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1. The proof

Let X be a smooth, proper surface defined over an algebraically
closed field k. Denote by X(Cx) = Ei=o (-I)i dimk H i(X, Ox) its Euler-
Poincaré characteristic, by ci = ci(ilx) the ith Chern class of its

cotangent bundle, and by f the degree of a zero-dimensional cycle in
the Chow ring A.X. The above invariants of X are related by the
formula

due to Max Noether [9]. The formula is a special case of Hirzebruch’s
Riemann-Roch theorem (however, it is not a special case of the
original Riemann-Roch theorem for a surface (see [13]), which states
that a certain inequality holds).
Here we give a proof of (1) more in the spirit of Noether’s original

(see §2). First we realize X as the normalization of a surface Xo in P3,
with ordinary singularities. Then we obtain expressions for f c;, f c2,
and X(Cx) in terms of numerical characters of Xo and we verify that
these expressions satisfy the relation (1).
By realizing X as the normalization of a surface Xo with ordinary

singularities in p3 we mean the following. Let X 4pN be any

embedding of X. Replacing it by the embedding determined by
hypersurface sections of degree &#x3E;2, we may assume that the pro-
jection /:X-&#x3E;P of X from any generically situated linear space of
codimension 4 has the following properties [10, p. 206, theorem 3]:

(A) Put Xo = f(X). The map f: X X(B is finite and birational

(hence it is equal to the normalization map).
* Supported by the Norwegian Research Council for Science and the Humanities.
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(B) Xo has only ordinary singularities: a double curve To, which has
t triple points (these being also triple for the surface) and no other
singularities; a finite number of pinch points, these being the images
of the points of ramification of f. The completion of the local ring of
Xo at a point y of To looks like

for most points y of ro and at such points

In order to compute the invariants of X in terms of the numerical
characters of Xo, we shall first make some observations concerning
the scheme structure of the double curve Fo.
We let Co = Homoxo(f*Ox, 04) denote the conductor of X in Xo and

put % = 600x. It follows that f * = o holds. Moreover, using duality
for the finite morphism f [see 13, III, appendix by D. Mumford, p. 71;
also 7, V. 7], we obtain a canonical isomorphism

where I£ = f*(Jp3(1) is the pullback of the tautological line bundle on
p3 and n is the degree of Xo in P3. In particular this shows that 16 is
invertible.

Using (B) we see that the ideal ’Co defines the reduced scheme
structure on the double curve, call this scheme To also. Now put
r = f-l(ro); thus r is defined on X by the ideal C This gives an
equality in the Chow ring:

The equality (2) allows us to compute f c’. First, let us introduce
the following numerical characters of Xo, in addition to its degree n,

degree of Fo = m,
# triple points of Fo (or of Xo) = t,
grade (self-intersection) of F on X = À,
# (weighted) pinch points = v2.

By definition P2 is the degree of the ramification cycle of f on X; this
cycle is defined by the Oth Fitting ideal pO(il X/P3) of the relative
differentials of f. (If char k 76 2, v2 is equal to the actual number of
pinch points of Xo; if char k = 2, P2 is twice the number of actual
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pinch points [11, p. 163, prop. 6].) From (2) then we get the expression

Here we used f CI(F)2 = n and f CI(IE)[r] = 2m, which holds because
the map f IF: F ---&#x3E; Fo has degree 2.

For a surface with ordinary singularities in p3 there is the triple
point formula :

due to Kleiman [7, 1, 39]. Substituting the resulting value of À in the
above formula for f c1, we find

Next we want to obtain an expression for f c2. Since there is an

exact sequence

Porteous’ formula [6, p. 162, corollary 11] gives

Using (2) and (3) we obtain

The last invariant to be considered is X(Ox). We claim that the

arithmetic genus X(Ox) - 1 satisfies the postulation formula (see §2),

where g denotes the (geometric) genus of To.
To prove (5) we consider the exact sequences

Since f is finite, f * is exact, and we have
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seen that f*ri = rio holds. Therefore, by additivity of x, we obtain

hence

Moreover, since Xo is a hypersurface of degree n in

holds. Since F is a curve on a smooth surface, its

arithmetic genus is given by the adjunction formula

hence, using (2), we get

Finally, the equality

holds because the difference in arithmetic and geometric genus due to
a triple point with linearly independent tangents is equal to 2. This is
seen as follows. Consider the local ring R of Fo at a triple point, and
let R -R’ denote its normalization. By (B) the map on the com-

pletions looks like

The image of Ê in R’ consists of triples (/Il, «/12, #3) such that «/Ii(O) =
«/Ij(O), the cokernel of R -- R’ is isomorphic to k2, and the map À’ - k2
is given by

(Similar computations show that a triple point with coplanar tangents
would diminish the genus by 3.) Thus we have proved (5).

Consider the curve F; above each triple point of Fo it has 3 ordinary
double points. Hence the difference between its arithmetic and

geometric genus is 3 t (since F has no other singularities). We have
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observed that the map f 1,-: F --&#x3E; Fo has degree 2; since its ramification
locus is equal to that of f, the Riemann-Hurwitz formula now gives a
formula

Hence we can substitute for g in (5) and multiply by 12 to get

This equality, together with (3) and (4), now yields (1).

2. Historical note

Formula (1) was stated by Noether [9] as

He established it by considering a model of the surface in P3.

Previously [8] he had found formulae for the arithmetic genus p and
the genus pO) of a canonical curve in terms of the numerical charac-
ters of the model in P3. Now he showed that the expression he got for
the différence 12(p + 1) - (pO) - 1) was equal to the expression for the
invariant ir(l) given by Zeuthen [14].
Clebsch [5] was the first to look for a class number of the birational

class to which a surface belongs. He defined the genus of a surface as
the number pg of independent everywhere finite double integrals. He
showed that for a model f (x, y, z) = 0 of the surface in P3, of degree n,
with only double and cuspidal curves, these integrals are of the form
f f cf&#x3E;1 f dx dy, where 0 is a polynomial of degree n - 4 which vanishes
on the singular curves of f = 0 (this result is attributed to Clebsch in
[13, p. 157] but no reference is given). Noether [9] called the surfaces
0 = 0 adjoints to f = 0. He allowed more general singularities on
f = 0. He proved that the number pg of independent adjoints is a

birational invariant of the surface (this result was announced by
Clebsch in [5]). In [9] Noether developed the theory of adjoints for
higher dimensional varieties as well.

Let S be a set of curves and points (with assigned multiplicities) in
P3. Denote by P(m, S) the number of conditions imposed on a surface
of degree m by requiring it to pass through S. The number P(m, S) is
called the postulation of S with respect to surfaces of degree m.
Cayley [3] was the first to consider P(m, S) and give a formula for it,



118

under certain restrictions on the set S. The restrictions were relaxed

by Noether [8].
The work of Clebsch [5] led Cayley [2] to derive a postulation

formula for the genus (and again this was generalized by Noether
[8]). According to this formula the genus is the postulated number pa

of adjoints to a given model f = 0, hence equal to the number (n ; 1)
of all surfaces of degree n - 4 minus the postulation P(n - 4, S),
where S denotes the set of singular curves and points of f = 0.
Zeuthen [14] uses Cayley’s formula to show that pa is a birational

invariant.

Both Cayley [4] and Noether [9] found that pa could be strictly less
than the actual number, pg, of adjoints. The breakthrough in under-
standing the difference pg - pa was made by Enriques in 1896 [see 13,
IV].
The next invariant p(l) that occurs in (1’) is what Noether called the

curve genus of the surface. He defined it, via a model f = 0, as the
genus of the variable intersection curve of the surface f = 0 with a
general adjoint 0 = 0, i.e. of a canonical curve. He showed, by what
amounts to applying the adjunction formula, that pO) - 1 is equal to
the self-intersection f ci of a canonical curve.
Zeuthen [14] studied the behaviour of a surface under birational

transformation by methods similar to those he had applied to curves.
He considered enveloping cones of a model of the surface in p3 and
looked for numbers of such a cone that were independent of the
particular vertex and of the particular model. He discovered the
invariant ir(l) (equal to f c2), and found a formula for it in terms of

characters of the model, including the class n’ (the class is the number
of tangent planes that pass through a given point). Later Segre [12]
studied pencils on a surface and found a formula for ir(’) - 4 in terms
of characters of the pencil. The invariant I = ir(ll - 4 became known
as the Zeuthen-Segre invariant of the surface, see also [1].
To deduce (1’) Noether used his earlier formula [8] for the class n’

to eliminate n’ in Zeuthen’s formula for ir(’). He showed that the

resulting expression for ir(l) was equal to his expression for

12(p + 1) - (p(’) - 1).

Added in proof

A proof of Noether’s formula similar to the above has been given
independently by P. Griffiths and J. Harris in their book "Principles of
algebraic geometry" (Wiley Interscience, 1978).
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