Compositio Mathematica

Ragni Piene

A proof of Noether's formula for the arithmetic genus of an algebraic surface

Compositio Mathematica, tome 38, $\mathrm{n}^{\circ} 1$ (1979), p. 113-119
http://www.numdam.org/item?id=CM_1979__38_1_113_0
© Foundation Compositio Mathematica, 1979, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

A PROOF OF NOETHER'S FORMULA FOR THE ARITHMETIC GENUS OF AN ALGEBRAIC SURFACE

Ragni Piene*

1. The proof

Let X be a smooth, proper surface defined over an algebraically closed field k. Denote by $\chi\left(\mathcal{O}_{X}\right)=\Sigma_{i=0}^{2}(-1)^{i} \operatorname{dim}_{k} H^{i}\left(X, \mathcal{O}_{X}\right)$ its EulerPoincaré characteristic, by $c_{i}=c_{i}\left(\Omega_{X}\right)$ the i th Chern class of its cotangent bundle, and by \int the degree of a zero-dimensional cycle in the Chow ring A.X. The above invariants of X are related by the formula

$$
\begin{equation*}
12 \chi\left(\mathcal{O}_{X}\right)=\int\left(c_{1}^{2}+c_{2}\right) \tag{1}
\end{equation*}
$$

due to Max Noether [9]. The formula is a special case of Hirzebruch's Riemann-Roch theorem (however, it is not a special case of the original Riemann-Roch theorem for a surface (see [13]), which states that a certain inequality holds).

Here we give a proof of (1) more in the spirit of Noether's original (see §2). First we realize X as the normalization of a surface X_{0} in \mathbf{P}^{3}, with ordinary singularities. Then we obtain expressions for $\int c_{1}^{2}, \int c_{2}$, and $\chi\left(\mathcal{O}_{X}\right)$ in terms of numerical characters of X_{0} and we verify that these expressions satisfy the relation (1).

By realizing X as the normalization of a surface X_{0} with ordinary singularities in \mathbb{P}^{3} we mean the following. Let $X \hookrightarrow \mathbb{P}^{N}$ be any embedding of X. Replacing it by the embedding determined by hypersurface sections of degree ≥ 2, we may assume that the projection $f: X \rightarrow \mathbf{P}^{3}$ of X from any generically situated linear space of codimension 4 has the following properties [10, p. 206, theorem 3]:
(A) Put $X_{0}=f(X)$. The map $f: X \rightarrow X_{0}$ is finite and birational (hence it is equal to the normalization map).

[^0](B) X_{0} has only ordinary singularities: a double curve Γ_{0}, which has t triple points (these being also triple for the surface) and no other singularities; a finite number of pinch points, these being the images of the points of ramification of f. The completion of the local ring of X_{0} at a point y of Γ_{0} looks like
(a) $k \llbracket t_{1}, t_{2}, t_{3} \rrbracket /\left(t_{1} t_{2}\right)$ for most points y of Γ_{0} and at such points $\# f^{-1}(y)=2$.
(b) $k \llbracket t_{1}, t_{2}, t_{3} /\left(t_{1} t_{2} t_{3}\right)$ if y is triple, and then $\# f^{-1}(y)=3$.
(c) $k \llbracket t_{1}, t_{2}, t_{3} \rrbracket /\left(t_{2}^{2}-t_{1}^{2} t_{3}\right)$ if y is a pinch point and char $k \neq 2$ (otherwise the ring is $k \llbracket t_{1}, t_{1} t_{2}, t_{2}^{2}+t_{2}^{3} \rrbracket$) and $\# f^{-1}(t)=1$.

In order to compute the invariants of X in terms of the numerical characters of X_{0}, we shall first make some observations concerning the scheme structure of the double curve Γ_{0}.

We let $\mathscr{C}_{0}=\operatorname{Hom}_{\sigma_{X_{0}}}\left(f_{*} \mathcal{O}_{X}, \mathcal{O}_{X_{0}}\right)$ denote the conductor of X in X_{0} and put $\mathscr{C}=\mathscr{C}_{0} \mathcal{O}_{X}$. It follows that $f_{*} \mathscr{C}=\mathscr{C}_{0}$ holds. Moreover, using duality for the finite morphism f [see 13, III, appendix by D. Mumford, p. 71; also 7, V. 7], we obtain a canonical isomorphism

$$
\mathscr{C} \cong \Lambda^{2} \Omega_{X} \otimes \mathscr{L}^{-n+4}
$$

where $\mathscr{L}=f^{*} \mathscr{O}_{p^{3}(1)}$ is the pullback of the tautological line bundle on \mathbf{P}^{3} and n is the degree of X_{0} in \mathbf{P}^{3}. In particular this shows that \mathscr{C} is invertible.

Using (B) we see that the ideal \mathscr{C}_{0} defines the reduced scheme structure on the double curve, call this scheme Γ_{0} also. Now put $\Gamma=f^{-1}\left(\Gamma_{0}\right)$; thus Γ is defined on X by the ideal \mathscr{C}. This gives an equality in the Chow ring:

$$
\begin{equation*}
c_{1}=c_{1}\left(\Omega_{X}\right)=(n-4) c_{1}(\mathscr{L})-[\Gamma] . \tag{2}
\end{equation*}
$$

The equality (2) allows us to compute $\int c_{1}^{2}$. First, let us introduce the following numerical characters of X_{0}, in addition to its degree n,

```
degree of }\mp@subsup{\Gamma}{0}{}=m\mathrm{ ,
# triple points of }\mp@subsup{\Gamma}{0}{}(\mathrm{ or of }\mp@subsup{X}{0}{})=t
grade (self-intersection) of }\Gamma\mathrm{ on }X=\lambda\mathrm{ ,
# (weighted) pinch points = \nu
```

By definition ν_{2} is the degree of the ramification cycle of f on X; this cycle is defined by the 0 th Fitting ideal $F^{0}\left(\Omega_{X / P^{3}}\right)$ of the relative differentials of f. (If char $k \neq 2, \nu_{2}$ is equal to the actual number of pinch points of X_{0}; if char $k=2, \nu_{2}$ is twice the number of actual
pinch points [11, p. 163, prop. 6].) From (2) then we get the expression

$$
\int c_{1}^{2}=(n-4)^{2} n-4(n-4) m+\lambda
$$

Here we used $\int c_{1}(\Gamma)^{2}=n$ and $\int c_{1}(\mathscr{L})[\Gamma]=2 m$, which holds because the map $\left.f\right|_{\Gamma}: \Gamma \rightarrow \Gamma_{0}$ has degree 2.

For a surface with ordinary singularities in \mathbf{P}^{3} there is the triple point formula:

$$
3 t=\lambda-m n+\nu_{2},
$$

due to Kleiman [7, I, 39]. Substituting the resulting value of λ in the above formula for $\int c_{1}^{2}$, we find

$$
\begin{equation*}
\int c_{1}^{2}=n(n-4)^{2}-(3 n-16) m+3 t-\nu_{2} . \tag{3}
\end{equation*}
$$

Next we want to obtain an expression for $\int c_{2}$. Since there is an exact sequence

$$
f^{*} \Omega_{\mathrm{P}^{3}} \rightarrow \Omega_{\mathrm{X}} \rightarrow \Omega_{X / \mathbf{P}^{3}} \rightarrow 0
$$

Porteous' formula [6, p. 162, corollary 11] gives

$$
\nu_{2}=\int c_{1}^{2}-c_{2}+4 c_{1} \cdot c_{1}(\mathscr{L})+6 c_{1}(\mathscr{L})^{2}
$$

Using (2) and (3) we obtain

$$
\begin{equation*}
\int c_{2}=n\left(n^{2}-4 n+6\right)-(3 n-8) m+3 t-2 \nu_{2} . \tag{4}
\end{equation*}
$$

The last invariant to be considered is $\chi\left(\mathcal{O}_{X}\right)$. We claim that the arithmetic genus $\chi\left(\mathcal{O}_{X}\right)-1$ satisfies the postulation formula (see §2),

$$
\begin{equation*}
\chi\left(O_{X}\right)-1=\binom{n-1}{3}-(n-4) m+2 t+g-1 \tag{5}
\end{equation*}
$$

where g denotes the (geometric) genus of Γ_{0}.
To prove (5) we consider the exact sequences $0 \rightarrow \mathscr{C} \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{\Gamma} \rightarrow 0$ and $0 \rightarrow \mathscr{C}_{0} \rightarrow \mathscr{O}_{X_{0}} \rightarrow \mathscr{O}_{\Gamma_{0}} \rightarrow 0$. Since f is finite, f_{*} is exact, and we have
seen that $f * \mathscr{C}=\mathscr{C}_{0}$ holds. Therefore, by additivity of χ, we obtain

$$
\chi\left(\mathscr{C}_{0}\right)=\chi\left(f * \mathscr{O}_{X}\right)-\chi\left(f * \mathscr{O}_{\Gamma}\right)=\chi\left(\mathscr{O}_{X_{0}}\right)-\chi\left(\mathscr{O}_{\Gamma_{0}}\right)
$$

hence

$$
\chi\left(\mathscr{O}_{X}\right)=\chi\left(\mathscr{O}_{X_{0}}\right)+\chi\left(\mathscr{O}_{\Gamma}\right)-\chi\left(\mathscr{O}_{\Gamma_{0}}\right)
$$

Moreover, since X_{0} is a hypersurface of degree n in $\mathbf{P}^{3}, \chi\left(\mathcal{O}_{X_{0}}\right)=$ $\binom{n-1}{3}+1$ holds. Since Γ is a curve on a smooth surface, its arithmetic genus is given by the adjunction formula

$$
-\chi\left(\mathscr{O}_{\Gamma}\right)=\frac{1}{2} \int\left([\Gamma]+c_{1}\right) \cdot[\Gamma]
$$

hence, using (2), we get

$$
\chi\left(\mathscr{O}_{\Gamma}\right)=-(n-4) m
$$

Finally, the equality

$$
\chi\left(\mathscr{O}_{\Gamma_{0}}\right)=1-g-2 t
$$

holds because the difference in arithmetic and geometric genus due to a triple point with linearly independent tangents is equal to 2 . This is seen as follows. Consider the local ring R of Γ_{0} at a triple point, and let $R \rightarrow R^{\prime}$ denote its normalization. By (B) the map on the completions looks like

$$
\hat{R}=k \llbracket t_{1}, t_{2}, t_{3} \rrbracket /\left(t_{1} t_{2}, t_{1} t_{3}, t_{2} t_{3}\right) \rightarrow \hat{R}^{\prime}=k \llbracket t \rrbracket^{3} .
$$

The image of \hat{R} in \hat{R}^{\prime} consists of triples $\left(\psi_{1}, \psi_{2}, \psi_{3}\right)$ such that $\psi_{i}(0)=$ $\psi_{j}(0)$, the cokernel of $\hat{R} \rightarrow \hat{R}^{\prime}$ is isomorphic to k^{2}, and the map $\hat{R}^{\prime} \rightarrow k^{2}$ is given by

$$
\left(\psi_{1}, \psi_{2}, \psi_{3}\right) \mapsto\left(\psi_{1}(0)-\psi_{2}(0), \psi_{1}(0)-\psi_{3}(0)\right)
$$

(Similar computations show that a triple point with coplanar tangents would diminish the genus by 3.) Thus we have proved (5).

Consider the curve Γ; above each triple point of Γ_{0} it has 3 ordinary double points. Hence the difference between its arithmetic and geometric genus is $3 t$ (since Γ has no other singularities). We have
observed that the map $\left.f\right|_{\Gamma}: \Gamma \rightarrow \Gamma_{0}$ has degree 2 ; since its ramification locus is equal to that of f, the Riemann-Hurwitz formula now gives a formula

$$
2 m(n-4)-6 t=2(2 g-2)+\nu_{2}
$$

Hence we can substitute for g in (5) and multiply by 12 to get

$$
\begin{equation*}
12 \chi\left(O_{X}\right)=2 n\left(n^{2}-6 n+11\right)-6(n-4) m+6 t-3 \nu_{2} . \tag{6}
\end{equation*}
$$

This equality, together with (3) and (4), now yields (1).

2. Historical note

Formula (1) was stated by Noether [9] as

$$
\begin{equation*}
\pi^{(1)}=12(p+1)-\left(p^{(1)}-1\right) \tag{1'}
\end{equation*}
$$

He established it by considering a model of the surface in \mathbf{P}^{3}. Previously [8] he had found formulae for the arithmetic genus p and the genus $p^{(1)}$ of a canonical curve in terms of the numerical characters of the model in P^{3}. Now he showed that the expression he got for the difference $12(p+1)-\left(p^{(1)}-1\right)$ was equal to the expression for the invariant $\pi^{(1)}$ given by Zeuthen [14].

Clebsch [5] was the first to look for a class number of the birational class to which a surface belongs. He defined the genus of a surface as the number p_{g} of independent everywhere finite double integrals. He showed that for a model $f(x, y, z)=0$ of the surface in P^{3}, of degree n, with only double and cuspidal curves, these integrals are of the form $\iint \phi \mid f_{z}^{\prime} \mathrm{d} x \mathrm{~d} y$, where ϕ is a polynomial of degree $n-4$ which vanishes on the singular curves of $f=0$ (this result is attributed to Clebsch in [13, p. 157] but no reference is given). Noether [9] called the surfaces $\phi=0$ adjoints to $f=0$. He allowed more general singularities on $f=0$. He proved that the number p_{g} of independent adjoints is a birational invariant of the surface (this result was announced by Clebsch in [5]). In [9] Noether developed the theory of adjoints for higher dimensional varieties as well.

Let S be a set of curves and points (with assigned multiplicities) in \mathbf{P}^{3}. Denote by $P(m, S)$ the number of conditions imposed on a surface of degree m by requiring it to pass through S. The number $P(m, S)$ is called the postulation of S with respect to surfaces of degree m. Cayley [3] was the first to consider $P(m, S)$ and give a formula for it,
under certain restrictions on the set S. The restrictions were relaxed by Noether [8].

The work of Clebsch [5] led Cayley [2] to derive a postulation formula for the genus (and again this was generalized by Noether [8]). According to this formula the genus is the postulated number p_{a} of adjoints to a given model $f=0$, hence equal to the number $\binom{n-1}{3}$ of all surfaces of degree $n-4$ minus the postulation $P(n-4, S)$, where S denotes the set of singular curves and points of $f=0$. Zeuthen [14] uses Cayley's formula to show that p_{a} is a birational invariant.

Both Cayley [4] and Noether [9] found that p_{a} could be strictly less than the actual number, p_{g}, of adjoints. The breakthrough in understanding the difference $p_{g}-p_{a}$ was made by Enriques in 1896 [see 13, IV].

The next invariant $p^{(1)}$ that occurs in (1^{\prime}) is what Noether called the curve genus of the surface. He defined it, via a model $f=0$, as the genus of the variable intersection curve of the surface $f=0$ with a general adjoint $\phi=0$, i.e. of a canonical curve. He showed, by what amounts to applying the adjunction formula, that $p^{(1)}-1$ is equal to the self-intersection $\int c_{1}^{2}$ of a canonical curve.

Zeuthen [14] studied the behaviour of a surface under birational transformation by methods similar to those he had applied to curves. He considered enveloping cones of a model of the surface in \mathbf{P}^{3} and looked for numbers of such a cone that were independent of the particular vertex and of the particular model. He discovered the invariant $\pi^{(1)}$ (equal to $\int c_{2}$), and found a formula for it in terms of characters of the model, including the class n^{\prime} (the class is the number of tangent planes that pass through a given point). Later Segre [12] studied pencils on a surface and found a formula for $\pi^{(1)}-4$ in terms of characters of the pencil. The invariant $I=\pi^{(1)}-4$ became known as the Zeuthen-Segre invariant of the surface, see also [1].

To deduce (1^{\prime}) Noether used his earlier formula [8] for the class n^{\prime} to eliminate n^{\prime} in Zeuthen's formula for $\pi^{(1)}$. He showed that the resulting expression for $\pi^{(1)}$ was equal to his expression for $12(p+1)-\left(p^{(1)}-1\right)$.

Added in proof

A proof of Noether's formula similar to the above has been given independently by P. Griffiths and J. Harris in their book "Principles of algebraic geometry" (Wiley Interscience, 1978).

REFERENCES

[1] T. Bonnesen: Sur les séries linéaires triplement infinies de courbes algébriques sur une surface algébrique, Bull. Acad. Royale des Sciences et des Lettres de Danemark, 4 (1906) 281-293.
[2] A. Cayley: Memoir on the theory of reciprocal surfaces, Phil. Trans. Royal Soc. of London, 159 (1869) 201-229, Papers 6, 329-358.
[3] A. Cayley: On the rational transformation between two spaces, Proc. London Math. Soc., 3 (1870) 127-180, Papers 7, 189-240.
[4] A. Cayley: On the deficiency of certain surfaces, Math. Ann., 3 (1871) 526-529, Papers 8, 394-397.
[5] M.A. Clebsch: Sur les surfaces algébriques, C.R. Acad. Sci. Paris, 67 (1868) 1238-1239.
[6] G. Kempf and D. LaKsov: The determinantal formula of Schubert calculus, Acta Math., 132 (1974) 153-162.
[7] S. Kleiman: The enumerative theory of singularities, Real and complex singularities, Oslo 1976, Sijthoff \& Noordhoff International Publishers.
[8] M. Noether: Sulle curve multiple di superficie algebriche, Ann. d. Mat., 5 (1871-1873) 163-177.
[9] M. Noether: Zur Theorie des eindeutigen Entsprechens algebraischer Gebilde, Math. Ann., 2 (1870) 293-316; 8 (1875) 495-533.
[10] J. Roberts: Generic projections of algebraic varieties, Amer. J. Math., 93 (1971) 191-214.
[11] J. Roberts: The variation of singular cycles in an algebraic family of morphisms, Trans. AMS, 168 (1972) 153-164.
[12] C. SEGRE: "Intorno ad un carattere delle superficie et delle varietà superiori algebriche, Atti. Acc. Torino, 31 (1896) 341-357.
[13] O. Zariski: Algebraic surfaces. Springer, Berlin etc. (1971).
[14] H.G. Zeuthen: Études géometriques de quelques-unes des propriétés de deux surfaces dont les points se correspondent un à un, Math. Ann. 4 (1871) 21-49.
(Oblatum 23-III-1977)
Matematisk Institutt
Universitetet i Oslo
Blindern, Oslo 3
Norway

[^0]: * Supported by the Norwegian Research Council for Science and the Humanities.

