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Sijthoff &#x26; Noordhoff International Publishers - Alphen aan den Rijn
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1. Introduction

Let a = (ah a2) E Q2 - Z2. We may define the Siegel function ga (r)
as follows. We define the Klein form ka (r), Im r &#x3E; 0 by ka (r) =
e -n (z,r)z/2 a, (z, T) where z = a 1r + a 2, n (z, T), u (z, T) are respectively the
Weierstrass eta-function and the Weierstrass sigma-function for the
lattice [T, 1]. We define ga (T) by

where q is the Dedekind eta-function. ga(T) has the q-expansion

where qT = e2rir and qz = e 2rir, B2(x) = x 2 - x + 6 (see 10).
One may easily see from the q-expansion that if a - a’ E Z2,

ga (T ) = cga (r) where E is a constant depending on a and a’. So up to a
constant the function ga(r) depends on the coset of a in Q2/Z2.
Moreover g-a(r) = -ga (T ). So up to a constant ga depends on the orbit
of a in Q2/Z2/-z.1. Let E (n ) denote the congruence subgroup of level n
of T = SL(2, Z)/± 1. From (1. 1) or (1.2) it is easy to show that if

a E T (n ) and na E Z2 then ga (at) = Ea (a )ga (T ) where Ea(a)12n = 1. In
fact, it is easy to explicitly calculate Ea (a ) (see 3, 1-4). Ea will be a
character of F(n).
The functions ga satisfy the important "distribution relations".

These are described as follows: Let a E Q2. Let NE Z+.
Let {b,}, be the inverse image of a mod Z2 under multiplication by

N. Let bi E Q2 be a representative for bi. Then
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where C is a constant. This is proved by showing that the left side
and right side have the same divisors on the relevant modular curve
which amounts to the fact that the Bernoulli polynomial, B2(x),
satisfies a distribution relation.

We note from (2) that ga is holomorphic and never 0 on h, the

upper-half plane. Thus we may define a logarithm of ga (T) on h which
we will denote by lga (r). Since f or a E T(n), if na E Z2, ga (ar) =
Ea (a )ga (r), we have

where Xa (a) is a homomorphism from T(n ) to Q and since Q is
abelian, Xa factors through the commutator T’(n ) of F(n) and we may
consider Xa as a homomorphism from T (n )/T’(n) to Q. It is clear,
moreover, that X. only depends on the orbit of a in Q2/Z2/± 1. From
the explicit calculation of ~a(a), we find if a E T ( 12n 2) that Ea ( x ) = 1.

So if a E F(12n’), Xa(x) E Z. (See 3, 1-4).
In this paper we wish to develop some properties of Xa and to

explicitly calculate it. Using representation (1.1), we shall see that

Xa (x) measures the difference between the arça of certain paral-
lelograms and the number of lattice points therein. Given this explicit
description, we can then fairly easily prove some of the properties of
Xa geometrically. Others, like the distribution property, do not have
an obvious geometric proof. This seems due to the fact that the

Dedekind eta-function does not have a canonical homogeneous
product representation.
We note that representation (1.2) may also be used to calculate Xa.

This has been done by B. Schoeneberg using techniques of Dedekind
and Siegel. The expression he obtains has the form of a generalized
Dedekind sum ([9], Chapter VIII). Previous to Schoeneberg’s work
Dieter had calculated the transformation formula for the Klein

functions [1].
We note that for the ordinary Dedekind sum, Rademacher has

already given an interpretation of it as the number of lattice points in
a certain 3-dimensional region [7] (1, p. 318-321). It is therefore not

surprising that the generalized Dedekind sums Xa should have a lattice
point interpretation. The techniques used below, in fact, will also

yield an expression for the standard Dedekind sum as essentially the
number of lattice points in a certain parallelogram minus the area.

Mordell also studied functions of lattice points in certain triangles
and proved reciprocity laws for these functions (See 6).
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§2. Properties of Xa

Let na E Z’. Then for a, (3 E T(n).

This is just the homomorphism property. One can see from (1.1)
that if y E T, ga (yr) = C1gay (r) where we think of y as a matrix

operating on the row vector a = (ai, a2). Thus for some constant C

Suppose a E T (n ). Then yay-’ E T (n ) and

So we have

PROPOSITION 2.2: If a E T (n ), y E F.

Since ga satisfies a multiplicative distribution relation mod

constants, lga satisfies an additive distribution relation mod constants.
Thus if a and {b,}, are as in (1.3) we have

PROPOSITION 2.3:

Moreover if we take the logarithmic differential of the quantities in

Proposition 2.3 we find

PROPOSITION 2.4:

In particular the coefficients of the power series in q of agb/gb¡ form
additive distributions.
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We may form another distribution from (2.3) via integrating (2.4).
Let y Ejr. For each a E Q2 - Z2 we define Xa (y) as follows. Choose
r E Z+ such that yr E T(n) where na E Z2. Define Xa (y) as 1/rXa(yr).
Then Xa (y) is independent of r and, for fixed y.

PROPOSITION 2.5: Xa(y) forms an additive distribution. If y = [10 11]
Xa(y) is just the distribution B2(a1)/2.

§3. Calculations

To calculate Xa we use formula (1.1). We also will use the dis-
tribution identity

Given a, b E Q2 - Z2 we may form the function

From (1.1) we immediately get

To begin we must define lg(a, b), the logarithm of g(a, b). Given
r = (r1, r2) and S = (s1, s2) E Q2 - Z2, we define

where here, by abuse of notation, r means r1r + r2; S, S1r + S2, and

L = [T, 1] where log is the principal branch on C - R- and is given
imaginary part iri on the negative real axis.
Then

We define lg(a, b ) by
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Define [a, h, b, k] by 1/(2ri) (lg(a + h, b + k) - lg(a, b)) for a, b E
Q2 - Z2 ; h, k E Z2 Then [a, h, b, k] E Q since ga diff ers from ga+h by a
root of unity etc. From the définition we have the cocycle relationship.

PROPOSITION 3.8: If hl, h2, kl, k2 E Z2

[a, hl + h2, b, ki + k2l = [a + hl, h2, b + ki, k2l + [a, hl, b, kil.

One sees immediately from (3.4) that lg(a, b)(yT) = 19(ay, by)(T).
From this we see

PROPOSITION 3.9: If y E r, [ay, hy, by, k-y] = [a, h, b, k].

Suppose na, nb E Z2, Y E r(n). Then we know lg(a, b )(yr) -
lg(a, b)(r) is aconstantwhichin factis 2ri(Xa+b(Y) + Xa-b(y) - 2Xa(Y)). If
we set h = ay - a, k = by - b then since lg(a, b)(T) = lg(ay, by)(T),
lg(a, b)(yT) - lg(a, b)(T) = 21ri[a, h, b, h]. We now calculate [a, h, b, k].
Assume in the following that hé 0 ~ k, and h ~ ±k so that the elements
0, -h, -k, -h - k are distinct. In what follows set a = a + h, 03B2 =
b + k. Then

We calculate the subtraction in two parts, those involving 71 and the
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others. Using the fact that q is R-linear we find

Then

is convergent and equals



327

is convergent and equals

Now we shall see presently that except for a finite number of w,

is zero. Thus we may separate this quantity into three convergent
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We shall first analyze term (3). We recall the definition of n(z, L).
The Weierstrass zeta function is defined by

n (z, L) is then defined by

and is extended by R-linearity to or. Evaluating at x = 0 we find for
z E L, z ~0

PROPOSITION 3.13: Expression (3) equals (2b + k) n (k).
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The calculation will be left to the reader via use of (3.12) with the
hint that (2b + k),q(k) = (b + k),q(k) + bq(k). One must also ap-

propriately translate the lattice and one should be guided by the
identity that 1/2( a + h + b + k)2 + ’(a + h - b - k)2 - (a + h )2 - 1/2( a + b)2 -
2(a - b)2 + a2 = (2b + k)k. The calculation is also valid if h = 0 or

k=0.

This proposition yields the surprising conclusion that [a, h, b, k]
- lg(a + h, b + k) - lg(a, b) is actually independent of h. For the

proposition shows that expression (3) is independent of h, and it is

clear that expressions (1) and (2) are independent of h. Combining (1)
and (3) we obtain

Set (x, y) = n(X)Y -n(Y)X. By the Legendre relation if lm ylx &#x3E; 0,
(x, y) = 2wi times the area of the parallelogram generated by the
vectors (XI, X2), (YI, Y2)- If Im y/x  0, (x, y) = -2 ni times the area of
the parallelogram generated by the vectors (XI, X2), (YI, Y2)-
We now evaluate (2). Let f (z) = log zl y - log z/x where Im x/y  0.

f(z) has two values. On the shaded region f (z) has the value log xly.
On the unshaded region f(z) has the value log xly - 21ri. The ray
[0, -je] is in the unshaded region and the ray [0, -y] is in the shaded
region. One notes that the half-plane going from y to -y counter-
clockwise is always in the shaded region.

We wish to express analytically when a vector lies in the unshaded
region. Set x = x1i + x2, y = y, i + Y2, z = zl i + z2. z lies in the unshaded
region iff Im x/y &#x3E; 0, Im x/-z &#x3E; 0, Im -z/y &#x3E; 0, or x/y  0 and

Im y/z &#x3E; 0 or y/z &#x3E; 0. Now
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Then z is in the unshaded region iff

We now evaluate (2) at the point T = i. In our application if

Im(w-a)/(w+k-a) &#x3E; 0 we set y = w + k-a, x=w-a, zl=

w - (a + b), Z2 = w - (a - b - k). Then

This quantity will equal 0 unless zi or Z2 is in the unshaded region. If
we set e(z) = 0 if z is in the shaded region and e(z) = -2 ri if z is in
the unshaded region then

Let us suppose now that b and k are not colinear. Then we may via

(3.16) picture the above regions. Suppose first that Im b/k &#x3E; 0. Then
E Im(wr-a/w+k-a) &#x3E; 0 E(w - (a - b - k)) is 0 and EIm(ur-a/w+k-a) &#x3E; 0 E(W - (a + b ))
equals -2wi times the number of lattice points in the triangle with
vertices (a, a + b, a - k) with the segment [a + b, a - k] excluded.

E Im(w-a/w+k-a)0 E(W - (a + b)) is 0 and E, lm(w,-a/w+k-a) 0 E(W - (a - b - k))
equals -21ri times the number of lattice points in the triangle with
vertices (a, a - k, a - b - k) with the segments [a, a - k], [a, a - b -
k] excluded. Thus the total is -2 ri times the number of points in the
parallelogram with vertices [a, a + b, a - k, a - b - k] with the seg-

ments [a + b, a - k], [a, a - b - k] excluded.



331

Now suppose Im b/k  0. Then E Im(w-a/w+k-a)&#x3E;0 E(w - (a + b)) is 0 and
E Im(w-a/w+k-a) &#x3E; 0 -E(w - (a - b - k)) equals 2ri times the number of

lattice points in the triangle with vertices (a, a - k, a - b - k) with the
segment [a - k, a - b - k] excluded. Il.(.-al.+k-a)O IE(w - (a - b - k»
is 0 and IIm(w-alw+k-a)O -e(m - (a + b)) equals 2 ri times the number of
lattice points in the triangle with vertices (a, a + b, a - k) with the
segment [a, a + b] excluded.

(3.20) Im bl k &#x3E; 0, hen

where A is the area of (a, a + b, a - k, a - b - k) and I is the number
of integral points therein as in (3.18). If

where I is the number of integral points in (a, a + b, a - k, a - b - k)
as in (3.19).
One may also calculate the case when Im b/k = 0, i.e., the case

when b and k are colinear but this will not be needed in application.

§4. Determination of y.

We would now like to use the results of Section 3 to calculate the

homomorphism Xa. Let a, b belongs to Q2 - Z’. Suppose n is such
that na, nb E Z’. Let y E T(n ). Then we may use (3.20) to determine
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So h = ay - a, k = by - b. Let us first consider the case when k and b
are colinear. Suppose 3A E R such that by = Ab. Then À must be an
eigenvalue of y and since y E SL2(Z) and b E Q2 we must have
A E Q. One then sees quickly that A = ± 1 and Tr(y) = ± 2, i.e. y is

parabolic. By (2.2) we may assume that y = [10 mh1 ], m E Z and b =
(0, b2) nb2 E Z. We show that [a, ay - a, b, by - b] is zero. This is

obvious since by - b = 0 and we have shown that [a, h, b, k] does not
depend on h. So since [a, 0, b, 0] is clearly 0, the result follows.

Alternatively, y fixes ioo and if b = (0, b2) one checks that g(a, b) has
a zero of order 0 at foo. Thus evaluating lg(a, b)y(t) - lg(a, b)(t) as
t- im we get 0.
Hence we may suppose that b and k are not colinear. We then may

use (3.20) to evaluate Xa+b(y) + Xa-6(Y) - 2Xa( ’Y) with h = ay - a, k =

by - b. Seeing that [a, h, b, k] does not depend on h we may change
our notation and set

For y E F(12n’), from the transformation of the Klein function we
know that Xa(y) - Xb(y) must take values in 21riZ. This is not obvious
from (3.20).
Now suppose a is not a 2-point i.e. 2a ~ Z2. Let p1, p2, p3 represent

the three 2-points in Q2/Z2. The distribution relation (3.1) tells us that
gPIgP2gP3 is constant. So for each y E F(2)
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If y E r(n) and n is odd we may calculate Xa(y) by Xa(y) = 1/6Xa (y6)
and y6 E r(2n).
There is a simpler expression for Xa(y) which we may obtain as

follows which is, however, not quite as aesthetically pleasing.
Consider g(pi, a - Pi); g(p 1, a - Pl)g(P2, a - P2)g(P3, a - P3) equals

So if na

Again, if n is odd and y E T (n) one may calculate Xa ( y) as 1/6Xa (Y6) and
y6 E r(2n).

If p is a 2-point g(p, a) is peculiar in that g(p, a) = C(g2_plg2 so for
y E T(8n 2), na E Z2 [a - p, (a - p)(y - 1)]p must belong to 4 riZ.
We may see this f act geometrically. Set a’ = a - p so 2na’ E Z2. Set

k = a’(y - 1). Then k E 4nZ2. The parallelogram (p, p + a’, p - k, p -
a’, -k) has area twice an integer since a’ has denominator at most 2n
and k E 4nZ2. So we must only show that 2 divides I(p, p + a’, p -
k, p - a’ - k). We first consider the case when Im b/k &#x3E; 0. Consider
the transformation z --&#x3E; Zp - k - z which preserves lattice points since
Zp - k belongs to Z’. Then the segment [p, p - k] is taken to itself

under this transformation. The triangle [p, p - k, p + a’] is taken to the
triangle [p, p - k, p - a’ - k]. The interval [p, p - a’ - k] is taken to

[p + a’, p - k]. Moreover the fixed point of the map is z = p - k12 §É Z2
since k E 2Z2. So I (p, p + a’, p - k, p - a’ - k) equals twice the

number of points in the triangle (p, p + a’, p - k ) excluding the inter-
vals (p, p - k) and (p, p + a’) plus the points on (p, p - k) which
number is even. The arguments are similar in the case that Im blk  0,
and are left to the reader. We explore the geometric aspects, more
thoroughly in the next section.
We still must show how to calculate Xa in the case a is a 2-point.

Let’s say we wish to calculate xpl. We have

from the distribution relations. So if y E r(2)
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§5. Geometric insights

One might, a priori, define a function [a, h, b, k] as in (3.18) or (3.19)
and then try to deduce, geometrically, properties about it. We show
here how some of the major properties of [a, h, b, k] can be so
deduced without referring to the definition in terms of Siegel
functions.
The most obvious property is the independence of [a, h, b, k] on h,

since h does not appear in (3.18) or (3.19). So we defined the symbol
[b, k]a as before b, a E Q2 - Z2, k E Z2. We will slightly change the
definition in order to make things more symmetric. If Im bl k = 0 we
define [b, k]a to be zero. If Im blk &#x3E; 0 we define [b, k]a to equal the
area of the parallelogram (a, a - k, a + b, a - b - k) minus the number
of points therein, with each point on the boundary counted with
weight one-half. If Im b/k  0 we define [b, k]a to equal the number of
integral points in the parallelogram (a, a - k, a + b, a - b - k), counted
as above, minus the area of the parallelogram. In actual application,
this change is unimportant for the following reason. In application, k
will equal b(y - 1) where y E SL(2, Z) and a(y - 1) E Z2. Under the
action of y, the segment [a, a + b] goes into the segment [ay, ay + by]
which via translation by -a(y - 1) - k goes into [a - k, a + b]. In

particular, since a ( y - 1 ) E Z2 the interval [a, a + b] has the same
number of integral points as the interval [a + b, a - k]. Likewise the
interval [a, a - b - k] has the same number of integral points as the
interval [a - k, a - b - k]. Thus f or k = b(y - 1) our revised definition
of [b, k]a agrees with (3.18) and (3.19). We note from the definition
that [b, k]a only depends on the class of a mod Z2 since translation by
elements of Z2 preserves lattice points. We now prove directly
analogues of propositions (3.8) and (3.9).

PROPOSITION 5.1: 

The second statement is immédiate since y preserves orientation,
area, and lattice points. If y E T(n ) then a - ay diff ers by a lattice
point and translation gives the desired first statement.

PROPOSITION 5.2: Let k¡, k2 E Z2. Then
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The proof of this is "pictorial". We must distinguish cases cor-
responding to the relative positions of a, a + b, a - ki, a - kl - k2. One
case is when the convex hull of (a, a + b, a - ki, a - kl - k2) is not

equal to that of any triangle. We have other cases when it is equal to
that of a triangle, and finally we have degenerate cases when some of
the subtriangles collapse into lines. We will consider the first case and
leave the rest to the reader. Suppose, that the convex hull is not that
of any triangle. Let us say that Im kilb &#x3E; 0, lm(ki + k2)ib &#x3E; 0. Then

pictorially we have

The area of triangle (a, a + b, a - k, - k2) plus the area of triangle
(a - ki - k2, a + b, a - k) equals the area of triangle (a, a + b, a - kl)
plus the area of triangle (a, a - kl, a - k, - k2). We have equivalent
statements for numbers of integral points in the respective triangles
with the integral points on boundaries counted 2. Since k, E Z2, the
number of integral points in (a - k, - k2, a + b, a - kl) equals the
number in (a - k2, a + (b + ki), a).
Given a parallelogram (a, a + b, a - k, a - k - b ) we may consider it

as the sum of 2 triangles, (a, a + b, a - k), (a, a - k, a - k - b). Under
the transformation z - - k - z, the latter goes to (- a, - a - k, - a - b ).
So we may think of [b, k]a as consisting of the sum of two parts, the
a-part, being the différence between the area and number of integral
points in (a, a + b, a - k) and the -a part being the difference be-
tween the area and number of integral points in (- a, - a + b, - a - k).
If we now draw the corresponding "- a" diagram of (5.3) and draw
the corresponding conclusions we reach the statement that [b,
k, + k2]a - [b + ki, k2l. - [b, k1]a equals the area of (a, a - kl, a - k, -
k2) minus the number of integral points therein plus the area of
(- a, - a - k1 - a - k1 - k2) minus the number of points therein. But
using the transformation zt-+ - kl - z, we find this quantity equals the
area of (a, a - ki, a - k, - k2, a + k2) minus the number of integral
points therein.
Now (a, a - kl, a - k, - k2, a + k2) with the sides (a - kl, a - k2) and

(a - ki - k2, a - ki) excluded form a fundamental domain for the sub-
group of Z2 generated by (kl, k2). Thus the number of integral points
therein equals the area. Here we are giving full value to the integral
points on two adjacent sides and excluding the other two.
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In the above calculation we counted the integral points on the
boundary with value 2. But since opposite sides in this parallelogram
differ by translation by an element of Z2, the two calculations are
identical and [b, k, + k2]a - [b + kl, k2]a - [b, k1]a = 0 which proves
the proposition.
We may deduce the following general properties of symbols [b, k]a

satisfying (5.1) and (5.2).

COROLLARY 5.3: Let [b, k]a take values in an abelian group and

satisfy (5.1) and (5.2). Suppose na, nb E Z2. Then if y E F(n),
[b, b(y - 1)]a depends only on the class of b mod Z2.

We also note that [b, 0]a = 0 from (5.2).

COROLLARY 5.4: Let [b, k]a be as in Corollary 5.3. Then if na, nb E
Z2, y- [b, b (y - 1)], is a homomorphism of F(n) into the value group.

PROOF: By the above remark that [b, 0]a = O 1 --&#x3E; 0 under this map. So
we must only show given y1, Y2 E r(n), [b, b( Yl’Y2 - 1)]a = [b, b( YI -
1)la + [b, b(Y2 - 1)]a.

Using (5.1) we have
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We may also prove versions of the distribution relations. Suppose
we are given b E Q2 - Z2, c E Q2 - Z2 and a number N E Z’ such that
if d = Nb, c + d, c - d, de Z2. Then we have

by the distribution relations where C is a constant. The group-
theoretic analogue of this relation is the following. Let n be such that
na, nb E Z2. Then if y E T(n) we have

We would like to prove (5.6) geometrically. This is not hard. Given
c, d we consider the parallelogram (c, c + d, c - k, c - d - k) where
k = d(y - 1). The integral points of (c, c + d, c - k, c - d - k) may be
divided into congruence classes mod N. Let {ai} represent these
congruence classes. If we let 7(c, c + d, c - k, c - d - k) represent the
number of integral points of (c, c + d, c - k, c - d - k) we have

where I;(c, c + d, c - k, c - d - k) represent the number in congruence
class i. We let Io(c, c + d, c - k, c - d - k) designate those points
which are congruent to 0 mod N. Then Ii(c, c+ d, c - k, c - d - k) =
IO(c - ai, c + d - ai, c - k - ai, c - d - k - ai) and Io(c - ai, c + d -
ai, c - k - ai, c - d - k - ai) equals I(c - ailn, c - ai/N + dlN,
c - ailn - kiN, c - ailN - dlN - kIN) and dIN = b, klN = b(y- 1).
Combining this with (5.7) and noticing that the areas of the paral-
lelograms behave as they should we obtain (5.6): If mb E Z2 and if
y E T(m) both the left and right side of (5.6) are defined and the proof
still holds. If also mc E Z2 we may interpret the right side as

lg(c, d)y(T) - lg(c, d)(r) and thus also the left side.
We conclude with some observations about congruence properties

of integral points in parallelograms. If one tries to get an actual
formula for I(a, a + b, a - k, a - b - k ) one finds it to be rather hor-

rible, involving greatest integer functions left and right. Given

a, b, one may ask if one places a congruence condition on k will

I(a, a + b, a - k, a - b - k) satisfy a congruence condition. The

answer essentially is no. For if it did, say modulo some number M
then ga+b, ga-bl g2a would have an Mth-root which was fixed by a
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congruence subgroup of F. But (4, IV) via Shimura’s Theorem on the

integrality of q-expansion of modular forms says this is impossible
except in the obvious cases e.g. a or b is a 2-point, M = 2 or a and b
are 2-points, M = 4. Since Leutbecher and Wohlf ahrt obtain similar
statements by brute force from the explicit formula for the case of
the Dedekind eta function, one surmises that a brute force approach
could eventually succeed here also.
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