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1. Introduction

The topic of this paper is very classical, and there will be little that
is original, other than the point of view. The first analytic solution of
the fifth degree equation was by Hermite in 1858 using the modular
equation, and there have been several others, beginning with one by
Kronecker in the same year. The analytic solution presented here will
be less explicit than these, the intention being to highlight the

theoretical reasons why an analytic solution must exist.
To explain what is meant by an analytic solution, consider the

one-parameter family of cubics 4x3 - 3x + a = 0 (any non-trivial cubic
reduces to one of these by x --&#x3E; cx + d) with which Hermite begins his
paper. From the trigonometric identity

it follows that if we choose an a so sin a = a, the three solutions of

the cubic are sin a/3, sin(a + 21r)/3, sin(a + 4r)/3. Thus, giving an
analytic solution consists of reducing the problem of solving a family
of polynomial equations to that of inverting and evaluating certain
analytic functions. In Hermite’s solution, the modular equation plays
the role of the trigonometric identity above.

In the next section, the classical proof that any fifth degree equa-
tion can be transformed to one of the form x5 + ax + b by a substitu-
tion of the form x --&#x3E; E4i=0 a;x; will be given, but recast in algebro-
geometric language. In section 3, a very beautiful Riemann surface of
genus 4 mentioned in Klein’s book on the icosahedron will be discussed

* The author gratefully acknowledges the support of the N.S.F.
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whose uniformization will be shown to be equivalent to finding an
analytic solution of equations having form X5 + ax + b. In section 4,
this curve of solutions will be shown to be identical with the stellated

dodecahedron. In section 5, the uniformization of the curve of solu-
tions by automorphic forms will be discussed. Section 6, which is

based on Klein’s book, discusses uniformization by Schwarzian

differential equations.

2. The Jerrard-Bring reduction

The problem of solving the general equation of the fifth degree can
be reduced to that of solving an equation of the form x5 + ax + b = 0.
More generally, the equation Enr=0 Crxr = 0, CN = 1, can be trans-

formed, after solving certain auxiliary equations of degree at most
four, to one with CN-1 = CN-2 = CV-3 = 0.

Consider the transformation y = £1=o anx", with the an as yet to be
determined. If x,, ..., xN are the roots of the equation we wish to
transform, it will suffice to solve the equation with roots yi,..., yN
where Yk = I:=o anxk, as the xk may then be obtained by solving a
quartic.
The conditions we wish to impose on the new equation are that the

first three elementary symmetric functions in y,, ..., yN vanish. By
equalities of Newton, an equivalent system of equations is

Letting Sn = I jcï, substituting yk = £1=o anx? yields three equations H,
Q, C homogeneous in ao,..., a4 of degrees 1, 2, 3 respectively, with
coefficients polynomials in the sn, hence expressible as polynomials in
the coeflicients cn of the original equation.
The problem is to find the coordinates of a point on the curve

H fl Q f1 C in P 4 by solving equations of degree at most four. Un-
fortunately, the curve has degree 6. This is gotten around by imposing
an auxiliary equation. For simplicity, we work in the P3 determined by
H, so Q’ = Q n H and C’ = C n H are a quadric and a cubic surface
respectively. By solving a quadratic equation, we can find a hyper-
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plane H’ tangent to Q’ and not containing the point (1, 0, 0, 0, 0). Then
H’ nQ’ is a conic with a double point, hence a union of two lines, L,
and L2. The equations of these lines may be f ound by solving a
quadratic équation. Now H’ fl Q’ fl c’ = (L1 fl C’) U (L2 f1 C’). We can
find a point on Li n C’ by solving a cubic equation, and this gives a
point (ao,..., a4) on H’ f1 H f1 Q fl C other than the trivial solution

(1, 0, 0, 0, 0). This transformation reduces the equation to the desired
form.

REMARK: This method does not show that an equation of degree N
can be transf ormed to one of the f orm XN + ax + b = 0 by solving
equations of degree at most N - 1.

3. The curve of solutions of the family of equations x5 + ax + b = 0

We will identify the equation x5 + ax + b with the equation (AX)5 +
a(Ax)+b=0, AEC*. This replaces a by alA4 and b by b1A5. Thus,
taking (a, b) ~ (0, 0), such a class of equations is represented by the

point asl b4 in Pi.
If x1, ..., x5 are the roots of such an equation, our identification

allows us to regard xi,..., x5 as homogeneous coordinates of a point
in P4r Let V be the curve of solutions of equations of this form. Thus,
V is given by the equations E5k=1 xk = 0, £[=1 x2k = 0, y5= xi = 0. The
natural branched covering V --&#x3E; Pl is given by 4(x1, ..., X5) =
a4(x1 , ... , X5)5/a5(X1, ..., X5)4 where a4, u5 are the elementar y symmetric
functions of degrees 4 and 5.

If one does the analogous thing for equations of degrees 2, 3, 4, the
curve V is rational. The non-solvability by radicals of the equation of
degree 5 seems to be intimately related to the fact V is non-rational.

In fact, V has genus 4. If we view V as sitting in the P3 determined by
the linear equation 1 x; = 0, it is the intersection of a quadric with a
cubic. These meet transversally, for we observe the matrix of normal
vectors

always has rank 3 along V, since none of our family of fifth degree
equations has worse than a double root. It is now standard that V is
of genus 4 and furthermore its embedding in the P3 above is the

canonical embedding by abelian differentials.
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The genus of V can also be calculated by applying the Riemann-
Hurwitz formula if we determine the branch points of the covering
V Pl. We will need this later. There is a natural S5 action on V
which permutes the roots, and 77- is just V --&#x3E; V/S5, a 120-sheeted

covering. The branch points are points (x1, ..., xs) so that there exists
a permutation a ES5 - {e} and A E C* so (x a(1), X.,(5»
A(x1, ..., xs). They may be enumerated as follows:
above (0, 1), 24 branch points of order 5 (e.g. (1, 03B6, 03B62, (3, C4)

where C5 = 1).
above ( 1,0), 30 branch points of order 4 (e.g. ( 1, i, -1, - i, 0))
above (1, -44/SS), 60 double points (e.g. double roots).

Thus, By Riemann-Hurwitz, 2(120 + g - 1) = 24 · 4 + 30 · 3 + 60 = 246;
hence g = 4.

4. The stellated dodecahedron

1 am grateful to Bruce Renshaw for suggesting the following
relationship, which we worked out together.
Johannes Kepler constructed a number of generalizations of the

five Platonic solids, presumably as a hedge lest more planets be
discovered than the five known in his time. One of these, the stellated

dodecahedron, is constructed as follows: Begin with a regular icosa-
hedron. For each vertex, span the pentagon of five adjacent vertices
by a new face. This done, throw away the original icosahedron. What
is left is a self-intersecting regular polyhedron. This may be given the
structure of a Riemann surface in a natural way (though Kepler
omitted to do so) by passing a sphere through the vertices of the
original icosahedron and projecting our new polyhedron onto this

sphere from its center, which produces a 3-sheeted branched cover
with one double point at each of the 12 vertices of the icosahedron.
The resulting Riemann surface V# is thus of genus 4.

It is a pretty fact that V# and the surface V of the preceding
section not only have the same genus, but are identical as Riemann
surfaces. To see this, consider the branched covering gotten by taking
the quotient of the action of the group of symmetries of the icosa-
hedron (A5) on V#. This is a 60-sheeted covering. The symmetries of
the icosahedron are of three types (aside from the identity):

(I) Rotation by 21r/5 about an axis of the sphere through 2

vertices.

(II) Rotation by 27r/3 about an axis of the sphere joining the
centers of two faces.
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(III) Rotation by 7r about an axis of the sphere through the mid-

points of two edges.
The branch points of our covering are 24 branch points of order 5
coming from fixed points of type 1 symmetries, all lying over two
critical values in the quotient, and 30 double points coming from fixed
points of type III symmetries and lying over a single point of the
quotient. Thus V#/A5 = Pl by Riemann-Hurwitz, and there are three
critical values, two having every preimage a quintuple point and one
having every preimage a double point.
We note that for our other curve of genus 4, we can consider

V --&#x3E; V/A5 = P1, which also has three critical values exactly like those

of V#--&#x3E; V#/A5. We can make a projective change of coordinates on

Pl so these critical values a1, a2, a3 are the same in both cases. We will

know V = V# if the representations pi, P2: r1(P1 - la,, a2, a3}) --&#x3E; S60 are

equivalent. Since by construction both representations factor through

the (left) regular representation A5 --&#x3E; Y 60, it suffices to show we

have equivalent representations 0’l, a2 : r1(P1 - {a1, a2, a3}) --&#x3E; A5. If we

take a,, a2, a3 generators for r1(P1 - la,, a2, a3l) as pictured

with the relation a,a2a3 = Id, we must have ai and a2 of order 5 and

a3 of order 2 if we are to get branch points of the prescribed orders.

Up to equivalence of representations, there is only one way to do

this. For label elements so that our even permutation of order 2 is

a3 = (23)(45). Now a2 and a2a3 are both 5-cycles. Relabeling so

a2(1) = 2 we see a2(2) # 3, hence relabeling a2(2) 
= 4. Now a2(4) # 5,

so a2(4) = 3 and a2(3) = 5. Thus ai and a2 are equivalent, and the same

is true of pi and p2. So V# = V.

5. Unif ormization of the curve of solutions by automorphic forms

The general uniformization theorem guarantees that the upper

half-plane is the universal cover of the curve of solutions V. We thus
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have

This shows in principle the existence of analytic solution in the sense
discussed in the introduction. Unfortunately, the uniformization

theorem is notoriously non-constructive. In this section, the functions
O and 03C81,...,03C85 will be identified as particular automorphic forms.

In H, construct a non-euclidean triangle with interior angles r/2,
r/4, irl5. Let F be the subgroup of the conformal automorphisms of H 
consisting of products of an even number of inversions in the sides of
this triangle. If ri, r2, r3 are inversions in the three sides respectively,
generators for f are R = r2r,, S = rI r3, T = r2r3 with the relations
R2 = S5 = T4 = I, RS = T.
We consider r C F the normal subgroup of relations with generator

(RS-2RS2)2. Then T/T = S5 under the map R --&#x3E; (12), S ---&#x3E; (12345), see
Coxeter and Moser, Generators and Relations for Discrete Groups, p.
137.

We first note that H --&#x3E; H/T is a covering, i.e. that no element of r
has a fixed point, If y E r did, let a E T take it to our base triangle.
Then uyu-l E r as T is a normal subgroup of T and has a fixed point
in our base triangle which must be a vertex. Thus either R, S, or T is
in F, which does not happen.
Now WIF - WIÎ comes from dividing out by the action of fI r = S5.

It has three critical values ai, a2, a3 and the representation r1(P1 -
(a1, a2, a3}) --&#x3E; Y5 sends a1, a2, a3 to RT, SF, T-’F, elements of order
2, 4, 5 respectively whose product is the identity. Up to equivalence,
we have already seen there is only one such representation, precisely
the one associated to the branched covering ir of the curve of

solutions V over the Pi parametrizing our family of fifth degree
equations. Thus V = WIF as a Riemann surface, and the map WIF-
H/T is just r. We can summarize matters by the diagram
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We should now be able to represent .pl’...’.ps as automorphic
forms. As V is canonically embedded in a hyperplane of P 4 by
holomorphic 1-forms, we know we can take 03C81, ..., 03C85 to be

automorphic forms with respect to r of weight -2.
If w1,..., WS are the holomorphic 1-forms on V corresponding to

03C81, ..., 115, and if u E Y5, a : V --&#x3E; V, then because V is canonically
embedded we see u*wi = sgn(o,)wa-1(i). Thus, w1 is the unique (up to a
constant) holomorphic 1-form on V left invariant under the H4 of
even permutations leaving the first element fixed. Put another way,
V --&#x3E; V/A4 has 12 sheets and 6 double points of the form

(0, 1, i, -1, -i), hence Vid4 has genus 1 and w5 is the pullback of its
unique homorphic 1-form. Let rr be the pre-image of the A4 having
the ith element fixed under the map F --&#x3E; F/F = fis. Then 03C81 may be
taken to be any rf -automorphic form of weight -2.
We then have

and these automorphic forms and functions give the analytic solution
we seek.

6. Schwarzian differential equations

It is possible to directly uniformize a certain class of branched
covers of Pi by a classical procedure of Schwarz, which was an
antecedent of Poincaré’s general program of doing uniformization via
second order differential equations. This gives another way of obtain-

ing the map Y e Pl of section 5 - in fact better yet, one explicitly
obtains O -1.

If we have integers Pl, v2, V3, all &#x3E; 1, with (1/v1) + (1/v2) + (1/v3)  1,
there exists a non-euclidean triangle in H with angles r/vi, r/v2, r/ v3,
unique up to the action of SL(2, R) once we label the vertices. Let r
be the subgroup of the conformal automorphisms of Ye consisting of
products of an even number of inversions in the sides of the triangle.

The map H --&#x3E; H/T = Pi has three critical values, which we take to
be 1, 0, 00 so the preimages are all branched of orders Pl, V2, V3 respec-
tively.
The inverse function q to 0 is multiple-valued, the ambiguity

coming from the representation 7Ti(Pi - {O, 1,00}) --&#x3E; SL(2, R )/{±- I}.
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Schwarz discovered the derivative operator bearing his name

The Schwarzian derivative has the properties
(I) [O]w = [O]z(dz/dw)2 + [z]w any holomorphic w(z).

By (III), the function [11]z is well-defined globally on P1. The singu-
larities of [11]z determine it, and these occur only at 10, 1, oo}. Follow-
ing Klein, a local calculation at 0 and 1 shows

and [n]z must have singularity at 00 with leading term (vi - 1)1
2 v23(1/z)2. This détermines A, B, C and we get

If we write q = yl/y2, where y,, y2 are a basis of solutions of the
second order equation

we get

and conversely if this equation holds, q is a ratio of solutions of
y" + py’ + qy = 0.
The reason for reducing to these second order differential equations

with regular singular points is that they turn out to be recognizable
O.D.E.’s. For any equation of the form
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where a,..., y’ E C and a + a’ + ... + y’ = 1 is a hypergeometric
equation. These were considered by Gauss and Riemann, and have as
solution the function P(a,a b,b y,Y, z) defined by Riemann, Math. Werke, pp.
62-82. Taking VI = 2, P2 = 4, v3 = 5 we have

by equating coefficients.
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