose constant term is not necessarily 1. Of course, the two definitions of φ_k are the same for $1 \le k \le p - 2$. However, one cannot define φ_{p-1} by the present method.

In the proof of Theorem 1, we shall only be interested in the case in which Φ contains no non-trivial *p*-power roots of unity. Recall that, by Lemma 12 of [4], if p > 5, then Φ can contain a non-trivial *p*-th root of unity if and only if $\pi + \bar{\pi} = 1$. The next lemma is plain from Lemmas 9 and 10 of [4].

LEMMA 4: Assume that Φ contains no non-trivial p-th root of unity. Let k be an integer with $1 \le k \le p-2$. Then φ_k vanishes on $U^{(j)}$ for $j \ne k \mod(p-1)$, and φ_k induces an isomorphism

$$\tilde{\varphi}_k: U_0^{(k)}/(U_0^{(k)})^p \xrightarrow{\sim} \mathcal{O}_p/\wp.$$

Now consider our fixed finite abelian extension F of K, and $F_0 = F(E_{\pi})$. Let \mathscr{G} be the set of primes of F_0 above \wp . For each $\mathfrak{q} \in \mathscr{G}$, let $F_{0,\mathfrak{q}}$ be the completion of F_0 at \mathfrak{q} , and write $U_{\mathfrak{q}}$ for the units in $F_{0,\mathfrak{q}}$ which are $\equiv 1 \mod \mathfrak{q}$. Put

$$\mathcal{U}=\prod_{\mathfrak{q}\in\mathscr{S}}U_{\mathfrak{q}}.$$

Now assume that \wp splits completely in F. Thus, for each $q \in \mathcal{G}$, there exists an isomorphism $\tau_q: F_{0,q} \rightarrow \Phi$, which preserves the valuations of both fields. Composing this isomorphism with the map φ_k given by (3), we obtain a homomorphism

(5)
$$\varphi_{\mathfrak{q},k}: U_{\mathfrak{q}} \to \mathcal{O}_{\mathfrak{p}}/\mathfrak{p} \qquad (1 \le k \le p-2).$$

We define

[5]

(6)
$$\varphi_{F,k}: \mathcal{U} \to \prod_{q \in \mathcal{G}} (\mathcal{O}_{p}/p)$$

to be the product of the homomorphisms (5) over all $q \in \mathcal{S}$. Plainly $G = G(F_0/F) = G(\Phi/K_p)$ acts on (4), because it acts on each of the U_q in the natural way. The next lemma is now plain from Lemma 4.

LEMMA 5: Assume that Φ contains no non-trivial p-th root of unity, and that φ splits completely in F. Let k be an integer with $1 \le k \le p-2$. Then $\varphi_{F,k}$ vanishes on $\mathcal{U}^{(j)}$ for $j \ne k \mod(p-1)$, and $\varphi_{F,k}$ induces an isomorphism

$$\varphi_{F,k}^{\sim}: \mathcal{U}^{(k)}/(\mathcal{U}^{(k)})^{p} \xrightarrow{\sim} \prod_{q \in \mathcal{S}} (\mathcal{O}_{p}/p).$$

Put d = [F:K]. In practice, we shall use the following immediate consequence of Lemma 5.

COROLLARY 6: Under the same hypotheses as Lemma 5, let A be any $Z_p[G]$ -submodule of \mathcal{U} . Then, for each integer k with $1 \le k \le p-2$, the eigenspace $(\mathcal{U}|A)^{(k)} \ne 0$ if and only if $\varphi_{F,k}(A)$ has dimension less than d over the field $\mathcal{O}_p|\varphi$.

4. Elliptic units

As in [4], a vital role in the proof of Theorem 1 is played by the elliptic units of Robert [6]. We begin by briefly recalling the definition of these elliptic units. Let \mathscr{I} be the set consisting of all pairs (A, \mathcal{N}) , where $A = \{a_j : j \in J\}$ and $\mathcal{N} = \{n_j : j \in J\}$, here J is an arbitrary finite index set, the a_j are integral ideals of K prime to S and p, and the n_j are rational integers satisfying $\sum_{j \in J} n_j(Na_j - 1) = 0$. Given such a pair (A, \mathcal{N}) , we put

$$\Theta(z, A, \mathcal{N}) = \prod_{j \in J} \Theta(z, \mathfrak{a}_j)^{n_j},$$

where $\Theta(z, \mathfrak{a}_j)$ is as defined at the beginning of §4 of [4]. Recall that $\mathfrak{f}_n = \mathfrak{g} p^{n+1}$ is the conductor of $F_n = F(E_{\pi^{n+1}})$ over K. As before, let \mathcal{R}_n be the ray class field of K modulo \mathfrak{f}_n . If ρ_n is an arbitrary primitive \mathfrak{f}_n -division point of L, Robert [6] has shown that $\Theta(\rho_n, A, \mathcal{N})$ is a unit of the field \mathcal{R}_n . Moreover, as (A, \mathcal{N}) ranges over \mathscr{I} , the $\Theta(\rho_n, A, \mathcal{N})$ form a subgroup of the group of units of \mathcal{R}_n . We denote this subgroup by \mathscr{C}_n , and call it the group of elliptic units of \mathcal{R}_n (note that Robert's definition of the group of elliptic units is different from ours). A

similar argument to that given in the proof of Lemma 20 of [4] shows that \mathscr{C}_n is stable under the action of the Galois group of \mathscr{R}_n over K, and is independent of the choice of the particular primitive \mathfrak{f}_n -division point ρ_n . Finally, we define the elliptic units C_n of $F_n = F(E_{\pi^{n+1}})$ to be the group consisting of the norms from \mathscr{R}_n to F_n of all units in \mathscr{C}_n . For simplicity, we often write C for C_0 .

Let $\rho = \Omega/g$, where q = (g). Here $L = \Omega O$ is the period lattice of $\wp(z)$. As above, let \mathcal{R}_0 be the ray class field of K modulo $\mathfrak{f}_0 = \mathfrak{g}\wp$. Lemma 3 tells us that we have the diagram of fields

If L is any finite abelian extension of K, and c is an integral ideal of K prime to the conductor of L/K, we write (c, L/K) for the Artin symbol of c for the extension L/K. We now choose and fix a set B of integral ideals of K, which are prime to f_0 , and which are such that $\{(b, \mathcal{R}_0/K): b \in B\}$ is precisely the Galois group of \mathcal{R}_0/F_0 . It is then plain from (7) that the restrictions of the $(b, \mathcal{R}_0/K), b \in B$, to H is precisely the Galois group of H/F.

If a is an arbitrary integral ideal of K prime to S and p, we define

$$\Lambda(z,\mathfrak{a})=\prod_{\mathfrak{b}\in B} \Theta(z+\psi(\mathfrak{b})\rho,\mathfrak{a}).$$

LEMMA 7: $\Lambda(z, \mathfrak{a})$ is a rational function of $\mathfrak{p}(z)$ and $\mathfrak{p}'(z)$ with coefficients in F.

PROOF: This is entirely similar to the first part of the proof of Lemma 21 of [4], and so we omit it.

It is now convenient to introduce some notation, which will be used repeatedly in this section. Let \mathscr{G} denote the Galois group of F over K. If \mathfrak{c} is an integral ideal of K prime to the conductor of F/K, we write $\sigma_{\mathfrak{c}}$ for the Artin symbol ($\mathfrak{c}, F/K$). Finally, if $\sigma \in \mathscr{G}$ and R(z) is a rational function of $\wp(z)$, $\wp'(z)$ with coefficients in F, then $R_{\sigma}(z)$ will denote the rational function of $\wp(z)$, $\wp'(z)$, which is obtained by letting σ act on the coefficients of R(z).

Let k be an integer ≥ 1 . Recall that ψ denotes the Grössencharacter of E. For each $\sigma \in \mathcal{G}$, we introduce the partial Hecke L-function

$$\zeta_F(\sigma, k; s) = \sum_{\substack{(\mathfrak{a}, \mathfrak{h}) = 1 \\ \sigma_\mathfrak{a} = \sigma}} \frac{\psi^k(\mathfrak{a})}{(N\mathfrak{a})^s},$$

_.

where the summation is over all integral ideals \mathfrak{a} of K, prime to \mathfrak{g} , such that the Artin symbol $\sigma_{\mathfrak{a}}$ is equal to σ . It can be shown that $\zeta_F(\sigma, k; s)$ can be analytically continued over the whole complex plane. Let $\zeta_F(\sigma, k)$ denote the value of $\zeta_F(\sigma, k; s)$ at s = k.

LEMMA 8: For each $\sigma \in \mathcal{G}$, we have

$$z \frac{\mathrm{d}}{\mathrm{d}z} \log \Lambda_{\sigma}(z, \mathfrak{a}) = \sum_{k=1}^{\infty} c_k(\mathfrak{a}, \sigma) z^k, \quad \text{where}$$
$$c_k(\mathfrak{a}, \sigma) = 12(-1)^{k-1} \rho^{-k} (N \mathfrak{a} \zeta_F(\sigma, k))$$
$$-\psi^k(\mathfrak{a}) \zeta_F(\sigma \sigma_{\mathfrak{a}}, k)) \qquad (k = 1, 2, \ldots).$$

PROOF: Let c be an integral ideal of K, prime to g, such that $\sigma = \sigma_c$. By the definition of the Grössencharacter ψ in [7], we have

$$\xi(\psi(\mathfrak{b})\rho^{(\mathfrak{c},H/K)} = \xi(\psi(\mathfrak{b}\mathfrak{c})\rho).$$

It follows easily from the expression for $\Theta(z + \psi(\mathfrak{b})\rho, \mathfrak{a})$ as a rational function of $\wp(z), \wp'(z)$, with coefficients in H (see (23) of [4]), that

$$\Lambda_{\sigma}(z,\mathfrak{a})=\prod_{\mathfrak{b}\in B} \, \Theta(z+\psi(\mathfrak{b}\mathfrak{c})\rho,\mathfrak{a}).$$

If \mathscr{L} is any lattice in the complex plane, let $\zeta(z, \mathscr{L})$ and $\wp(z, \mathscr{L})$ be the Weierstrass zeta and \wp -functions of \mathscr{L} . Define

$$\Omega(z,\mathscr{L}) = z \frac{\mathrm{d}}{\mathrm{d}z} \log \left(\prod_{\mathfrak{b} \in \mathscr{B}} \theta(z + \psi(\mathfrak{b}\mathfrak{c})\rho, \mathscr{L}) \right)$$

Then (cf. the proof of Lemma 21 of [4]) $\Omega(z, \mathcal{L})$ has the power series expansion $\sum_{k=1}^{\infty} d_k(\mathcal{L}) z^k$, where $\eta = \psi(\mathfrak{c})\rho$ and

(8)
$$d_1(\mathscr{L}) = 12 \sum_{\mathfrak{b} \in B} (\zeta(\psi(\mathfrak{b})\eta, \mathscr{L}) - s_2(\mathscr{L})\psi(\mathfrak{b})\eta),$$

(9)
$$d_2(\mathscr{L}) = -12 \sum_{\mathfrak{b} \in B} (\wp(\psi(\mathfrak{b})\eta, \mathscr{L}) + s_2(\mathscr{L})),$$

(10)
$$d_k(\mathscr{L}) = -12 \sum_{b \in B} \wp^{(k-2)}(\psi(b)\eta, \mathscr{L})/(k-1)! \quad (k \ge 3).$$

216

Thus we must show that $c_k(\mathfrak{a}, \sigma)$, as defined in Lemma 8, satisfies

(11)
$$c_k(\mathfrak{a},\sigma) = N\mathfrak{a}d_k(L) - d_k(\mathfrak{a}^{-1}L) \qquad (k \ge 1).$$

As in [4], we put $\lambda_k = 12(-1)^{k-1}\rho^{-k}$. We write \mathscr{B} for a fixed set of generators of the ideals in *B*. Also, we let γ denote a fixed generator of the ideal \mathfrak{a} , and *c* a fixed generator of \mathfrak{c} . The argument now breaks up into three cases. Much of the reasoning is similar to that in the proof of Lemma 21 of [4], so that we refer there for details from time to time.

Case 1. We suppose that $k \ge 3$. Since

$$\varphi^{(k-2)}(z,\mathscr{L}) = (-1)^k (k-1)! \sum_{\omega \in \mathscr{L}} (z-\omega)^{-k} \quad (k \ge 3),$$

we conclude easily from (10) that

$$d_k(L) = \lambda_k \sum_{\mathfrak{b} \in B} \sum_{\alpha \in \mathfrak{g}} (\psi(\mathfrak{b}\mathfrak{c}) - \alpha)^{-k}.$$

We now write $\psi(bc) = \epsilon(bc)bc$, where b is the generator of b in \mathcal{B} , and $\epsilon(bc)$ is a root of unity in K, and argue in exactly the same way as in Case 1 of the proof of Lemma 21 in [4]. In this way, it follows that

$$d_k(L) = \lambda_k \sum_{b \in \mathfrak{B}} \sum_{\alpha \in \mathfrak{g}} \overline{\psi}^k((bc - \alpha))N(bc - \alpha)^{-k},$$

where N denotes the norm from K to Q. Let W denote the group of roots of unity of K. Since the Grössencharacter ψ is defined modulo g, the natural map of W into $(\mathcal{O}/g)^{\times}$ is plainly injective. Now, as H is the ray class field modulo g by Lemma 2, we can identify the Galois group of H over K with $(\mathcal{O}/g)^{\times}/W$ via the Artin map. Since the Artin symbol of c = (c) for F/K is equal to σ , it is therefore clear that $\{\mu bc : \mu \in W, b \in \mathcal{B}\}$ is a complete set of representatives of those elements in $(\mathcal{O}/g)^{\times}$, whose Artin symbol has restriction to F equal to σ . In other words,

$$\{\mu bc - \alpha : \mu \in W, b \in \mathcal{B}, \alpha \in \mathfrak{g}\}$$

is the set of all algebraic integers in K, prime to \mathfrak{g} , such that the Artin symbol for F/K of the associated principal ideal is equal to σ . Since

we can plainly rewrite the above expression for $d_k(L)$ as

$$d_k(L) = \frac{\lambda_k}{w_k} \sum_{\mu \in W} \sum_{b \in \mathfrak{B}} \sum_{\alpha \in \mathfrak{g}} \overline{\psi}^k((\mu bc - \alpha)) N(\mu bc - \alpha)^{-k},$$

where w_k denotes the number of roots of unity in K, it follows that

$$d_k(L) = \lambda_k \zeta_F(\sigma, k).$$

Now consider $d_k(\mathfrak{a}^{-1}L)$. Recalling that $\mathfrak{a} = (\gamma)$, it follows from (10) that

$$d_k(\mathfrak{a}^{-1}L) = \lambda_k \gamma^k \sum_{\mathfrak{b} \in B} \sum_{\alpha \in \mathfrak{g}} (\gamma \psi(\mathfrak{b}\mathfrak{c}) - \alpha)^{-k}.$$

Substitute $\gamma = \psi(\mathfrak{a})\epsilon^{-1}(\gamma)$ for the first occurrence of γ on the right hand side of this equation. Again arguing in the same way as in Case 1 of the proof of Lemma 21 in [4], we obtain

$$d_k(\mathfrak{a}^{-1}L) = \lambda_k \psi^k(\mathfrak{a}) \sum_{b \in \mathfrak{B}} \sum_{\alpha \in \mathfrak{g}} \overline{\psi}^k((\gamma bc - \alpha)) N(\gamma bc - \alpha)^{-k}.$$

Now

$$\{\mu\gamma bc - \alpha : \mu \in W, b \in \mathcal{B}, \alpha \in \mathfrak{g}\}$$

is the set of all algebraic integers in K, prime to g, such that the Artin symbol for F/K of the associated principal ideal is equal to $\sigma\sigma_a$. Thus

$$d_k(\mathfrak{a}^{-1}L) = \lambda_k \psi^k(\mathfrak{a}) \zeta_F(\sigma \sigma_{\mathfrak{a}}, k).$$

We have therefore proven (11) in this case.

Case 2. We assume that k = 2. Now, for any lattice \mathcal{L} ,

$$\wp(z,\mathscr{L}) = \lim_{\substack{s \to 0 \\ s > 0}} \sum_{\omega \in \mathscr{L}} (z - \omega)^{-2} |z - \omega|^{-2s} - s_2(\mathscr{L}),$$

where $s_2(\mathcal{L})$ is as defined at the beginning of §4 of [4]. Taking $\mathcal{L} = L$, we deduce from (9) that

$$d_2(L) = \lambda_2 \lim_{\substack{s \to 0 \\ s > 0}} \sum_{b \in B} \sum_{\alpha \in g} (\psi(bc) - \alpha)^{-2} |\psi(bc) - \alpha|^{-2s}.$$

Arguing as in the previous case, we obtain $d_2(L) = \lambda_2 \zeta_F(\sigma, 2)$. Similarly, $d_2(\mathfrak{a}^{-1}L) = \lambda_2 \psi^2(\mathfrak{a}) \zeta_F(\sigma \sigma_\mathfrak{a}, 2)$, and so we obtain (11) in this case.

Case 3. We assume that k = 1. If \mathcal{L} is any lattice, let $H(s, z, \mathcal{L})$ denote the analytic continuation in s of the series

$$\sum_{\omega\in\mathscr{L}}(\bar{z}+\bar{\omega})|z+\omega|^{-2s}$$

(this series converges for R(s) > 3/2). Then, as is shown in case 3 of the proof of Lemma 21 of [4], we have

$$\zeta(z,\mathscr{L}) - zs_2(\mathscr{L}) = H(1, z, \mathscr{L}) + \bar{z}g(\mathscr{L}),$$

where $g(\mathcal{L})$ is defined in the same proof. First take $\mathcal{L} = L$. It follows from (8) that

$$d_1(L) = \lambda_1 \lim_{s \to 1} \sum_{b \in B} \sum_{\alpha \in \mathfrak{q}} \frac{\psi(\mathfrak{b}\mathfrak{c}) + \bar{\alpha}}{|\psi(\mathfrak{b}\mathfrak{c}) + \alpha|^{2s}} + rg(L),$$

where $r = \sum_{b \in B} (\bar{\psi}(bc)\bar{\rho})$ (here, by the limit as $s \to 1$, we mean the value of the analytic continuation at s = 1). As before, we deduce easily that

$$d_1(L) = \lambda_1 \zeta_F(\sigma, 1) + rg(L).$$

Next take $\mathscr{L} = \gamma^{-1}L$. Then

$$d_1(\mathfrak{a}^{-1}L) = \lambda_1 \lim_{s \to 1} \sum_{\mathfrak{b} \in B} \sum_{\alpha \in \gamma^{-1}\mathfrak{g}} \frac{\psi(\mathfrak{b}\mathfrak{c}) + \bar{\alpha}}{|\psi(\mathfrak{b}\mathfrak{c}) + \alpha|^{2s}} + rg(\gamma^{-1}L).$$

Taking the factor γ^{-1} out of each α , and recalling that $g(\gamma^{-1}L) = N\mathfrak{a}g(L)$, we conclude that

$$d_1(\mathfrak{a}^{-1}L) = \lambda_1 \gamma \lim_{s \to 1} \sum_{b \in B} \sum_{\alpha \in \mathfrak{q}} \frac{\bar{\gamma} \bar{\psi}(\mathfrak{b}\mathfrak{c}) + \bar{\alpha}}{|\gamma \psi(\mathfrak{b}\mathfrak{c}) + \alpha|^{2s}} + r N \mathfrak{a} g(L).$$

We now argue in the same way as in case 1 to deduce that

$$d_1(\mathfrak{a}^{-1}L) = \lambda_1 \psi(\mathfrak{a}) \zeta_F(\sigma \sigma_{\mathfrak{a}}, 1) + r N \mathfrak{a} g(L).$$

Combining these two expressions for $d_1(L)$ and $d_1(\mathfrak{a}^{-1}L)$, we see that (11) is true for k = 1. This completes the proof of Lemma 8.

COROLLARY 9: For each integer $k \ge 1$, and each $\sigma \in \mathcal{G}$, $\Omega^{-k}\zeta_F(\sigma, k)$ belongs to F. Moreover, if $\tau \in \mathcal{G}$, then $(\Omega^{-k}\zeta_F(\sigma, k))^{\tau} = \Omega^{-k}\zeta_F(\tau\sigma, k)$.

PROOF: The first assertion is plain from Lemmas 7 and 8, on taking $a \neq 1$ to be an integral ideal of K, prime to S and p, such that $\sigma_a = 1$. The second assertion follows similarly, on noting that $c_k(a, \sigma)^{\tau} = c_k(a, \tau\sigma)$ for all $k \ge 1$ because $\Lambda_{\sigma}(z, a)^{\tau} = \Lambda_{\tau\sigma}(z, a)$. Here $\Lambda_{\sigma}(z, a)^{\tau}$ denotes the rational function of $\wp(z)$ and $\wp'(z)$, with coefficients in F, which is obtained by letting τ act on the coefficients of $\Lambda_{\sigma}(z, a)$.

Let ψ_F denote the Grössencharacter of F, which is obtained by composing ψ with the norm map from F to K. Plainly ψ_F is unramified outside g. Thus, for each integer $k \ge 1$, we can define

$$L_F(\bar{\psi}_F^k, s) = \prod_{(\mathfrak{B},\mathfrak{g})=1} (1 - \bar{\psi}_F^k(\mathfrak{B})(N\mathfrak{B})^{-s})^{-1},$$

the product being taken over all primes \mathfrak{P} of F which do not divide \mathfrak{g} . Of course, $L_F(\bar{\psi}_F^k, s)$ will not, in general, be a primitive Hecke *L*-function, but this will not be important in the proof of Theorem 1. Let $\hat{\mathscr{G}}$ denote the group of all homomorphisms from \mathscr{G} into the group of non-zero complex numbers. If $\theta \in \hat{\mathscr{G}}$, we associate with it the complex *L*-function

$$L_F(\bar{\psi}^k\theta,s) = \sum_{\sigma \in \mathscr{G}} \theta(\sigma) \zeta_F(\sigma,k;s).$$

One verifies immediately that we have the product decomposition

(12)
$$L_F(\bar{\psi}_F^k, s) = \prod_{\theta \in \hat{\mathscr{G}}} L_F(\bar{\psi}^k \theta, s).$$

The next lemma gives the basic rationality properties of the value of $L_F(\bar{\psi}_F^k, s)$ at s = k.

LEMMA 10: For each integer $k \ge 1$, $\Omega^{-kd}L_F(\bar{\psi}_F^k, k)$ belongs to F, and the ideal that it generates is fixed by the action of \mathcal{G} .

PROOF: By (12) and the first assertion of Corollary 9, we see that $\nu_k = \Omega^{-kd} L_F(\bar{\psi}_F^k, k)$ belongs to M, where M is the field obtained by adjoining to F the values of all $\theta \in \hat{\mathscr{G}}$. But, again by (12), it is clear that ν_k is fixed by the Galois group of M over F, and so belongs to F. Now take τ to be any element of \mathscr{G} , and let τ_1 be an element of G(M/K) whose restriction to F is τ . The second assertion of Corol-

220

lary 9 implies that

[13]

(13)
$$\Omega^{-k}L_F(\bar{\psi}^k\theta,k)^{\tau_1} = \theta^{\tau_1}(\tau^{-1})\Omega^{-k}L_F(\bar{\psi}^k\theta^{\tau_1},k),$$

whence it is plain from (12) that the ideal in F generated by ν_k is fixed by \mathcal{G} .

REMARK: If \mathscr{G} has no quadratic characters, (12) and (13) show that $\Omega^{-kd}L_F(\bar{\psi}_F^k, k)$ is actually fixed by \mathscr{G} , and so belongs to K.

We now investigate the integrality properties of the numbers in Corollary 9 and Lemma 10. Let \mathfrak{P} be any prime of F lying above \mathfrak{P} , $F_{\mathfrak{P}}$ the completion of F at \mathfrak{P} , and $\mathcal{O}_{\mathfrak{P}}$ the ring of integers of $F_{\mathfrak{P}}$. We can view $\Lambda_{\sigma}(z, \mathfrak{a})$ as being a rational function of $\mathfrak{P}(z)$ and $\mathfrak{P}'(z)$ with coefficients in $F_{\mathfrak{P}}$, via the canonical inclusion of F in $F_{\mathfrak{P}}$. Hence we can expand $\Lambda_{\sigma}(z, \mathfrak{a})$ in terms of the parameter $t = -2\mathfrak{p}(z)/\mathfrak{p}'(z)$ of the formal group \hat{E} .

LEMMA 11: Let \mathfrak{P} be any prime of F above \wp . In terms of the parameter $t = -2\wp(z)/\wp'(z)$, $\Lambda_{\sigma}(z,\mathfrak{a})$ has an expansion

$$\Lambda_{\sigma}(z,\mathfrak{a})=\sum_{k=0}^{\infty}h_{k,\sigma}(\mathfrak{a},\mathfrak{P})t^{k},$$

whose coefficients all belong to $\mathcal{O}_{\mathfrak{P}}$, and where $h_{0,\sigma}(\mathfrak{a},\mathfrak{P})$ is a unit in $\mathcal{O}_{\mathfrak{P}}$.

PROOF: This is the same as the proof of Lemma 23 of [4] (on recalling that $(\mathfrak{g}, p) = 1$ by hypothesis), and so we omit the details.

LEMMA 12: Let k be an integer with $1 \le k \le p-1$. Then (i) for $\sigma \in \mathcal{G}, \ \Omega^{-k}\zeta_F(\sigma, k)$ is integral at each prime of F above \wp , and (ii) $\Omega^{-kd}L_F(\bar{\psi}_F^k, k)$ is integral at each prime of F above \wp .

PROOF: In view of (12), it is plain that (ii) is a consequence of (i). We now proceed to deduce (i) from the previous lemma. Let w be the parameter of the Lubin-Tate formal group \mathscr{C} such that $[\pi](w) = \pi w + w^p$ (cf. §3 of [4]). Fix a prime \mathfrak{P} of F above \wp . For the moment, take a to be an arbitrary integral ideal of K, prime to S and p. Since t can be written as a power series in w with coefficients in \mathcal{O}_{\wp} , it follows from Lemma 11 that $\Lambda_{\sigma}(z, \mathfrak{a})$ can be expanded as a power series in w, say f(w), with coefficients in $\mathcal{O}_{\mathfrak{P}}$, and whose constant term f(0) is a unit in $\mathcal{O}_{\mathfrak{P}}$. Moreover, since $z = w + \sum_{i=2}^{\infty} a_i w^i$, where $a_i = 0$ unless

 $i \equiv 1 \mod(p-1)$ (cf. Lemma 7 of [4]), the coefficients of z^k and w^k $(0 \le k \le p-1)$ in the z-expansion of $\Lambda_{\sigma}(z, \mathfrak{a})$ and in f(w) are plainly equal. It follows that the coefficients of z^k and w^k $(1 \le k \le p-1)$ in the z-expansion of $z(d/dz) \log \Lambda_{\sigma}(z, \mathfrak{a})$ and in $w(d/dw) \log f(w)$ are also equal. But the coefficients of this latter series lie in $\mathcal{O}_{\mathfrak{P}}$, because the constant term f(0) of f(w) is a unit in $\mathcal{O}_{\mathfrak{P}}$. We conclude from Lemma 8 that

(14)
$$\Omega^{-k}(N\mathfrak{a}\zeta_F(\sigma,k)-\psi^k(\mathfrak{a})\zeta_F(\sigma\sigma_\mathfrak{a},k))$$

is integral at \mathfrak{P} for $1 \le k \le p-1$. We now make a special choice of the ideal \mathfrak{a} . Let *e* denote a generator of the ideal $(12g) \cap \mathbb{Z}$. Choose *n* to be a rational integer, prime to *p*, such that $1 + ne\pi$ is not divisible by \overline{p} , and take $\mathfrak{a} = (1 + ne \pi)$. Then $N\mathfrak{a} \equiv 1 \mod p$. Also $\sigma_{\mathfrak{a}} = 1$ because the conductor of F/K divides *e*, and $\psi^k(\mathfrak{a}) = (1 + en\pi)^k \equiv 1 \mod p$, because the conductor of ψ divides *e*. Thus $N\mathfrak{a} - \psi^k(\mathfrak{a})$ is a unit at p, and so assertion (i) follows from (14). This completes the proof of Lemma 12.

We now prove a technical lemma, which establishes the existence of *d* pairs (A, \mathcal{N}) in \mathcal{I} , with properties which will be needed later in this section. To simplify the statement of the lemma, we choose a fixed numbering of the elements of \mathcal{G} , say $\sigma_1, \ldots, \sigma_d$, with $\sigma_1 = 1$.

LEMMA 13: Let k be an integer with $1 \le k \le p-2$. Then there exist d pairs $(A^{(h)}, \mathcal{N}^{(h)}) \in \mathcal{I}$, where

$$A^{(h)} = \{a_1^{(h)}, a_2^{(h)}\}, \quad \mathcal{N}^{(h)} = \{n_1^{(h)}, n_2^{(h)}\} \quad (1 \le h \le d),$$

with the following properties. Firstly, $\psi^k(\mathfrak{a}_2^{(1)}) \neq 1 \mod \mathfrak{p}$. Secondly, for $1 \leq h \leq d$, we have (i) $\psi^k(\mathfrak{a}_1^{(h)}) \equiv 1 \mod \mathfrak{p}$, (ii) $\sigma_{\mathfrak{a}_2^{(h)}} = 1$, (iii) $\sigma_{\mathfrak{a}_1^{(h)}} = \sigma_h^{-1}$, and (iv) $n_2^{(h)}$ is prime to p.

PROOF: Let *e* denote a generator of the ideal $(12g) \cap \mathbb{Z}$, and let $\beta \mod p$ be a generator of $(\mathbb{C}/p)^{\times}$. First consider the case h = 1. Let *n* be a rational integer, prime to *p*, such that $1 + ne\pi$ is prime to \bar{p} , and take $\mathfrak{a}_{1}^{(1)} = (1 + en\pi)$. Choose $\mathfrak{a}_{2}^{(1)} = (\alpha_{2}^{(1)})$, where $\alpha_{2}^{(1)}$ is an algebraic integer in *K* satisfying $\alpha_{2}^{(1)} \equiv 1 \mod e\bar{\pi}$, and $\alpha_{2}^{(1)} \equiv \beta \mod \pi$. Let $n_{1}^{(1)} = N\mathfrak{a}_{2}^{(1)} - 1$ and $n_{2}^{(1)} = -(N\mathfrak{a}_{1}^{(1)} - 1)$, so that $n_{2}^{(1)}$ is prime to *p* because (p, ne) = 1. Moreover, as the conductor of ψ divides *e*, we have $\psi^{k}(\mathfrak{a}_{1}^{(1)}) \equiv 1 \mod p$, and $\psi^{k}(\mathfrak{a}_{2}^{(1)}) \equiv \beta^{k} \neq 1 \mod p$. Finally, both ideals are prime to *S* and *p* by construction, and $\sigma_{\mathfrak{a}_{1}^{(1)}} = \sigma_{\mathfrak{a}_{2}^{(1)}} = 1$ because the conductor of *F* over *K* also divides *e*. This completes the case h = 1.

222

For h > 1, again choose $\mathfrak{a}_1^{(h)} = (1 + ne\pi)$ and $n_2^{(h)} = -(N\mathfrak{a}_1^{(h)} - 1)$. Take $\mathfrak{a}_2^{(h)}$ to be an integral ideal of K, prime to S and p, such that $\sigma_{\mathfrak{a}_2^{(h)}} = \sigma_h^{-1}$, and let $n_1^{(h)} = N\mathfrak{a}_2^{(h)} - 1$. The proof of the lemma is now complete.

So far in this section, we have made no hypothesis on the decomposition of \wp in the extension F/K, other than requiring that \wp does not ramify in F/K. We now suppose, until further notice, that \wp splits completely in F. We use the notation of the last part of §13. Thus \mathscr{S} will denote the set of prime of $F_0 = F(E_\pi)$ above \wp , and \mathscr{U} will again be given by (4). Let

(15)
$$i: F_0 \to \prod_{q \in \mathscr{G}} F_{0,c}$$

be the canonical embedding of F_0 in the product of its completions at the primes \mathfrak{q} in \mathscr{S} . Recall that C denotes the group of elliptic units of F_0 , as defined at the beginning of this section. We write \mathfrak{C} for the subgroup of C consisting of all elements which are $\equiv 1 \mod \mathfrak{q}$ for each $\mathfrak{q} \in \mathscr{S}$. Let $\overline{i(\mathfrak{C})}$ be the closure of $i(\mathfrak{C})$ in the \wp -adic topology. Our aim is to compute, for $1 \le k \le p - 2$, the image of $\overline{i(\mathfrak{C})}$ under the homomorphism $\varphi_{F,k}$ given by (6).

Recall that Φ is the field $K_{\rho}(E_{\pi})$, which lies inside our fixed algebraic closure of K_{ρ} . Since ρ splits completely in F by hypothesis, the completion of F_0 at each q in \mathcal{S} is plainly topologically isomorphic to Φ . To simplify notation, we adopt the following convention. We fix one embedding of F_0 in Φ , and view this embedding as simply being an inclusion. This amounts to choosing one fixed prime in \mathcal{S} , which we denote by q. Let Ω denote the Galois group of F_0 over $K(E_{\pi})$. Since ρ is totally ramified in $K(E_{\pi})$, and splits completely in $F_0/K(E_{\pi})$, the other primes in \mathcal{S} are given precisely by the q^{σ} for $\sigma \in \Omega$, and the embedding of F_0 in Φ corresponding to q^{σ} is given by σ itself. With this convention, the map (15) is simply given by

(16)
$$i(x) = (x^{\sigma})_{\sigma \in \Omega}.$$

Now take x to be any elliptic unit in \mathbb{C} . More explicitly, let $\xi(\tau)$ be the point of E_{π} corresponding to our chosen generator u of \mathscr{C}_{π} under our fixed isomorphism from \hat{E} to \mathscr{C} . Then, by definition, x will be of the form

(17)
$$x = \prod_{j \in J} \Lambda(\tau, \mathfrak{a}_j)^{n_j}$$

for some pair (A, \mathcal{N}) belonging to \mathcal{I} . Now $\Omega = G(F_0/K(E_{\pi}))$ is canonically isomorphic to $\mathcal{G} = G(F/K)$ under the restriction map, and we shall identify these two Galois groups in this way when there is no danger of confusion. Since Ω fixes E_{π} , it is then plain that

$$x^{\sigma} = \prod_{j \in J} \Lambda_{\sigma}(\tau, \mathfrak{a}_j)^{n_j}$$
 for $\sigma \in \Omega$,

where $\Lambda_{\sigma}(z, \mathfrak{a}_i)$ is as defined just after Lemma 7

LEMMA 14: Let x be the elliptic unit in \mathbb{S} given by (17). Then, for each integer k with $1 \le k \le p - 2$, we have

$$\varphi_{F,k}(i(x)) = \left(\lambda_k \sum_{j \in J} n_j (N \mathfrak{a}_j \zeta_F(\sigma, k) - \psi^k(\mathfrak{a}_j) \zeta_F(\sigma \sigma_{\mathfrak{a}_j}, k)) \mod \mathfrak{q}^\sigma \right)_{\sigma \in \Omega},$$

where $\lambda_k = 12(-1)^{k-1}\rho^{-k}$.

PROOF: We can obtain a power series $f_{\sigma}(w)$, with coefficients in \mathcal{O}_{ρ} , such that $f_{\sigma}(u) = x^{\sigma}$ in the following manner. Let w be the parameter of the Lubin-Tate formal group \mathscr{E} , and expand the rational function of $\wp(z)$ and $\wp'(z)$, with coefficients in F, given by

(18)
$$\prod_{j\in J} \Lambda_{\sigma}(z, \mathfrak{a}_j)^{n_j}$$

as a formal power series in w. Denote the power series obtained in this way by $f_{\sigma}(w)$. By lemma 11 and the fact that t can be written as a power series in w with coefficients in \mathcal{O}_p , we conclude that $f_{\sigma}(w)$ does indeed have coefficients in \mathcal{O}_p . It is then plain that $x^{\sigma} = f_{\sigma}(u)$. Moreover, as $z = w + \sum_{i=2}^{\infty} a_i w^i$, where $a_i = 0$ unless $i \equiv 1 \mod(p-1)$ (cf. Lemma 7 of [4]), we see that the coefficients of z^k and w^k $(0 \le k \le p - 1)$ in the series expansions of (18) in terms of z and w must be equal. Thus the conclusion of the lemma is now clear from Lemma 8 and the definition of φ_{Fk} .

We now come to the first main result of this section. Since the elliptic units of F_0 are stable under the action of the Galois group of F_0 over K (cf. Lemma 20 of [4]), it follows, in particular, that $\overline{i(\mathfrak{C})}$ is a $\mathbb{Z}_p[G]$ -submodule of \mathfrak{U} , where $G = G(F_0/F)$. We can therefore take the canonical decomposition (2) of $\mathfrak{U}/\overline{i(\mathfrak{C})}$. We follow the terminology of [4] and say that p is anomalous for E if $\pi + \overline{\pi} = 1$.

THEOREM 14: Assume that p is a prime number >5 satisfying (i) p does not belong to the finite exceptional set S, (ii) p splits in K, say $(p) = \wp \bar{\wp}$, (iii) \wp splits completely in F/K, and (iv) p is not anomalous for E. Let \mathfrak{C} be the group of elliptic units of $F_0 = F(E_{\pi})$, which are $\equiv 1 \mod \mathfrak{q}$ for each $\mathfrak{q} \in \mathcal{G}$. Then, for each integer k with $1 \le k \le p - 2$, the eigenspace $(\mathfrak{U}/i(\mathfrak{C}))^{(k)}$ is non-trivial if and only if $\Omega^{-kd}L_F(\bar{\psi}_F^k, k) \equiv$ $0 \mod \mathfrak{q}$ for each $\mathfrak{q} \in \mathcal{G}$.

REMARK: By Lemma 10, $\Omega^{-kd}L_F(\bar{\psi}_F^k, k) \equiv 0 \mod \mathfrak{q}$ for one prime \mathfrak{q} in \mathscr{S} if and only if the same congruence is valid for all \mathfrak{q} in \mathscr{S} .

PROOF: We adopt the same convention as before, in which we have fixed one prime q in \mathcal{S} , and view F_0 as being contained in Φ . We make use of the following formal identity in the group ring $F[\mathcal{G}]$, which is very reminiscent of computations with Stickelberger elements in cyclotomic fields. For each $\sigma \in \mathcal{G}$, put

$$\zeta_{F}^{*}(\sigma, k) = \lambda_{k} \zeta_{F}(\sigma, k).$$

By Corollary 9, $\zeta^*(\sigma, k)$ belongs to F. Write

(19)
$$\alpha = \sum_{\sigma \in \mathscr{G}} \zeta_F^*(\sigma, k) \sigma^{-1}.$$

Then, for each integral ideal \mathfrak{a} of K which is prime to \mathfrak{g} , we plainly have

(20)
$$(N\mathfrak{a} - \psi^k(\mathfrak{a})\sigma_\mathfrak{a})\alpha = \sum_{\sigma \in \mathscr{G}} \delta_k(\sigma, \mathfrak{a})\sigma^{-1},$$

where

(21)
$$\delta_k(\sigma, \mathfrak{a}) = N \mathfrak{a} \zeta_k^*(\sigma, k) - \psi^k(\mathfrak{a}) \zeta_k^*(\sigma \sigma_\mathfrak{a}, k).$$

By Corollary 6, the eigenspace $(\mathcal{U}/\overline{i(\mathfrak{C})})^{(k)}$ will be trivial if and only if $\varphi_{F,k}(\overline{i(\mathfrak{C})})$ has dimension d over the finite field F_p with p elements. This suggests that we study the image under $\varphi_{F,k}$ of any d elements of $\overline{i(\mathfrak{C})}$. Suppose therefore that $(A^{(h)}, \mathcal{N}^{(h)})$ $(1 \le h \le d)$ are any d elements of \mathcal{I} . Let x_h , given by (17), be the elliptic unit corresponding to $(A^{(h)}, \mathcal{N}^{(h)})$. We assume that x_1, \ldots, x_d belong to \mathfrak{C} . Write

$$A^{(h)} = \{ a_j^{(h)} : j \in J_h \}, \quad \mathcal{N}^{(h)} = \{ n_j^{(h)} : j \in J_h \},$$

and

$$\gamma_h = \sum_{j \in J_h} n_j^{(h)} (N \mathfrak{a}_j^{(h)} - \psi^k(\mathfrak{a}_j^{(h)}) \sigma_{\mathfrak{a}_j^{(h)}}).$$

For $\sigma \in \mathscr{G}$ and $1 \le h \le d$, we define

$$b_{h\sigma} = \sum_{j \in J_h} n_j^{(h)} \delta_k(\sigma, \mathfrak{a}_j^{(h)}),$$

where $\delta_j(\sigma, \mathfrak{a}_j^{(h)})$ is given by (21). It is then plain from (20) that we have the identity

(22)
$$\gamma_h \alpha = \sum_{\sigma \in \mathscr{G}} b_{h\sigma} \sigma^{-1} \qquad (1 \le h \le d).$$

We let Ξ denote the $d \times d$ -determinant form from the $b_{h\sigma}$ $(h = 1, ..., d, \sigma \in \mathcal{G})$.

By Lemma 14, the determinant of the d vectors

$$\varphi_{F,k}(i(x_h)) \qquad (1 \le h \le d)$$

is equal to $\Xi \mod \mathfrak{q}$. We now proceed to compute Ξ . To this end, let $\hat{\mathscr{G}}$ be the group of homomorphisms from \mathscr{G} to the multiplicative group of non-zero complex numbers. Let $\sigma_1 = 1, \sigma_2, \ldots, \sigma_d$ denote the distinct elements of \mathscr{G} , and $\chi_1 = 1, \chi_2, \ldots, \chi_d$ the distinct elements of $\hat{\mathscr{G}}$. Write Γ and Σ for the $d \times d$ -determinants formed from the $\chi_i(\gamma_h)$, $\chi_i(\sigma_h^{-1})$ $(1 \le i, h \le d)$, respectively. Applying each of the χ_i to the equation (22), we conclude that

(23)
$$\left(\prod_{i=1}^d \chi_i(\alpha)\right) \Gamma = \Sigma \Xi.$$

We now make two observations. Put $L^*_{F}(\bar{\psi}^k_F, k) = \lambda^d_k L_F(\bar{\psi}^k_F, k)$. Then it is plain from (12) and (19) that

(24)
$$\prod_{i=1}^{d} \chi_i(\alpha) = L^*(\bar{\psi}_F^k, k).$$

Secondly, $\Sigma \neq 0$ and Γ/Σ is an algebraic integer in K. The former assertion is clear. To prove the latter one, we note that we can write

(25)
$$\gamma_h = \sum_{\sigma \in \mathscr{G}} e_{h\sigma} \sigma^{-1},$$

[18]

226

where the $e_{h\sigma}$ are algebraic integers in K. Applying each of the χ_i to (25), it follows that $\Gamma = \Lambda \Sigma$, where Λ is the $d \times d$ -determinant formed from the $e_{h\sigma}$. Since Σ is obviously an algebraic integer in K, it follows that the same is true for $\Sigma = \Gamma/\Lambda$.

We can now complete the proof of Theorem 14. Suppose first that $L_F^*(\bar{\psi}_F^k, k) \equiv 0 \mod \mathfrak{q}$. Then we conclude from (23), (24) and the above remarks that $\Xi \equiv 0 \mod \mathfrak{q}$ for all choices of the *d* pairs $(A^{(h)}, \mathcal{N}^{(h)})$ in \mathscr{I} . Thus $\varphi_{F,k}(i(\mathfrak{S}))$ has dimension strictly less than *d* over \mathbb{F}_p , and hence $(\mathcal{U}/i(\mathfrak{S}))^{(k)} \neq 0$. Conversely, assume that $L_F^*(\bar{\psi}_F^k, k) \neq 0 \mod \mathfrak{q}$. Then it follows from (23) and (24) that $\Xi \neq 0 \mod \mathfrak{q}$ only if we can choose the *d* pairs $(A^{(h)}, \mathcal{N}^{(h)})$ such that the determinant Λ defined above is not congruent to 0 modulo \wp . But this is always possible. Indeed, make the choice of the *d* pairs $(A^{(h)}, \mathcal{N}^{(h)})$ specified in Lemma 13. Note that, by multiplying each of the $n_1^{(h)}, n_2^{(h)}$ ($1 \le h \le d$) by p - 1 (which changes none of the other conditions in Lemma 13), we can certainly assume that the corresponding elliptic units lie in \mathfrak{C} . Using the relation $\sum_{j=1}^2 n_j^{(h)}(N\mathfrak{a}_j^{(h)} - 1) = 0$ and the fact that $\psi^k(\mathfrak{a}_1^{(h)}) \equiv 1$ mod \wp , we conclude that

$$\gamma_h \equiv n_2^{(h)} - n_2^{(h)} \psi^k(\mathfrak{a}_2^{(h)}) \sigma_h^{-1} \mod \wp \qquad (1 \le h \le d);$$

here the congruence mod \wp means that we have taken the coefficients in the group ring mod \wp . It is now trivial to verify from the other conditions of Lemma 13 that $\Lambda \neq 0 \mod \wp$. This completes the proof of Theorem 14.

LEMMA 15: There are infinitely many rational primes p satisfying conditions (i), (ii), (iii), and (iv) of Theorem 14.

PROOF: As before, let $H = K(E_g)$. Apr.', ing Cebotarev's density theorem to a Galois extension of **Q** containing *H*, we conclude that there are infinitely many rational primes *p* which split completely in *H*. We claim that any rational prime *p*, not in *S*, which splits completely in *H*, satisfies (i), (ii), (iii) and (iv). The only part which is not obvious is that such a *p* satisfies (iv). Take such a *p*, and let $(p) = \wp \bar{\wp}$ be its factorization in *K*. Since \wp splits completely in *H*, the Artin symbol $(\wp, H/K)$ fixes E_g . On the other hand, as $\psi(\wp) = \pi$, Shimura's reciprocity law gives $\xi(\rho)^{(\wp,H/K)} = \xi(\pi\rho)$ for each $\rho \in E_g$. Thus we must have $\pi \equiv 1 \mod g$. Now, if *p* were anomalous, it would follow that $\pi \bar{\pi} = (\pi - 1)(\bar{\pi} - 1)$, and this is clearly impossible because *p* was prime to *g* by hypothesis. This completes the proof.

We now begin the proof of the second main result of this section.

As before, let $F_n = F(E_{\pi^{n+1}})$. Since \wp is totally ramified in $K(E_{\pi^{n+1}})$, it is clear that each prime of F above \wp is totally ramified in F_n . Write \mathscr{S}_n for the set of primes of F_n above \wp . Let C_n be the group of elliptic units of F_n , as defined at the beginning of this section, and let \mathfrak{C}_n be the subgroup of C_n consisting of all elements which are $\equiv 1 \mod \mathfrak{q}$ for each $\mathfrak{q} \in \mathscr{S}_n$. If $m \ge n$, we write $N_{m,n}$ for the norm map from F_m to F_n . The next lemma, which is, in essence, one of the main results of [6], is valid without any hypothesis on the decomposition of \wp in F.

LEMMA 16: For each $m \ge n \ge 0$, we have $N_{m,n}(\mathfrak{C}_m) = \mathfrak{C}_n$.

PROOF: Recall that $f_n = \mathfrak{g} p^{n+1}$ is the conductor of F_n over K, by Lemma 3. Let f_n denote a generator of the ideal $\mathfrak{f}_n \cap \mathbb{Z}$, and let g_n be the largest divisor of f_n such that the g_n -th roots of unity lie in F_n . We claim that $g_n = g_0$ for all $n \ge 0$, and that g_0 is prime to p. Indeed, F_n can contain no non-trivial p-power roots of unity, because \bar{p} does not divide the conductor of F_n/K . Moreover, since F_n/F_0 is totally ramified at the primes above p, it follows that F_n and F_0 have the same group of roots of unity for all $n \ge 0$. Let D be the group of g_0 -th roots of unity in F_0 . Robert (cf. [6], p. 43) has defined Ω_{F_n} to be the group DC_n . Moreover, since \mathfrak{f}_0 divides \mathfrak{f}_n and \mathfrak{f}_0 and \mathfrak{f}_n are divisible by the same primes, it is shown in [6] (cf. Proposition 17, p. 43) that $N_{m,n}(\Omega_{F_m})D = \Omega_{F_n}$. Since the order of D is prime to p (and hence no element of D is $\equiv 1 \mod \mathfrak{q}$ for $\mathfrak{q} \in \mathcal{S}_n$), it follows immediately that $N_{m,n}(\mathfrak{C}_m) = \mathfrak{C}_n$. This completes the proof.

For each integer $n \ge 0$, let $\Phi_n = K_{\rho}(E_{\pi^{n+1}})$, and let φ_n be the maximal ideal of Φ_n . Write U_n for the units of Φ_n which are $\equiv 1 \mod \varphi_n$, and U'_n for the subgroup of U_n consisting of all elements with norm 1 to K_p . Plainly

(26) $(U'_n)^{(k)} = U_n^{(k)}$ for $k \neq 0 \mod(p-1)$.

If m > n, we also write $N_{m,n}$ for the norm map from Φ_m to Φ_n .

LEMMA 17: Suppose that $k \neq 0 \mod(p-1)$. If $m \geq n$, then the norm map from $U_m^{(k)}$ to $U_n^{(k)}$ is surjective, and its kernel is equal to $(U_m^{(k)})^{1-\tau}$, where τ is a generator of $G(\Phi_m/\Phi_n)$.

PROOF: The norm map from U'_m to U'_n is surjective, because U'_n consists of those elements of U_n which are norms from Φ_m for all $m \ge n$ (cf. Lemma 8 of [4]). Thus the first assertion is plain from (26). As for the second, let V_m denote the kernel of the norm map from U_m

to U_n . Since Φ_m/Φ_n is a totally ramified cyclic extension of degree p^{m-n} , a standard computation (cf. [5], p. 188) shows that

$$[V_m:U_m^{1-\tau}] = [V_m^{(0)}:U_m^{(0)(1-\tau)}] = p^{m-n}.$$

Hence $[V_m^{(k)}: U_m^{(k)(1-\tau)}] = 1$ for all $k \neq 0 \mod(p-1)$, as required.

The following elementary lemma is certainly well known, but we have been unable to find a suitable reference.

LEMMA 18: Let Λ be a cyclic group of prime order $p \neq 2$, operating on a finitely generated \mathbb{Z}_p -module M. Let τ be a generator of Λ . If $M = (\tau - 1)M$, then M = 0.

PROOF: Since $\tau^p = 1$ and p is odd, it is clear that

(27)
$$(\tau-1)^p \in p\mathbb{Z}[\Lambda],$$

where $Z[\Lambda]$ is the group ring of Λ with coefficients in Z. Let N be the torsion submodule of M, so that M/N is a free Z_p -module of finite rank with $(\tau - 1)(M/N) = (M/N)$. But this shows that $(\tau - 1)^p$ is surjective on M/N, and this is impossible by (27) unless M/N = 0. Hence we can suppose that M is a finite abelian p-group. But again (27) implies that M = 0 if $(\tau - 1)M = M$. This completes the proof.

For each $q \in \mathcal{S}_n$, let $F_{n,q}$ be the completion of F_n at q, and again let *i* be the canonical inclusion of F_n in $\prod_{q \in \mathcal{S}_n} F_{n,q}$. Write $U_{n,q}$ for the units in $F_{n,q}$ which are $\equiv 1 \mod q$, and put

(28)
$$\mathcal{U}_n = \prod_{q \in \mathscr{P}_n} U_{n,q}.$$

Thus, in terms of our earlier notation, $\mathcal{U}_0 = \mathcal{U}$ and $\mathfrak{C}_0 = \mathfrak{C}$.

THEOREM 19: Let p be a prime number satisfying (i) p does not belong to S, (ii) p splits in K, $(p) = \wp, \bar{\wp}$, and (iii) \wp splits completely in F. Let k be an integer with $1 \le k \le p-2$. Let m, n be any two integers ≥ 0 , with m > n. Then $(\mathcal{U}_m/\overline{i(\mathfrak{C}_m)})^{(k)} \ne 0$ if and only if $(\mathcal{U}_n/\overline{i(\mathfrak{C}_n)})^{(k)} \ne 0$.

PROOF: Since \wp splits completely in F, we can identify $F_{n,q}$, for each $q \in \mathscr{S}_n$, with the field Φ_n , and $U_{n,q}$ with U_n . Let $N_{m,n}: \mathscr{U}_m \to \mathscr{U}_n$ be the map given by the product of the local norms from Φ_m to Φ_n at each $q \in \mathscr{S}_n$. Suppose now that $1 \le k \le p - 2$. Put $A_n = \mathscr{U}_n^{(k)} / \overline{i(\mathfrak{C}_n)^{(k)}}$. It

follows from the first part of Lemma 17 that the norm map from $\mathcal{U}_m^{(k)}$ to $\mathcal{U}_n^{(k)}$ is surjective, whence the induced map from $A_m^{(k)}$ to $A_n^{(k)}$ is also surjective. Thus it is clear that $A_m^{(k)} = 0$ implies that $A_n^{(k)} = 0$. To prove the converse, we note that Lemmas 16 and 17 together imply that the kernel of the norm map from $A_m^{(k)}$ to $A_n^{(k)}$ is $(A_m^{(k)})^{1-\tau}$, where τ is a generator of the Galois group of F_m over F_n . Suppose now that $A_n^{(k)} = 0$. Since $A_{n+1}^{(k)}$ is a finitely generated Z_p -module, we conclude from Lemma 18 that $A_m^{(k)} = 0$. Repeating the argument a finite number of times, it follows that $A_m^{(k)} = 0$ for all $m \ge n$. This completes the proof.

5. Proof of Theorem 1

We can now complete the proof of Theorem 1 in an entirely similar fashion to the proof of Theorem 1 in [4]. If N is an abelian extension of F_n , which is Galois over F, then $G_n = G(F_n/F)$ operates on $X = G(N/F_n)$ via inner automorphisms in the usual way. In particular, $G = G(F_0/F)$ operates on X, because we can identify G with a subgroup of G_n . Thus, if N is a p-extension of F_n , we can take the canonical decomposition (2) of X into eigenspaces for the action of G.

As before, let \mathscr{G}_n be the set of primes of F_n over \wp . Let M_n denote the maximal abelian *p*-extension of F_n , which is unramified outside \mathscr{G}_n , and let L_n be the *p*-Hilbert class field of F_n . Let \mathscr{U}_n be defined by (28), that is, \mathscr{U}_n is the product of the local units $\equiv 1$ in the completions of F_n at the primes $\mathfrak{q} \in \mathscr{G}_n$. Write $N_{F_n/K} : \mathscr{U}_n \to K_p$ for the map given by the product of the local norms at all $\mathfrak{q} \in \mathscr{G}_n$. We denote the kernel of $N_{F_n/K}$ by \mathscr{U}'_n . Plainly

(29) $\mathcal{U}_n^{(k)} = (\mathcal{U}_n^{\prime})^{(k)}$ whenever $k \neq 0 \mod (p-1)$.

As is explained in detail in [3], global class field theory gives the following explicit description of $G(M_n/L_nF_\infty)$ as a G_n -module, where $F_\infty = \bigcup_{n\geq 0} F_n$. Let E_n be the group of all global units of F_n which are $\equiv 1 \mod \mathfrak{q}$ for each $\mathfrak{q} \in \mathscr{S}_n$. Let $i(\overline{E_n})$ be the closure of $i(E_n)$ in \mathscr{U}_n in the p-adic topology.

THEOREM 20: For each $n \ge 0$, $\mathcal{U}'_n | \overline{i(E_n)}$ is isomorphic as a G_n -module, via the Artin map, to $G(M_n | L_n F_\infty)$.

Suppose now that there does exist a point P in E(F) of infinite

order. Take p to be a rational prime satisfying (i) p does not belong to S, (ii) p splits in K, $(p) = \wp \bar{\wp}$, and (iii) \wp splits completely in F. As before, let $\pi = \psi(\wp)$. For each $n \ge 0$, choose Q_n in $E(\bar{F})$ such that $\pi^{n+1}Q_n = P$, and form the extension $H_n = F_n(Q_n)$. Thus H_n/F_n is a cyclic extension of degree dividing p^{n+1} , and as P lies in E(F), one verifies easily that

(30)
$$x^{\sigma} = \chi(\sigma)x$$
 for all $x \in G(H_n/F_n)$ and $\sigma \in G$.

An entirely similar argument to that given in Lemma 33 of [4] shows that H_n/F_n is unramified outside \mathscr{G}_n . Finally, as \wp splits completely in \hat{F} , the local arguments in Theorem 11 and Lemma 35 of [4] again show that the extension H_nF_{∞}/F_{∞} is non-trivial and ramified for all sufficiently large n.

Assume now that *n* is so large that H_nF_{∞}/F_{∞} is non-trivial and ramified. Hence the extension $H_nL_nF_{\infty}/L_nF_{\infty}$ is non-trivial. As this extension lies inside M_n , we conclude from (29), (30) and Theorem 20 that

(31)
$$(\mathscr{U}_n/i(E_n))^{(1)}\neq 0.$$

As before, let \mathfrak{C}_n be the group of elliptic units of F_n , which are $\equiv 1 \mod \mathfrak{q}$ for each $\mathfrak{q} \in \mathscr{S}_n$. As $\mathfrak{C}_n \subset E_n$, it follows that $(\mathfrak{U}_n/i(\mathfrak{C}_n))^{(1)} \neq 0$. Therefore, by Theorem 19, $(\mathfrak{U}_0/i(\mathfrak{C}_0))^{(1)} \neq 0$. Assume, in addition, that p > 5 and is not anomalous for *E*. Theorem 14 then implies that

$$\Omega^{-d}L_F(\bar{\psi}_F, 1) \equiv 0 \mod \mathfrak{q} \qquad \text{for each } \mathfrak{q} \in \mathcal{G}_n.$$

But, by Lemma 15, there certainly are infinitely many rational primes p satisfying the conditions we have imposed on p. Thus $\Omega^{-d}L_F(\bar{\psi}_F, 1)$ is divisible by infinitely many distinct prime ideals of F, and so must be equal to 0. Since the Hasse-Weil zeta function of E over F is equal to $L_F(\psi_F, s)L_F(\bar{\psi}_F, s)$, up to finitely many Euler factors which do not vanish at s = 1 (cf. Theorem 7.42 of [7]), this completes the proof of Theorem 1.

REFERENCES

- [1] N. ARTHAUD: On Birch and Swinnerton-Dyer's conjecture for elliptic curves with complex multiplication II (in preparation).
- [2] J. COATES: p-Adic L-functions and Iwasawa's theory (to appear in Proceedings of Durham symposium on algebraic number theory).
- [3] J. COATES, A. WILES: Kummer's criterion for Hurwitz numbers (to appear in

Proceedings of International Conference on algebraic number theory, Kyoto, Japan, 1976).

- [4] J. COATES, A. WILES: On the conjecture of Birch and Swinnerton-Dyer (to appear in Inventiones Mathematicae).
- [5] S. LANG: Algebraic Number Theory, Addison-Wesley, 1970.
- [6] G. ROBERT: Unités elliptiques. Bull. Soc. Math. France, Mémoire 36, 1973.
- [7] G. SHIMURA: Introduction to the arithmetic theory of automorphic functions. Pub. Math. Soc. Japan, 11, 1971.

(Oblatum 27-I-1977)

Department of Pure Mathematics and Mathematical Statistics University of Cambridge 16 Mill Lane Cambridge, England