COMPOSITIO MATHEMATICA

RAGNI PIENE

A proof of Noether's formula for the arithmetic genus of an algebraic surface

Compositio Mathematica, tome 38, nº 1 (1979), p. 113-119 <http://www.numdam.org/item?id=CM_1979_38_1_113_0>

© Foundation Compositio Mathematica, 1979, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 38, Fasc. 1, 1979, pag. 113–119 Sijthoff & Noordhoff International Publishers–Alphen aan den Rijn Printed in the Netherlands

A PROOF OF NOETHER'S FORMULA FOR THE ARITHMETIC GENUS OF AN ALGEBRAIC SURFACE

Ragni Piene*

1. The proof

Let X be a smooth, proper surface defined over an algebraically closed field k. Denote by $\chi(\mathcal{O}_X) = \sum_{i=0}^2 (-1)^i \dim_k H^i(X, \mathcal{O}_X)$ its Euler-Poincaré characteristic, by $c_i = c_i(\Omega_X)$ the *i*th Chern class of its cotangent bundle, and by \int the degree of a zero-dimensional cycle in the Chow ring A.X. The above invariants of X are related by the formula

(1)
$$12\chi(\mathcal{O}_X) = \int (c_1^2 + c_2),$$

due to Max Noether [9]. The formula is a special case of Hirzebruch's Riemann-Roch theorem (however, it is not a special case of the original Riemann-Roch theorem for a surface (see [13]), which states that a certain inequality holds).

Here we give a proof of (1) more in the spirit of Noether's original (see §2). First we realize X as the normalization of a surface X_0 in \mathbb{P}^3 , with ordinary singularities. Then we obtain expressions for $\int c_1^2$, $\int c_2$, and $\chi(\mathcal{O}_X)$ in terms of numerical characters of X_0 and we verify that these expressions satisfy the relation (1).

By realizing X as the normalization of a surface X_0 with ordinary singularities in \mathbb{P}^3 we mean the following. Let $X \hookrightarrow \mathbb{P}^N$ be any embedding of X. Replacing it by the embedding determined by hypersurface sections of degree ≥ 2 , we may assume that the projection $f: X \to \mathbb{P}^3$ of X from any generically situated linear space of codimension 4 has the following properties [10, p. 206, theorem 3]:

(A) Put $X_0 = f(X)$. The map $f: X \to X_0$ is finite and birational (hence it is equal to the normalization map).

^{*} Supported by the Norwegian Research Council for Science and the Humanities.

(B) X_0 has only ordinary singularities: a double curve Γ_0 , which has t triple points (these being also triple for the surface) and no other singularities; a finite number of pinch points, these being the images of the points of ramification of f. The completion of the local ring of X_0 at a point y of Γ_0 looks like

(a) $k[[t_1, t_2, t_3]]/(t_1t_2)$ for most points y of Γ_0 and at such points $\#f^{-1}(y) = 2$.

(b) $k[t_1, t_2, t_3 / (t_1 t_2 t_3)]$ if y is triple, and then $\#f^{-1}(y) = 3$.

(c) $k[[t_1, t_2, t_3]]/(t_2^2 - t_1^2 t_3)$ if y is a pinch point and char $k \neq 2$ (otherwise the ring is $k[[t_1, t_1 t_2, t_2^2 + t_2^3]]$) and $\#f^{-1}(t) = 1$.

In order to compute the invariants of X in terms of the numerical characters of X_0 , we shall first make some observations concerning the scheme structure of the double curve Γ_0 .

We let $\mathscr{C}_0 = \operatorname{Hom}_{\mathscr{O}_{X_0}}(f * \mathscr{O}_X, \mathscr{O}_{X_0})$ denote the conductor of X in X_0 and put $\mathscr{C} = \mathscr{C}_0 \mathscr{O}_X$. It follows that $f_* \mathscr{C} = \mathscr{C}_0$ holds. Moreover, using duality for the finite morphism f [see 13, III, appendix by D. Mumford, p. 71; also 7, V. 7], we obtain a canonical isomorphism

$$\mathscr{C} \cong \Lambda^2 \Omega_X \otimes \mathscr{L}^{-n+4},$$

where $\mathscr{L} = f^* \mathscr{O}_{\mathsf{P}^3}(1)$ is the pullback of the tautological line bundle on P^3 and *n* is the degree of X_0 in P^3 . In particular this shows that \mathscr{C} is invertible.

Using (B) we see that the ideal \mathscr{C}_0 defines the reduced scheme structure on the double curve, call this scheme Γ_0 also. Now put $\Gamma = f^{-1}(\Gamma_0)$; thus Γ is defined on X by the ideal \mathscr{C} . This gives an equality in the Chow ring:

(2)
$$c_1 = c_1(\Omega_X) = (n-4)c_1(\mathcal{L}) - [\Gamma].$$

The equality (2) allows us to compute $\int c_1^2$. First, let us introduce the following numerical characters of X_0 , in addition to its degree *n*,

degree of $\Gamma_0 = m$, # triple points of Γ_0 (or of X_0) = t, grade (self-intersection) of Γ on $X = \lambda$, # (weighted) pinch points = ν_2 .

By definition ν_2 is the degree of the ramification cycle of f on X; this cycle is defined by the 0th Fitting ideal $F^0(\Omega_{XP^3})$ of the relative differentials of f. (If char $k \neq 2$, ν_2 is equal to the actual number of pinch points of X_0 ; if char k = 2, ν_2 is twice the number of actual

pinch points [11, p. 163, prop. 6].) From (2) then we get the expression

$$\int c_1^2 = (n-4)^2 n - 4(n-4)m + \lambda.$$

Here we used $\int c_1(\Gamma)^2 = n$ and $\int c_1(\mathcal{L})[\Gamma] = 2m$, which holds because the map $f|_{\Gamma} \colon \Gamma \to \Gamma_0$ has degree 2.

For a surface with ordinary singularities in P^3 there is the *triple* point formula:

$$3t = \lambda - mn + \nu_2,$$

due to Kleiman [7, I, 39]. Substituting the resulting value of λ in the above formula for $\int c_{1}^{2}$, we find

(3)
$$\int c_1^2 = n(n-4)^2 - (3n-16)m + 3t - \nu_2$$

Next we want to obtain an expression for $\int c_2$. Since there is an exact sequence

$$f^*\Omega_{\mathbf{P}^3} \to \Omega_X \to \Omega_{X/\mathbf{P}^3} \to 0$$

Porteous' formula [6, p. 162, corollary 11] gives

$$\nu_2 = \int c_1^2 - c_2 + 4c_1 \cdot c_1(\mathscr{L}) + 6c_1(\mathscr{L})^2.$$

Using (2) and (3) we obtain

,

(4)
$$\int c_2 = n(n^2 - 4n + 6) - (3n - 8)m + 3t - 2\nu_2.$$

The last invariant to be considered is $\chi(\mathcal{O}_X)$. We claim that the arithmetic genus $\chi(\mathcal{O}_X) - 1$ satisfies the postulation formula (see §2),

(5)
$$\chi(\mathcal{O}_X) - 1 = {\binom{n-1}{3}} - (n-4)m + 2t + g - 1,$$

where g denotes the (geometric) genus of Γ_0 .

To prove (5) we consider the exact sequences $0 \to \mathscr{C} \to \mathscr{O}_X \to \mathscr{O}_\Gamma \to 0$ and $0 \to \mathscr{C}_0 \to \mathscr{O}_{X_0} \to \mathscr{O}_{\Gamma_0} \to 0$. Since f is finite, f_* is exact, and we have seen that $f * \mathscr{C} = \mathscr{C}_0$ holds. Therefore, by additivity of χ , we obtain

$$\chi(\mathscr{C}_0) = \chi(f * \mathscr{O}_X) - \chi(f * \mathscr{O}_\Gamma) = \chi(\mathscr{O}_{X_0}) - \chi(\mathscr{O}_{\Gamma_0}),$$

hence

$$\chi(\mathcal{O}_X) = \chi(\mathcal{O}_{X_0}) + \chi(\mathcal{O}_{\Gamma}) - \chi(\mathcal{O}_{\Gamma_0}).$$

Moreover, since X_0 is a hypersurface of degree n in \mathbb{P}^3 , $\chi(\mathcal{O}_{X_0}) = \binom{n-1}{3} + 1$ holds. Since Γ is a curve on a smooth surface, its arithmetic genus is given by the adjunction formula

$$-\chi(\mathcal{O}_{\Gamma})=\frac{1}{2}\int\left([\Gamma]+c_{1}\right)\cdot[\Gamma],$$

hence, using (2), we get

$$\chi(\mathcal{O}_{\Gamma}) = -(n-4)m.$$

Finally, the equality

$$\chi(\mathcal{O}_{\Gamma_0}) = 1 - g - 2t$$

holds because the difference in arithmetic and geometric genus due to a triple point with linearly independent tangents is equal to 2. This is seen as follows. Consider the local ring R of Γ_0 at a triple point, and let $R \rightarrow R'$ denote its normalization. By (B) the map on the completions looks like

$$\hat{R} = k[[t_1, t_2, t_3]]/(t_1t_2, t_1t_3, t_2t_3) \rightarrow \hat{R}' = k[[t_1]]^3$$

The image of \hat{R} in \hat{R}' consists of triples (ψ_1, ψ_2, ψ_3) such that $\psi_i(0) = \psi_i(0)$, the cokernel of $\hat{R} \to \hat{R}'$ is isomorphic to k^2 , and the map $\hat{R}' \to k^2$ is given by

$$(\psi_1, \psi_2, \psi_3) \mapsto (\psi_1(0) - \psi_2(0), \psi_1(0) - \psi_3(0))$$

(Similar computations show that a triple point with coplanar tangents would diminish the genus by 3.) Thus we have proved (5).

Consider the curve Γ ; above each triple point of Γ_0 it has 3 ordinary double points. Hence the difference between its arithmetic and geometric genus is 3t (since Γ has no other singularities). We have

observed that the map $f|_{\Gamma}: \Gamma \to \Gamma_0$ has degree 2; since its ramification locus is equal to that of f, the Riemann-Hurwitz formula now gives a formula

$$2m(n-4) - 6t = 2(2g-2) + \nu_2.$$

Hence we can substitute for g in (5) and multiply by 12 to get

(6)
$$12\chi(\mathcal{O}_X) = 2n(n^2 - 6n + 11) - 6(n - 4)m + 6t - 3\nu_2.$$

This equality, together with (3) and (4), now yields (1).

2. Historical note

Formula (1) was stated by Noether [9] as

(1')
$$\pi^{(1)} = 12(p+1) - (p^{(1)} - 1).$$

He established it by considering a model of the surface in P^3 . Previously [8] he had found formulae for the arithmetic genus p and the genus $p^{(1)}$ of a canonical curve in terms of the numerical characters of the model in P^3 . Now he showed that the expression he got for the difference $12(p + 1) - (p^{(1)} - 1)$ was equal to the expression for the invariant $\pi^{(1)}$ given by Zeuthen [14].

Clebsch [5] was the first to look for a class number of the birational class to which a surface belongs. He defined the genus of a surface as the number p_g of independent everywhere finite double integrals. He showed that for a model f(x, y, z) = 0 of the surface in \mathbf{P}^3 , of degree n, with only double and cuspidal curves, these integrals are of the form $\iint \phi/f'_z dx dy$, where ϕ is a polynomial of degree n - 4 which vanishes on the singular curves of f = 0 (this result is attributed to Clebsch in [13, p. 157] but no reference is given). Noether [9] called the surfaces $\phi = 0$ adjoints to f = 0. He allowed more general singularities on f = 0. He proved that the number p_g of independent adjoints is a birational invariant of the surface (this result was announced by Clebsch in [5]). In [9] Noether developed the theory of adjoints for higher dimensional varieties as well.

Let S be a set of curves and points (with assigned multiplicities) in P^3 . Denote by P(m, S) the number of conditions imposed on a surface of degree m by requiring it to pass through S. The number P(m, S) is called the *postulation* of S with respect to surfaces of degree m. Cayley [3] was the first to consider P(m, S) and give a formula for it,

under certain restrictions on the set S. The restrictions were relaxed by Noether [8].

The work of Clebsch [5] led Cayley [2] to derive a postulation formula for the genus (and again this was generalized by Noether [8]). According to this formula the genus is the postulated number p_a of adjoints to a given model f = 0, hence equal to the number $\binom{n-1}{3}$ of all surfaces of degree n-4 minus the postulation P(n-4, S), where S denotes the set of singular curves and points of f = 0. Zeuthen [14] uses Cayley's formula to show that p_a is a birational invariant. Both Cayley [4] and Noether [9] found that p_a could be strictly less

Both Cayley [4] and Noether [9] found that p_a could be strictly less than the actual number, p_g , of adjoints. The breakthrough in understanding the difference $p_g - p_a$ was made by Enriques in 1896 [see 13, IV].

The next invariant $p^{(1)}$ that occurs in (1') is what Noether called the *curve genus* of the surface. He defined it, via a model f = 0, as the genus of the variable intersection curve of the surface f = 0 with a general adjoint $\phi = 0$, *i.e.* of a canonical curve. He showed, by what amounts to applying the adjunction formula, that $p^{(1)} - 1$ is equal to the self-intersection $\int c_1^2$ of a canonical curve.

Zeuthen [14] studied the behaviour of a surface under birational transformation by methods similar to those he had applied to curves. He considered enveloping cones of a model of the surface in P^3 and looked for numbers of such a cone that were independent of the particular vertex and of the particular model. He discovered the invariant $\pi^{(1)}$ (equal to $\int c_2$), and found a formula for it in terms of characters of the model, including the class n' (the class is the number of tangent planes that pass through a given point). Later Segre [12] studied pencils on a surface and found a formula for $\pi^{(1)} - 4$ in terms of characters of the pencil. The invariant $I = \pi^{(1)} - 4$ became known as the Zeuthen-Segre invariant of the surface, see also [1].

To deduce (1') Noether used his earlier formula [8] for the class n' to eliminate n' in Zeuthen's formula for $\pi^{(1)}$. He showed that the resulting expression for $\pi^{(1)}$ was equal to his expression for $12(p+1) - (p^{(1)} - 1)$.

Added in proof

A proof of Noether's formula similar to the above has been given independently by P. Griffiths and J. Harris in their book "Principles of algebraic geometry" (Wiley Interscience, 1978).

REFERENCES

- T. BONNESEN: Sur les séries linéaires triplement infinies de courbes algébriques sur une surface algébrique, Bull. Acad. Royale des Sciences et des Lettres de Danemark, 4 (1906) 281-293.
- [2] A. CAYLEY: Memoir on the theory of reciprocal surfaces, Phil. Trans. Royal Soc. of London, 159 (1869) 201-229, Papers 6, 329-358.
- [3] A. CAYLEY: On the rational transformation between two spaces, Proc. London Math. Soc., 3 (1870) 127-180, Papers 7, 189-240.
- [4] A. CAYLEY: On the deficiency of certain surfaces, Math. Ann., 3 (1871) 526-529, Papers 8, 394-397.
- [5] M.A. CLEBSCH: Sur les surfaces algébriques, C.R. Acad. Sci. Paris, 67 (1868) 1238-1239.
- [6] G. KEMPF and D. LAKSOV: The determinantal formula of Schubert calculus, Acta Math., 132 (1974) 153-162.
- [7] S. KLEIMAN: The enumerative theory of singularities, Real and complex singularities, Oslo 1976, Sijthoff & Noordhoff International Publishers.
- [8] M. NOETHER: Sulle curve multiple di superficie algebriche, Ann. d. Mat., 5 (1871-1873) 163-177.
- [9] M. NOETHER: Zur Theorie des eindeutigen Entsprechens algebraischer Gebilde, Math. Ann., 2 (1870) 293-316; 8 (1875) 495-533.
- [10] J. ROBERTS: Generic projections of algebraic varieties, Amer. J. Math., 93 (1971) 191-214.
- [11] J. ROBERTS: The variation of singular cycles in an algebraic family of morphisms, Trans. AMS, 168 (1972) 153-164.
- [12] C. SEGRE: "Intorno ad un carattere delle superficie et delle varietà superiori algebriche, Atti. Acc. Torino, 31 (1896) 341-357.
- [13] O. ZARISKI: Algebraic surfaces. Springer, Berlin etc. (1971).
- [14] H.G. ZEUTHEN: Études géometriques de quelques-unes des propriétés de deux surfaces dont les points se correspondent un à un, Math. Ann. 4 (1871) 21-49.

(Oblatum 23-III-1977)

Matematisk Institutt Universitetet i Oslo Blindern, Oslo 3 Norway