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Introduction

Let K be an imaginary quadratic field, and E an elliptic curve with
complex multiplication by the ring of integers of K. Assume that E is
defined over a finite extension F of K, and let L(EIF, s) be the
Hasse-Weil zeta function of E over F. Deuring has proven that
L(E/F, s) can be analytically continued over the whole complex
plane, by identifying it with a product of Hecke L-series with Grôs-
sencharacters (see [7], Theorem 7.42). The conjecture of Birch and
Swinnerton-Dyer asserts that L(EIF, s) has a zero at s = 1 of order
equal to gF, the rank of the group E(F) of points of E with coor-
dinates in F. Recently, Coates and Wiles [4] made some progress on a
weak form of this conjecture. Namely, they showed that if K has

class number 1 and F = K, then gF &#x3E; 1 implies that L(EIF, s) does
indeed vanish at s = 1. The aim of the present paper is to extend
Coates and Wiles’ proof to the case in which K has class number 1, E
is still defined over K, but the base field F is now an arbitrary finite
abelian extension of K.

THEOREM 1: Let K be an imaginary quadratic field with class

number 1, and E an elliptic curve defined over K, with complex
multiplication by the ring of integers of K. If F is a finite abelian
extension of K such that E has a point of infinite order with coor-
dinates in F, then L(E/F, s) vanishes at s = 1.

In a subsequent, but considerably more technical, paper [1] ] in

preparation, we shall prove an analogous result when (i) no restriction
is made on the class number of K, (ii) the base field F is again
supposed to be an abelian extension of K, and finally (iii) the torsion
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points of E are assumed to generate over F an abelian extension of K
(see Theorem 7.44 of [7] for a necessary and sufficient condition for
(iii) to be valid for E). Since the methods of [4] depend crucially on
the explicit knowledge of class field theory for abelian extensions of
K, there seems to be little hope at present of proving results like
Theorem 1 without hypotheses (ii) and (iii) above.
The broad outlines of the proof of Theorem 1 follow fairly closely

the arguments in [4]. However, there are some significant and inter-
esting innovations in dealing with an arbitrary finite abelian extension
of K as base field. In particular, certain partial Hecke L-functions
with Grôssencharacters play a natural role in the proof. This is in

striking analogy with the theory of cyclotomic Zp-extensions, where
the values of partial L-functions formed with characters of finite
order give the coefficients of Stickelberger ideals (see [2]). Also, we
have simplified the proof of [4] in several cases (cf. the proof of
Theorem 19).

In conclusion, 1 wish to thank John Coates for his guidance with
this work.

1. Notation

To a large extent, we follow the notation of [4]. Thus K will denote
an imaginary quadratic field with class number 1, lying inside the
complex field C, and 6 the ring of integers of K. As in the Intro-
duction, E will be an elliptic curve defined over K, whose ring of
endomorphisms is isomorphic to 6. We fix a Weierstrass model for E

where g2, g3 belong to C, and where the discriminant of (1) is divisible
only by the primes of K where E has a bad reduction, and (possibly)
by the primes of K above 2 and 3. Let p(z) be the associated
Weierstrass function, L the period lattice of p(z), and )(z) = (p(z),
p’(z». Choose III E L such that L = no. We identify 0 with the
endomorphism ring of E in such a way that the endomorphism
corresponding to a E 0 is given by e(z) - e(az). If a E 0, we write Ea
for the kernel of the endomorphism a of E. Let tp be the Grôs-
sencharacter of E over K as defined in [7], §7.8. We denote the
conductor of Ji by f, and write f for some fixed generator of f.

Let F be an arbitrary finite abelian extension of K, which will be
fixed for the rest of the paper. We write S for the finite set consisting
of 2, 3, and all rational primes q which have a prime factor in K,
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which is either ramified in F, or at which E has a bad reduction.
Henceforth, p will denote a rational prime, which splits in K, and
which does not belong to the finite exceptional set S. We write p and
p- for the factors of p in K, and put 7r = tp(p). Thus, by the definition
of ol, 17" is a generator of the ideal p. Finally, let g denote the least
common multiple of the conductor of 41 and the conductor of FIK.

2. C omputation of conductors

We now compute the conductors of various abelian extensions of K

which occur in the proof of Theorem 1. The arguments are similar to

those in §2 of [4]. If a E (9, recall that Ea is the group of a-division

points on E.

LEMMA 2: Let b = (h) be any multiple of the conductor of ip. Then
K(E,,) is the ray class field of K modulo b .

PROOF: By the classical theory of complex multiplication, the ray
class field modulo b is contained in K(Eh). To prove the converse, we
use the notation and results of Shimura [7]. Let U(b) be the subgroup
of the idèle group of K as defined on p. 116 of [7], and let x be any
element of U(b) with jCoo= 1. Since the conductor of tp divides b, it

follows from Shimura’s reciprocity law (cf. the proof of Lemma 3 in
[4]) that the Artin symbol [x, K] fixes Eh. Thus K(Eh) is contained in
the ray class field modulo h , and the proof of the lemma is complete.

Recall that g is the least common multiple of the conductor of 03C8
and the conductor of FI K. Also, p is any rational prime, not in S,
which splits in K, say (p) = pp-

LEMMA 3: For each n ? 0, the conductor of Fn = F(E1T"+I) over K is
equal to f n = ,nll. Moreover, if en denotes the ray class field of K
modulo f n, then en is the compositum of Fn and H = K(Eg), and
F,, nH = F.

PROOF: Let An denote the conductor of Fn/K. Since Fn C K (E g1T"+I),
and the conductor of this latter field is f n = gpn+l by Lemma 2, we
conclude that g" divides fn. On the other hand, it is clear that the

conductor of F over K divides gn. Also, as E has a good reduction

everywhere over Fn (see Theorem 2 of [4]), the Grôssencharacter of
E over Fn must be unramified. As the Grôssencharacter of E over Fn
is the composition of the norm map from Fn to K with 41, it follows
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that the conductor f of t/1 divides gn. Combining these last two facts,
we conclude that g divides gn. But p"" divides gn because Fn contains
the ray class field modulo p"". As (p, g) = 1 by hypothesis, we deduce
that gn = f n, as asserted. To prove the final statement of the lemma,
we recall that e,, = K(E,,.,i) by Lemma 2, and thus éBn is certainly
the compositum of Fn and H. Now p is totally ramified in K(E,.-,i) by
the rudiments of Lubin-Tate theory. As p does not divide the

conductor of F over K, it follows that each prime of F above p is
totally ramified in Fn. Since p does not divide g by hypothesis, and H
is the ray class field modulo g by Lemma 2, we deduce that Fn fl H =

F, as required.

3. p-Adic logarithmic derivatives

We use the same notation as [4] for the f ormal groups Ê and Z.
Thus Ê is the f ormal group giving the kernel of reduction modulo p
on E, and Z is the Lubin-Tate formal group for which [-rr](w) _
irw + wp. By Lubin-Tate theory, Ê and W are isomorphic over the ring
C,, of integers of the completion Kp of K at p. For a fuller discussion,
see §3 of [4].
Choose a fixed algebraic closure Kp of Kp. We can assume that E,

lies in Kp, and we define the extension 0 of K p by

Put G = G(4JIKp). Of course, G is endowed with the canonical

character X, with values in Z p, giving the action of G on E.,, or

equivalently, on W,,. Thus, if A is any Zp[G]-module, it has a canoni-
cal decomposition

where A (k) is the submodule of A on which G acts via the k-th power
of Y.

Let u be a fixed generator f or W,, so that u is a local parameter for
0. Let U be the group of units of 0 which are = 1 mod u. For

1 S k S p - 2, we define homomorphisms
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as follows. If a E U, we choose any power series f (T) = Y-;=o akT k
with ak EOr" such that f (u) = a. We then define ’Pk(a) to be the

residue class in C,,Ip of the coefficient of Tk in the power series

T (d/d T) log f (T). Since 1 S k S p - 2 and the ramification index of 0
over K. is p - 1, it is easy to see that ’Pk(a) is independent of the
choice of f (T), and so is well defined.

REMARK: In defining çk in [4], one insisted that the power series

f (T) had ao = 1. It is more convenient for the arguments in §4 to work
with power series whose constant term is not necessarily 1. Of

course, the two definitions of çk are the same for 1:5 k :5 P - 2.
However, one cannot define çp-i by the present method.

In the proof of Theorem 1, we shall only be interested in the case in
which 0 contains no non-trivial p-power roots of unity. Recall that,
by Lemma 12 of [4], if p &#x3E; 5, then 0 can contain a non-trivial p-th
root of unity if and only if 7T + if = 1. The next lemma is plain from
Lemmas 9 and 10 of [4].

LEMMA 4: Assume that 0 contains no non-trivial p-th root of
unity. Let k be an integer with 1:5 k :5 p - 2. Then ÇOk vanishes on UU)
for jO k mod(p - 1), and çk induces an isomorphism

Now consider our fixed finite abelian extension F of K, and
Fo = F(E,). Let 9’ be the set of primes of Fo above p. For each q e 91,
let Fo,q be the completion of Fo at q, and write Uq for the units in Fo,q
which are == 1 mod q. Put

Now assume that p splits completely in F. Thus, for each q e Y,
there exists an isomorphism r4: Fo,q -"+ 0, which preserves the valua-
tions of both fields. Composing this isomorphism with the map çk
given by (3), we obtain a homomorphism

We define



214

to be the product of the homomorphisms (5) over all q E 9. Plainly
G = G(FOIF) = G( tPl Kp) acts on (4), because it acts on each of the Uq
in the natural way. The next lemma is now plain from Lemma 4.

LEMMA 5: Assume that 0 contains no non-trivial p-th root of
unity, and that p splits completely in F. Let k be an integer with
1:!g k:5 p - 2. Then ’PF,k vanishes on OU u) for jO k mod(p - 1), and ’PF,k
induces an isomorphism

Put d = [F : K]. In practice, we shall use the following immediate
consequence of Lemma 5.

COROLLARY 6: Under the same hypotheses as Lemma 5, let A be

any Zp[G]-submodule of ou. Then, for each integer k with 1 - k:5

p - 2, the eigenspace (OUI A)(k) 0 if and only if lI’F,k(A) has dimension
less than d over the field (Jp/p.

4. Elliptic units

As in [4], a vital role in the proof of Theorem 1 is played by the
elliptic units of Robert [6]. We begin by briefly recalling the definition
of these elliptic units. Let 9 be the set consisting of all pairs (A, y),
where A = {a j : j E JI and JV = 1 nj : j E J}, here J is an arbitrary finite
index set, the aj are integral ideals of K prime to ,S and p, and the nj
are rational integers satisfying Ejj nj(N a j - 1) = 0. Given such a pair
(A, JV), we put

where 8(z, aj) is as defined at the beginning of §4 of [4]. Recall that
f n = gIp"+’ is the conductor of Fn = F(E,.,i) over K. As before, let e,,
be the ray class field of K modulo f n. If pn is an arbitrary primitive
f n-division point of L, Robert [6] has shown that 8(Pn, A, J{) is a unit
of the field en- Moreover, as (A, JV) ranges over 0, the O(pn, A, X)
form a subgroup of the group of units of 9lln. We denote this subgroup
by C(6n, and call it the group of elliptic units of 9lln (note that Robert’s
definition of the group of elliptic units is different from ours). A
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similar argument to that given in the proof of Lemma 20 of [4] shows
that C(6n is stable under the action of the Galois group of éBn over K,
and is independent of the choice of the particular primitive f n-division
point pn. Finally, we define the elliptic units Cn of Fn = F(E,.,i) to be
the group consisting of the norms from e,, to Fn of all units in C(6n. For

simplicity, we often write C f or Co.
Let p = nlg, where q = (g). Here L = no is the period lattice of

p(z). As above, let eo be the ray class field of K modulo f o = gp.
Lemma 3 tells us that we have the diagram of fields

If L is any finite abelian extension of K, and c is an integral ideal of K
prime to the conductor of LIK, we write (c, LIK) for the Artin
symbol of c for the extension LIK. We now choose and fix a set B of
integral ideals of K, which are prime to f o, and which are such that
{(b, gj/,o/ K) : b E B} is precisely the Galois group of eo/Fo. It is then

plain from (7) that the restrictions of the (b, 9ltol K), b E B, to H is
precisely the Galois group of HIF.

If a is an arbitrary integral ideal of K prime to S and p, we define

LEMMA 7: A (z, a) is a rational function of p(z) and p’(z) with

coefficients in F.

PROOF: This is entirely similar to the first part of the proof of
Lemma 21 of [4], and so we omit it.

It is now convenient to introduce some notation, which will be used

repeatedly in this section. Let W denote the Galois group of F over K.
If c is an integral ideal of K prime to the conductor of FIK, we write
Uc for the Artin symbol (c, FIK). Finally, if a E CO and R(z) is a

rational function of p (z), P’(z) with coefficients in F, then R,(z) will
denote the rational function of p(z), p’(z), which is obtained by
letting a act on the coefficients of R(z).
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Let k be an integer &#x3E; l. Recall that ap denotes the Grôssencharacter
of E. For each a E CO, we introduce the partial Hecke L-function

where the summation is over all integral ideals a of K, prime to g,
such that the Artin symbol CFa is equal to a. It can be shown that

(F(CF, k; s) can be analytically continued over the whole complex
plane. Let £F(a, k) denote the value of (F(CF, k; s) at s = k.

LEMMA 8: For each o- EEW, we have

PROOF: Let c be an integral ideal of K, prime to g, such that u = UC.
By the definition of the Grôssencharacter ol in [7], we have

It follows easily from the expression for O(z + 1(b)p, a) as a rational
function of p(z), p’(z), with coefficients in H (see (23) of [4]), that

If Y is any lattice in the complex plane, let {(z,:£) and p(z,:£) be
the Weierstrass zeta and p-functions of Y. Define

Then (cf. the proof of Lemma 21 of [4]) il(z, Y) has the power series

expansion  k=, dk(!£)Zk, where q = ol(c)p and
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Thus we must show that ck(a, o,), as defined in Lemma 8, satisfies

As in [4], we put kk = 12(-I)k-lp-k. We write 9B for a fixed set of

generators of the ideals in B. Also, we let y denote a fixed generator
of the ideal a, and c a fixed generator of c. The argument now breaks

up into three cases. Much of the reasoning is similar to that in the
proof of Lemma 21 of [4], so that we refer there for details from time
to time.

Case 1. We suppose that k -- 3. Since

we conclude easily from (10) that

We now write 4i(bc) =,E(bc)bc, where b is the generator of b in B
and E(bc) is a root of unity in K, and argue in exactly the same way
as in Case 1 of the proof of Lemma 21 in [4]. In this way, it follows
that

where N denotes the norm from K to Q. Let W denote the group of

roots of unity of K. Since the GrÕssencharacter «/1 is defined modulo
g, the natural map of W into (O/g)X is plainly injective. Now, as H is
the ray class field modulo g by Lemma 2, we can identify the Galois
group of H over K with (Clg)xl W via the Artin map. Since the Artin
symbol of c = ( c ) for F/K is equal to u, it is therefore clear that

li£bc: li E W, b E g}J} is a complete set of representatives of those
elements in (O/g)X, whose Artin symbol has restriction to F equal to u.
In other words,

is the set of all algebraic integers in K, prime to g, such that the Artin
symbol for F/K of the associated principal ideal is equal to a. Since
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we can plainly rewrite the above expression for dk(L) as

where wk denotes the number of roots of unity in K, it follows that

Now consider dk(a-1L). Recalling that a = (y), it follows from (10)
that

Substitute y = r(a)E-1(y) for the first occurrence of y on the right
hand side of this equation. Again arguing in the same way as in Case 1
of the proof of Lemma 21 in [4], we obtain

Now

is the set of all algebraic integers in K, prime to g, such that the Artin
symbol for FIK of the associated principal ideal is equal to UU4. Thus

We have theref ore proven (11) in this case.

Case 2. We assume that k = 2. Now, for any lattice If,

where S2(y) is as defined at the beginning of §4 of [4]. Taking If = L,
we deduce from (9) that
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Arguing as in the previous case, we obtain d2(L) _ lk2CF(o,, 2).
Similarly, d2(a-1L) = À2.p2(a)(F(uUtt, 2), and so we obtain (11) in this
case.

Case 3. We assume that k = 1. If 5£ is any lattice, let H(s, z, Y)
denote the analytic continuation in s of the series

(this series converges for R(s) &#x3E; 3/2). Then, as is shown in case 3 of
the proof of Lemma 21 of [4], we have

where g(Y) is defined in the same proof. First take Y = L. It follows
from (8) that

where r = ybeb (03C8r(bc)p) (here, by the limit as s - 1, we mean the value of
the analytic continuation at s = 1). As before, we deduce easily that

Next take 0 = y-’ L. Then

Taking the factor y-’ out of each a, and recalling that g( y-’ L) _
Nag(L), we conclude that

We now argue in the same way as in case 1 to deduce that

Combining these two expressions for d1(L) and d1(a-1L), we see that
(11) is true for k = 1. This completes the proof of Lemma 8.
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COROLLARY 9: For each integer k &#x26; 1, and each U E CO, a-kCp(u, k)
belongs to F. Moreover, if T E CO, then (a-kCF(U, k»’ =f2 -kCF (,ro-, k).

PROOF: The first assertion is plain from Lemmas 7 and 8, on taking
a 76 1 to be an integral ideal of K, prime to S and p, such that Uo. = 1.
The second assertion follows similarly, on noting that ck(a, U)T =

Ck(a, TU) for all k ? 1 because A,(z, A.)T = ATu(z, a). Here Au(z, a)T
denotes the rational function of p(z) and p’(z), with coefficients in F,
which is obtained by letting Tact on the coefficients of A,(z, a).
Let .pF denote the Grôssencharacter of F, which is obtained by

composing ol with the norm map from F to K. Plainly .pF is un-

ramified outside g. Thus, for each integer k - 1, we can define

the product being taken over all primes 13 of F which do not divide g.
Of course, LF(O-’F, s) will not, in general, be a primitive Hecke
L-function, but this will not be important in the proof of Theorem 1.

Let Î denote the group of all homomorphisms from W into the group
of non-zero complex numbers. If 8 e ’à, we associate with it the

complex L-function

One verifies immediately that we have the product decomposition

The next lemma gives the basic rationality properties of the value of
LF(03C8}, s) at s = k.

LEMMA 10: For each integer k ? 1, n-kdLF(03C8}, k) belongs to F, and
the ideal that it generates is fixed by the action of Cfi.

PROOF: By (12) and the first assertion of Corollary 9, we see that

vk - n-kdLF(03C8, k) belongs to M, where M is the field obtained by
adjoining to F the values of all (J E W. But, again by (12), it is clear

that Vk is fixed by the Galois group of M over F, and so belongs to F.
Now take T to be any element of Cfi, and let Tl be an element of

G(M/K) whose restriction to F is T. The second assertion of Corol-
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lary 9 implies that

whence it is plain from (12) that the ideal in F generated by vk is fixed
by W.

REMARK: If W has no quadratic characters, (12) and (13) show that
LF(41F, k) is actually fixed by %, and so belongs to K.
We now investigate the integrality properties of the numbers in

Corollary 9 and Lemma 10. Let 13 be any prime of F lying above p,
Fqg the completion of F at B, and Ce the ring of integers of Fe. We
can view A,(z, a) as being a rational function of p(z) and p’(z) with
coefficients in Fqg, via the canonical inclusion of F in Fe. Hence we
can expand A,(z, a) in terms of the parameter t = 20132p(z)/p’(z) of the
formai group Ê.

LEMMA 11: Let q3 be any prime of F above p. In terms of the
parameter t = -2p(z)lp’(z), Au(z, a) has an expansion

whose coefficients all belong to Ùga, and where h o,u«(1, 13) is a unit in

.

PROOF: This is the same as the proof of Lemma 23 of [4] (on

recalling that (g, p) = 1 by hypothesis), and so we omit the details.

LEMMA 12: Let k be an integer with 1 _ k S p - 1. Then (i) for
u E , f2 -kCF (u, k) is integral at each prime of F above p, and (ii)
f2 -kd LF(IPF, -k k) is integral at each prime of F above p.

PROOF: In view of (12), it is plain that (ii) is a consequence of (i).
We now proceed to deduce (i) from the previous lemma. Let w be the
parameter of the Lubin-Tate formal group W such that [ir](w) =
7rw + wP (cf. §3 of [4]). Fix a prime 13 of F above p. For the moment,
take a to be an arbitrary integral ideal of K, prime to S and p. Since t
can be written as a power series in w with coefficients in (j J" it follows
from Lemma 11 that A,(z, a) can be expanded as a power series in w,
say f ( w), with coefficients in Ce, and whose constant term f (0) is a

unit in ûq3. Moreover, since Z = W + Y" 2 aiw’, where a; = 0 unless
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i --- 1 mod(p - 1) (cf. Lemma 7 of [4]), the coefficients of z’ and wk
(05 k:5 p - 1) in the z-expansion of A,(z, a) and in f (w) are plainly
equal. It follows that the coefficients of z’ and w’ (1 :!5 k :5 p - 1) in
the z-expansion of z(d/dz) log Au(z, a) and in w(d/dw) log f (w) are
also equal. But the coefficients of this latter series lie in Oh because
the constant term f (0) of f ( w) is a unit in Ce. We conclude from
Lemma 8 that

is integral at 13 for 1 S k S p - 1. We now make a special choice of the
ideal a. Let e denote a generator of the ideal (12g)nZ. Choose n to
be a rational integer, prime to p, such that 1 + new is not divisible by
p, and take a = (1 + ne ir). Then Na --- 1 modp. Also Ua = 1 because
the conductor of F/K divides e, and qi’(a) = (1 + en71’)k = 1 mod p,
because the conductor of 03C8 divides e. Thus Na _ ek(a) is a unit at p,
and so assertion (i) follows from (14). This completes the proof of
Lemma 12.

We now prove a technical lemma, which establishes the existence
of d pairs (A, N) in 9, with properties which will be needed later in
this section. To simplify the statement of the lemma, we choose a
fixed numbering of the elements of W, say UJ, ..., ad, with ai = 1.

LEMMA 13: Let k be an integer with 1  k  p - 2. Then there exist
d pairs (A (h)@ V(h» E 9, where

with the following properties. Firstly, .pk(al);i1é 1 mod p. Secondly, for
1 :5 h :5 d, we have (i) .pk(a Bh» == 1 mod p, (ii) aag&#x3E; = 1, (iii) aaj&#x3E; = (J’hl,
and (iv) n 2 is prime to p.

PROOF: Let e denote a generator of the ideal (12g) n Z, and let

13 mod p be a generator of «(JI p)X. First consider the case h = 1. Let n
be a rational integer, prime to p, such that 1 + ne7T is prime to p, and
take a B1) = (1 + en 17" ). Choose a 2’ _ (a 2’), where a 1) is an algebraic
integer in K satisfying a 2’ --- 1 mod eù, and a 21 --- B mod 17". Let n B1) =
N a 21 -1 and n 21 _ -(N a i’ - 1 ), so that n 2’ is prime to p because
(p, ne) = 1. Moreover, as the conductor of .p divides e, we have
.pk(a B1) = 1 mod p, and .pk(a31) == j8 1 mod p. Finally, both ideals are
prime to S and p by construction, and (J’ ,,(1) = aaj&#x3E; = 1 because the
conductor of F over K also divides e. This completes the case h = 1.
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For h &#x3E; 1, again choose alhl = (1 + neir) and n(h) = _(Na(h) _ 1). Take
a 2 (h) to be an integral ideal of K, prime to S and p, such that

0, 2 0,h and let n (h) = Na (h) 2 _1. The proof of the lemma is now
complete.
So far in this section, we have made no hypothesis on the decom-

position of p in the extension FIK, other than requiring that p does
not ramify in FIK. We now suppose, until further notice, that p splits
completely in F. We use the notation of the last part of §13. Thus 91
will denote the set of prime of Fo = F(E,) above p, and 6/1, will again
be given by (4). Let

be the canonical embedding of Fo in the product of its completions at
the primes q in 91. Recall that C denotes the group of elliptic units of
Fo, as defined at the beginning of this section. We write OE for the
subgroup of C consisting of all elements which are - 1 mod q for
each q E f:f. Let i(OE) be the closure of 1,(OE) in the p-adic topology.
Our aim is to compute, for 1:5 k  p - 2, the image of i(OE) under the
homomorphism ’PF,k given by (6).

Recall that 0 is the field Kp(E1T)’ which lies inside our fixed

algebraic closure of K,,. Since p splits completely in F by hypothesis,
the completion of Fo at each q in Y is plainly topologically isomor-
phic to 0. To simplify notation, we adopt the following convention.
We fix one embedding of Fo in 0, and view this embedding as simply
being an inclusion. This amounts to choosing one fixed prime in Y,
which we denote by q. Let f2 denote the Galois group of Fo over

K(E,). Since p is totally ramified in K(E,), and splits completely in
FolK (E’Ir)’ the other primes in Y are given precisely by the q« for
a E il, and the embedding of Fo in 0 corresponding to q’ is given by
r itself. With this convention, the map (15) is simply given by

Now take x to be any elliptic unit in OE. More explicitly, let 1(T) be
the point of E, corresponding to our chosen generator u of Z, under
our fixed isomorphism from Ê to 6. Then, by definition, x will be of
the form
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for some pair (A, S) belonging to 9. Now f2 = G(FoIK(E,» is

canonically isomorphic to W = G(FI K) under the restriction map, and
we shall identify these two Galois groups in this way when there is no
danger of confusion. Since f2 fixes E7T’ it is then plain that

where Au(z, aj) is as defined just after Lemma 7

LEMMA 14: Let x be the elliptic unit in 0152 given by (17). Then, for
each integer k with 1 --5 k:5 p - 2, we have

where

PROOF: We can obtain a power series f,(w), with coefficients in (J fH
such that f,(u) = x’ in the following manner. Let w be the parameter
of the Lubin-Tate f ormal group 6, and expand the rational function of
p(z) and p’(z), with coefficients in F, given by

as a formal power series in w. Denote the power series obtained in
this way by f,(w). By lemma 11 and the fact that t can be written as
a power series in w with coefficients in C., we conclude that f,(w)
does indeed have coefficients in C.. It is then plain that XU = f,(u).
Moreover, as z = w + l’ 2 aiw’, where ai = 0 unless i = 1 mod(p - 1)
(cf. Lemma 7 of [4]), we see that the coefficients of z’ and wk
(0 S k S p - 1) in the series expansions of (18) in terms of z and w
must be equal. Thus the conclusion of the lemma is now clear from
Lemma 8 and the definition of lp p,k·
We now come to the first main result of this section. Since the

elliptic units of Fo are stable under the action of the Galois group of Fo
over K (cf. Lemma 20 of [4]), it follows, in particular, that (S) is a
Zp[G]-submodule of ô/1, where G = G’(Fp/F). We can therefore take
the canonical decomposition (2) of Okli(OE). We follow the terminology
of [4] and say that p is anomalous for E if ir + 1-T = 1.
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THEOREM 14: Assume that p is a prime number &#x3E;5 satisfying (i) p
does not belong to the finite exceptional set S, (ii) p splits in K, say
(p) = pp, (iii) p splits completely in FI K, and (iv) p is not anomalous
for E. Let OE be the group of elliptic units of Fo = F(E7T)’ which are
m 1 mod q for each q E Y. Then, for each integer k with 1 --5 k S p - 2,
the eigenspace (ûllli(0152)ik) is non-trivial if and only if 12-kdLF(k , k) 1
0 mod q for each q E Y.

REMARK: By Lemma 10, f2-k DLF«PF, -k k) n 0 mod q for one prime q
in Y if and only if the same congruence is valid for all q in Y.

PROOF: We adopt the same convention as before, in which we

have fixed one prime q in Y, and view Fo as being contained in 4J. We
make use of the following formal identity in the group ring F[lâ],
which is very reminiscent of computations with Stickelberger ele-
ments in cyclotomic fields. For each a E W, put

By Corollary 9, £%a, k) belongs to F. Write

Then, for each integral ideal a of K which is prime to g, we plainly
have

where

By Corollary 6, the eigenspace (OU/ i (OE»(kl will be trivial if and only
if ’PF,i i (0152)) has dimension d over the finite field Fp with p elements.
This suggests that we study the image under lpF,k of any d elements of
). Suppose therefore that (A(hl, S*(hl) (1::; h s d) are any d ele-

ments of 0. Let Xh, given by (17), be the elliptic unit corresponding to
(A(h), X(h». We assume that xl, ..., xd belong to OE. Write
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and

For o- E 19 and 1  h  d, we define

where 8j( U, a h» is given by (21). It is then plain from (20) that we
have the identity

We let - denote the d x d-determinant form from the bhu (h =

i,..., d, o- c W).
By Lemma 14, the determinant of the d vectors

is equal to H mod q. We now proceed to compute S. To this end, let
14 be the group of homomorphisms from 19 to the multiplicative group
of non-zero complex numbers. Let Ut = 1, U2,..., ad denote the

distinct elements of ri, and XI = 1, X2, ..., Xd the distinct elements of
Î. Write T and 1 for the d x d-determinants formed from the X; ( yh ),
Xi(uh’) (1 -«5 i, h --5 d), respectively. Applying each of the xi to the

equation (22), we conclude that

We now make two observations. Put L1;{ffr}, k) = ADLF( -k k). Then it
is plain from (12) and (19) that

Secondly, X:e-’ 0 and rI! is an algebraic integer in K. The former

assertion is clear. To prove the latter one, we note that we can write
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where the eh, are algebraic integers in K. Applying each of the Xi to
(25), it follows that r = A1:, where A is the d x d-determinant formed
from the eh,. Since 1 is obviously an algebraic integer in K, it follows
that the same is true f or 1 = f/A.
We can now complete the proof of Theorem 14. Suppose first that

Le( -k , A:) = 0 mod q. Then we conclude from (23), (24) and the above
remarks that E == 0 mod q for all choices of the d pairs (A (h)@ X(h» in
.1. Thus çcFk(i(OE» has dimension strictly less than d over Fp, and
hence (ûllli(0152)ik) # 0. Conversely, assume that Lf(015, k) # 0 mod q.
Then it follows from (23) and (24) that 3 ;É 0 mod q only if we can

choose the d pairs (A (h) , N(h» such that the determinant A defined
above is not congruent to 0 modulo p. But this is always possible.
Indeed, make the choice of the d pairs (A(’), X(’» specified in Lemma
13. Note that, by multiplying each of the n Bh), n ih) (1 :5 h - d ) by p - 1
(which changes none of the other conditions in Lemma 13), we can

certainly assume that the corresponding elliptic units lie in OE. Using
the relation LJ=1 n}h)(N a }h) - 1) = 0 and the fact that .pk(a Bh» == 1
mod p, we conclude that

here the congruence mod p means that we have taken the coefficients

in the group ring mod p. It is now trivial to verify from the other
conditions of Lemma 13 that A # 0 mod p. This completes the proof
of Theorem 14.

LEMMA 15: There are infinitely many rational primes p satisfying
conditions (i), (ii), (iii), and (iv) of Theorem 14.

PROOF: As before, let H = K(E,). Apf.:ying Cebotarev’s density
theorem to a Galois extension of Q containing H, we conclude that
there are infinitely many rational primes p which split completely in
H. We claim that any rational prime p, not in S, which splits
completely in H, satisfies (i), (ii), (iii) and (iv). The only part which is
not obvious is that such a p satisfies (iv). Take such a p, and let

( p ) _ PP be its factorization in K. Since p splits completely in H, the
Artin symbol (p, H/K) fixes Eg. On the other hand, as ol(p) = 7r,
Shimura’s reciprocity law gives e(p)(.,HIK) = ç( 17"p) for each p E Eg.
Thus we must have ir 1 mod g. Now, if p were anomalous, it would
follow that 1Tif = (1T - 1)(7-T - 1), and this is clearly impossible because
p was prime to g by hypothesis. This completes the proof.
We now begin the proof of the second main result of this section.
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As before, let Fn = F(E7Tn+l). Since p is totally ramified in K(E7Tn+l), it
is clear that each prime of F above p is totally ramified in Fn. Write
Yn for the set of primes of Fn above p. Let Cn be the group of elliptic
units of Fn, as defined at the beginning of this section, and let En be
the subgroup of Cn consisting of all elements which are 1 mod q for
each q E [ln. If m - n, we write Nm,n for the norm map from Fm to Fn.
The next lemma, which is, in essence, one of the main results of [6], is
valid without any hypothesis on the decomposition of p in F.

LEMMA 16: For each m ? n &#x3E; 0, we have Nm,,,«Im) = 0152n.

PROOF: Recall that f n = gpn+l is the conductor of Fn over K, by
Lemma 3. Let fn denote a generator of the ideal f n nz, and let gn be
the largest divisor of f" such that the gn-th roots of unity lie in Fn. We
claim that gn = go for all n ? 0, and that go is prime to p. Indeed, Fn
can contain no non-trivial p-power roots of unity, because p does not
divide the conductor of Fn/K. Moreover, since FnIF0 is totally
ramified at the primes above p, it follows that Fn and Fo have the
same group of roots of unity for ail n 2: 0. Let D be the group of go-th
roots of unity in Fo. Robert (cf. [6], p. 43) has defined ,flFn to be the
group DCn. Moreover, since f o divides f n and f o and f n are divisible by
the same primes, it is shown in [6] (cf. Proposition 17, p. 43) that

Nm,n(nFm)D = {},F,.. Since the order of D is prime to p (and hence no
element of D is =1 mod q for q E [;ln), it follows immediately that

Nm,n(0152m) = On. This completes the proof.
For each integer n ? 0, let On = Kp(E7Tn+l), and let Pn be the

maximal ideal of 4Jn. Write Un for the units of On which are

=1 mod pn, and U n for the subgroup of Un consisting of all elements
with norm 1 to Kp. Plainly

If m &#x3E; n, we also write Nm,n for the norm map from Om to @n.

LEMMA 17: Suppose that k# 0 mod(p - 1). If m &#x26; n, then the norm

map from U) to U;,’‘ is surjective, and its kemel is equal to ( Um&#x3E;)’-T,
where T is a generator of G(4)ml4&#x3E;n).

PROOF: The norm map from U:n to U n is surjective, because U n
consists of those elements of Un which are norms from 4&#x3E;m for all

m ? n (cf. Lemma 8 of [4]). Thus the first assertion is plain from (26).
As for the second, let Vm denote the kernel of the norm map from U m
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to U". Since qJml qJn is a totally ramified cyclic extension of degree
p"’-", a standard computation (cf. [5], p. 188) shows that

Hence [V: U)(1-T)] = 1 for all k# 0 mod(p - 1), as required.
The following elementary lemma is certainly well known, but we

have been unable to find a suitable reference.

LEMMA 18: Let A be a cyclic group of prime order p # 2, operating
on a finitely generated Zp-module M. Let T be a generator of A. If
M==(r-l)M, then M=0.

PROOF: Since TP = 1 and p is odd, it is clear that

where Z [A] is the group ring of A with coefficients in Z. Let N be the
torsion submodule of M, so that MIN is a free Zp-module of finite
rank with (T - 1)(M/N) _ (MIN). But this shows that (T - I)P is sur-

jective on M/N, and this is impossible by (27) unless MIN = 0. Hence
we can suppose that M is a finite abelian p-group. But again (27)
implies that M = 0 if (T - I)M = M. This completes the proof.
For each q E Y,,, let Fn,q be the completion of Fn at q, and again let

i be the canonical inclusion of Fn in TI"E9’n Fn,q . Write Un,q f or the
units in Fn,q which are ---1 mod q, and put

Thus, in terms of our earlier notation, auo = au and OEO = OE.

THEOREM 19: Let p be a prime number satisfying (i) p does not
belong to S, (ü) p splits in K, (p) = p,p, and (iii) p splits completely
in F. Let k be an integer with 1 -«5 kp - 2. Let m, n be any two

integers 0, with m &#x3E; n. Then (Oymli(OEm»(k) 0 0 if and only if
(qinli(OEn »(k) 7é o.

PROOF: Since p splits completely in F, we can identif y Fn,q, for
each q E Yn, with the field On, and Un,q with Un. Let Nm,n:Wm --&#x3E;’Un be
the map given by the product of the local norms from Om to On at
each q E Yn. Suppose now that 1  k  p - 2. Put An = qi (nk/i(OE7f). It
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follows from the first part of Lemma 17 that the norm map from qil"
to OU"’ is surjective, whence the induced map from A"’ to Ank is also
surjective. Thus it is clear that Am = 0 implies that A (kl = 0. To prove
the converse, we note that Lemmas 16 and 17 together imply that the
kernel of the norm map from A (kl to A (kl is (A (kl)l-,@ where T is a

generator of the Galois group of Fm over Fn. Suppose now that
A (k) = 0. Since A(", is a finitely generated Zp-module, we conclude
from Lemma 18 that Ank+, = 0. Repeating the argument a finite number
of times, it follows that A (k) = 0 for all m &#x3E;_ n. This completes the
proof.

5. Proof of Theorem 1

We can now complete the proof of Theorem 1 in an entirely similar
fashion to the proof of Theorem 1 in [4]. If N is an abelian extension
of Fn, which is Galois over F, then Gn = G(Fn/F) operates on X =

G(NI Fn) via inner automorphisms in the usual way. In particular,
G = G(Fo/F) operates on X, because we can identify G with a
subgroup of Gn. Thus, if N is a p-extension of Fn, we can take the
canonical decomposition (2) of X into eigenspaces for the action of
G.

As before, let 9n be the set of primes of Fn over p. Let Mn denote
the maximal abelian p-extension of Fn, which is unramified outside

9’n, and let Ln be the p-Hilbert class field of Fn. Let ’Un be defined by
(28), that is, ’Un is the product of the local units =1 in the completions
of Fn at the primes q E 9’n. Write N FNIK: ’Wn --+ K, for the map given
by the product of the local norms at all q E 9’n. We denote the kernel
of N F,,IK by OU’. Plainly

As is explained in detail in [3], global class field theory gives the
following explicit description of G(Mnl LnFoo) as a Gn-module, where
Foo = U,,,o Fn. Let En be the group of all global units of Fn which are
= 1 mod q for each q E 91,,. Let i(E") be the closure of i(En) in °h" in
the p-adic topology.

THEOREM 20: For each is isomorphic as a Gn-
module, via the Artin map, to G(M,,IL,,F.).

Suppose now that there does exist a point P in E(F) of infinite
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order. Take p to be a rational prime satisfying (i) p does not belong to
S, (ii) p splits in K, (p)= pp, and (iii) p splits completely in F. As
before, let ir = .p(p). For each n z:-- 0, choose Qn in E(F) such that
, ff n+ ’Q, = P, and form the extension Hn = Fn(Qn). Thus HnlFn is a

cyclic extension of degree dividing p "+’, and as P lies in E(F), one
verifies easily that

An entirely similar argument to that given in Lemma 33 of [4] shows
that Hnl Fn is unramified outside Yn. Finally, as p splits completely in
F, the local arguments in Theorem 11 and Lemma 35 of [4] again
show that the extension HnFool Foo is non-trivial and ramified for all

sufficiently large n.
Assume now that n is so large that HnFool Foo is non-trivial and

ramified. Hence the extension HnLnFool LnFoo is non-trivial. As this

extension lies inside Mn, we conclude from (29), (30) and Theorem 20
that

As before, let (E. be the group of elliptic units of Fn, which are
== 1 mod q for each q e Yn. As OEn C En, it follows that (CUnli(0152n»(l) # 0.
Therefore, by Theorem 19, (IUO/i(OEo»(’) ,-’ 0. Assume, in addition, that
p &#x3E; 5 and is not anomalous for E. Theorem 14 then implies that

But, by Lemma 15, there certainly are infinitely many rational primes
p satisfying the conditions we have imposed on p. Thus f2-dLF(VIF, 1)
is divisible by infinitely many distinct prime ideals of F, and so must
be equal to 0. Since the Hasse-Weil zeta function of E over F is

equal to Lp( .pp, s)LF(ipF, s), up to finitely many Euler factors which do
not vanish at s = 1 (cf. Theorem 7.42 of [7]), this completes the proof
of Theorem 1.
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