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SIMPLE GALOIS EXTENSIONS OF
TWO-DIMENSIONAL AFFINE RATIONAL DOMAINS

Peter Russell

Introduction

Let k be a field and B = k™. (If R is a ring, we write R™ for the
polynomial ring in n variables over R.) Let A C B, where A is an
affine factorial k-algebra. It was shown in [5] (under some mild
additional restrictions on A) that if B = A[t] with t € qt(A) (the field
of quotients of A), then A = k@, D. Wright [9] proved that this is true
also if t" € qt(A) with ¢ lying in some extension field of qt(A) and
n>1. We in turn extend the ideas of [5] and [9] to show: Suppose
B = A[t] is a simple extension of A and Galois over A in the sense
that G = Aut, B is finite and qt(B°) = qt(A). Then A=k (The
restrictions on A mentioned above are again needed. See 2.4 for a
precise statement.) Let us note that the results of [5] and [9] as well as
[7] have been generalized in another direction in [6].

The proof of the above result breaks up naturally into two steps:

(i) Classification of actions by a finite group G on B such that B is
a simple extension of BC. It turns out that G fixes a variable in
B and B¢ = k', This we show in section 1. (The argument is
quite brief if card G is prime to char k and somewhat involved
otherwise.)

(ii) Analysis of A C B€ C B with qt(A) = qt(B°). One finds A = k@
by an argument very close to the one used to settle the
birational case in [5]. This is done in section 2.

As in [5], [6], [7] and [9] one derives, in a by now familiar way,
consequences concerning the cancellation problem for k' and the
problem of embedded planes from our main result. This is the content
of section 3.

Using techniques from [6] we prove the following results in section
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254 Peter Russell [2]

4: Let K be a locally factorial Krull domain and F € B = K such
that for each prime P C K the canonical image of F in
Kp QxBIP(Kp @k B) = (Kp/PKp)? is a variable. Then F is a variable
in B. As a consequence of this and the results of section 1 we can
settle a further special case of cancellation for k™ Let k be a locally
factorial Krull domain and A a k-algebra such that A" = A[T]=
k(X,Y,Z]=k® with Z € A[T"] for some n > 1 invertible in k. Then
A= k(2].

As a matter of notation, by a statement A = K" we always mean
that K is (in an obvious way) a subring of A and A is K-isomorphic
with K.

I would like to acknowledge the hospitality and lively mathematical
environment of Bhaskaracharya Pratishtana of Poona, India, which I
enjoyed during the preparation of this paper.

Let k be a commutative ring, B a k-algebra and G C Aut, B a finite
subgroup. Put

A=B°={b€B|e(b)=b forall ¢ € G}.

Suppose B is a simple extension of A, say B = A[t] with t € B. Then
any b € B can be written

b=ay+ait+---+aut™
with a; € A. Let ¢ € G. Then
P(b)-b=ae(®)-t)+ - +am(e(t™)—1t")
and we deduce the following basic fact:
(1.1) For all b € B and ¢ € G,
¢(b)—b E(e(t) - 1)B.

The next point is an immediate consequence of (1.1). The situation
described will arise numerous times in the sequel.

(1.2) Let K C B be a subring such that B = K[t'] for some t' € B.
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Let ¢ € G such that K C BY and t' € BY. Then B*[t'] = B = B*[t] and
Y(t)—t=u(yP(t')—t") with u € B*.

ReEMARK: If R is a ring, we denote by R* the group of units and
by R™ the additive group of R.

(1.3) Let G. ={p € G | o(t)— t € k}. Then

(i) G, is a subgroup of G.

(ii) The map ¢+ (t)—t identifies G. with a subgroup of k™.
Hence G.={1} if chark =0 and G.=(Z/pZ)" for some n if
char k is a prime p > 0.

(1.4) If ¢ €G and ¢(b)—b € k* for some b € B, then ¢(t)—t € k*
and ¢ €G..

In 1.5 and 1.6 we collect some more or less well known facts about
additive polynomials. The proofs are included for the convenience of
the reader.

(1.5) Let K be a domain of characteristic exponent p and H C K™
a finite subgroup. Put

fu(D)= hl;L (T = h).

Then fy4(T) is a monic p-polynomial in T, that is
fa(T)=T"" + a,.,T"" "'+ -+ -+ a,T

with a; € K and p" = card H. In particular, f4(T) is additive i.e., if R is
any K-algebra and T;, T, € R, then

fu(Ti+ To) = fu(Ty) + fu(T).
(Note fy(T)=T if char k =0.)
PrROOF: We may assume p > 1. Let h € H. Then o<z, (T — ih) =
T? — Th*™". This proves the result in case card H = p. If card H > p,
we can write H = H, P H, with card H;<card H, i =1, 2.

One finds

fu(T) = fu(fu(T)),
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with H'= fy,(H,). By induction on card H, fy and fy, are p-poly-
nomials. Hence, so is fy.

(1.6) LEMMA: Let K be a field of characteristic p >0, HC K* a
finite subgroup and

p:H->K*

a homomorphism. Then there exists a unique additive polynomial
f(T)€ K[T] such that

degf<card H and f(h)=p(h) forall h € H.

ProoF: Let H'C H and suppose f'(T) is additive of degree <
card H' such that f(h)=p(h) for h€H'. Let hhe H—H', c=
p(ho) — f'(ho) and d = fy(hy). Note d#0. Put f=f'+(c/d)fy. Then
f(h)=p(h) for he H"=H' @ {(hy) and degf=degfy =card H' <
card H". Induction on card H now establishes the existence of f.
Uniqueness is obvious.

(1.7.1) LEMMA: Let K be a domain, B~K" and G C AutgB a
finite subgroup. Then there exists a finite cyclic subgroup W C K*, a
finite subgroup H C K™ stable under multiplication by elements of W
and T € B with B = K[T] such that

G={pEAutxB|o(T)=wT+h, we W, h€H}.

Proor: Let B =KI[X] and ¢ €G. Then ¢(X)=a,X +b, with
a, € K* and b, € K. The map

w: G— K*

p—>a,

is a homomorphism and W = 7(G) is a finite, hence cyclic, subgroup
of K*. If W =/{1}, set T =X. Otherwise, choose ¥ € G such that
w = a, generates W and put T =X +(w—1)"'b,. Then (T)=wT
and clearly G is the semi-direct product of (/)= W and Ker 7 = H =
{a, | ¢ €EKer 7} C K* with W operating on H by multiplication.

(1.7.2) CoroLLARY: Put r=card W. Then B¢ = K[v] with v=
fu(T).
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ProOF: Let g = card H. Since W operates on H by multiplication,
we have g —1=0mod r and w? = w for any w € W. Also,

«LL o(M= ] w(T +w™'h) = l;L, wfn(T) = = fu(T)".

wEW hE

Hence v € B. Now B = K[T] is integral of degree rq over both K[v]
and B€. Hence B® CR = K[v] N K[T] where K is the integral closure
of K, and it is easy to see that R = K[v] since v is monic in T (see also
lemma 2.6.1 of [6]).

Let k be a field, p = char k and B = k™™ for the remainder of this
section. We fix (for the moment) a system (x, y) of variables for B. If
¢ € Auty B = GA,, we write

¢ =(f1, f2)

to mean that ¢ is the k-homomorphism with ¢(x) = f; € B and ¢(y) =
fz € B. Put

AF,={p € GA;| ¢ =(f,g). deg f =deg g = 1}
and

E>={p € GA,| ¢ = (ax + h(y),by +c),a,b Ek*, c Ek, h(y)
€ klyl}.

(1.8) Let G C GA, be a finite subgroup. As is well known (see [4],
theorem 3.3, for instance), GA, is the amalgamated product of its
subgroups AF, and E,. It follows that G is conjugate to a subgroup of
AF, or E, (see [8]) or, which is the same, is a subgroup of AF; or E,
after suitable choice of (x, y).

(1.9) LEMMA: Let B =[x, y] and suppose each ¢ € G is of the form
o=(x+a,y+b)
with a, b € k. Then G fixes a variable in B, i.e., there exist x,, y, such
that B = k[x,, yi] and ¢(x)) = x, for all ¢ € G, if and only if card G =
card k.
PROOF: Clearly G=G'={(a, b)|(x+a, y+b)EG}Ck*xk".

If, say, G fixes y, then G’ C k* x {0} and card G =< card k. We have to
prove the converse.
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Put G,={¢ €G | ¢(x) =x}. We can find G,C G such that G =
G1® G,. For ¢ =(x+a,y+b)EG,, b is uniquely determined by a
and the map sending a to b is a homomorphism from G, to k*. By 1.6
we can find an additive polynomial f,(x) € k[x] such that fi(a)=b
whenever (x+a,y+b)E G,. Let y'=y—fi(x). Then ¢(y)=y' for
¢ € G, and Y(y')—y’' € k for any ¢ € G. Hence replacing y by y’ we
may assume G,={p €EG | o(y) = y}.

We claim that there exists d € k such that a —bd# 0 for all 1# ¢ =
(x+a,y+b)EG. In fact, it is enough to choose dZL=
{alb l(x +a,y+b)EG, b#0}, and this is possible since card L <
(card Gy) (card G,—1)<card G =card k. Replace x by x’'=x—dy.
Then b is determined by a whenever ¢ =(x+ a4,y + b) €E G and we
can find an additive polynomial f,(x) such that fs(a) = b as ¢ ranges
over G. Now y — f,(x) is a variable fixed by G.

(1.10) LEMMA: Let B = k[x, y] and suppose €, n € G, where
e=(x,wy), n=(x+g(y),y)

with 1 # w € k* and 0 # g(y) € k[y]. Then B is not a simple extension
of A= BS.

ProoF: We may assume that G is generated by € and 5. Suppose
B = A[t] with t€ B. Then it follows from 1.2 that n(t)—t=
di(n(x)—x)=d,g(y) for some d, € k*. Note order ¢# p and hence
e(t)—t& k* by 1.3. By 1.1, e(t)—t|(w—1)y and hence e(t)—t=
dyy with d, € k*. Now ne(t)—t = n(e(t)—t)+ n(t)—t = dry + dig(y),
and ne(t)—t | (w—1)y by 1.1. Hence g(y) = dsy with ds € k*. After
replacing x by x/d; we may assume d;=1. Then G=
{(x + ay, wy)l weE W, a€ H}, where WCk* and H C k* are finite
subgroups with H stable under multiplication by elements of W.

Let 1# ¢ =(x+ay, wy)E€G. Then ¢(t)—t& k* since (0,0) is a
fixpoint for ¢. By 1.1, ¢(¢)—t divides (w — 1)y and ay. Since w# 1 or
a#0, o(t)=t+d,y with d,€k. Write t=Fy+F,+---+F, with
F, € k[x, y] homogeneous of degree i. Since ¢ is homogeneous, we
have ¢(F;)=F, for i#1 and ¢(F;)= F,+d,y. Since we are free to
replace t by t+c¢ with ¢ € BY, we may assume t=F,, say t=
b,x + b,y with b,, b,€ k. Then clearly b, #0 and we may assume
b,=1. We put b,=b.

Let G'={(x + ay, y) | a € H}. G'is normal in G and G/G' = W. Put

(0)) f(T,y)= I;L(T+ay)-
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Then f(T,y) is homogeneous in (T, y) and f(T,y)= fu,(T) in the
terminology of 1.5. Hence

@ (T, y) =T + @ T2y 7" 4 -+ g Ty

with a; € k and p" = card H. Since H is stable under multiplication by
elements of W,

3 f(T,wy)=f(T,y) and

f(wT,y)=wf(T,y) forany we W.
In particular,

O] f(T,y)=g(T,y")EKI[T,y’], where r=card W.

Put u = f(x, y) and v = y". Then B = k[u, y] and B¢ = k[u, v]. (Both
steps follow from 1.7.2 modulo some confusion in the notation.) The
conjugates of t over A= BS are ¢(t)=x+(wb +a)y, wE W, a € H.
Making use of (2) and (3) we find

f(T —x — wby, y) = f(T, y) - f(x, y) — f(wby, y)
= g(T, v)— u— wy?’f(b, 1).

Hence,
Ou,v, T)= ¢I;L (T = o(1)
= I I] (T-x—wby)-ay)
= ] f(T—x—wby,)
= wl;[w (8(T, v) — u — wy”’f(b, 1)).
The constant term w.r.t. T of @ is
wl;[vl((—u) = wy”’f(b, 1)) = (~u)" - f(b, 1)'v""

and the linear term is

aoTv®"~Vr w;v w];[w ((—u)— w'f(b, Dy"")

= ragTv®" Vr(—u)".
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Clearly klu, v, t]=k[u, v, T1/O. Hence, since min{r,p"}>1 and 1+
(p"=D/nN+r—1>1, u=v=1t=0 is a singular point of klu, v, t]=
B, and we have reached a contradiction.

(1.11) THEOREM: Let k be a field, B = k™, G a finite subgroup of
Aut, B and A = B€. Then B = Al[t] for some t € B if and only if G

fixes a variable in B.

Proor: The “if”” part of the theorem is obvious and we proceed to
prove the “only if” part. By 1.8 we may assume G C E, or G C AF,.

Case I: G CE,.
Let ¢ € G and write

1) ¢ = (vx + h,(y), w,y + a,) with v,, w, Ek*, a,Ek
and h,(y) € k[y].

Then

2) v, #1 or w,# 1 implies order ¢ # char k = p.

Let G, be as in 1.3 and

(3) L={¢€G|v,=w,=1}

Then L is normal in G and G.C L by (2) and 1.3. If ¢ =(x + h(y),
y+a)EL, then a#0 implies ¢E€G. by 1.4. Hence L=
G.U{pEL | a, = 0} and we have

4) G, C L and either (i) G, = L or (ii) a, =0 for all ¢ € L.

) Let ¢ €G—~ L. Then ¢(t)—t& k* by (2) and 1.3 and ¢(2)—¢
divides both (v, — 1)x + h,(y) and (w, — 1)y + a, by 1.1.

Hence

(6) v,# 1 implies w, =1 and a, =0, w,# 1 implies v, = 1 and
(W, — Dy + a, | hy(y).

Hence G = {¢ | w, = 1}U{e | v, = 1} and it follows that
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w,# 1 for some ¢ € G implies v, = 1 for all ¢ € G,
)
v,# 1 for some ¢ € G implies w, = 1 for all ¢ € G.

(I.1) Assume v,# 1 for some ¢ € G. It follows from (6) and (7) that
wy, =1 and a, =0 for all y € G. Hence G fixes y.

(1.2) Assume v, = 1 for all ¢ € G. Suppose n =(x+ h(y), y+a)EL
with a# 0. We may then assume a =1. Note that L = G. by (4).
Suppose a,,y™ appears in h(y) with m + 1 0 mod p. Replacing x by
x —(an/m +1)y™"' we eliminate the y™-term from h(y) without dis-
turbing terms of higher degree or changing L. It is clear, therefore,
that we may assume

n=0x+y" "'h(y"),y+1)

with h(y?) € k[y"]. Then

,nP = (x+ Z (y+i)"_1h|(y”+i), y)
0=i<p-1

=(x — (") + hoy), y)

where only terms b;y’ with j#0 mod p appear in hy(y). Since 7 € G,
n” =1 and we must have h,(y?) = 0, that is

n=(x,y+1).

Let

G.={y €G.|h, €k}
and

H={a,|yEGICk".
Suppose € = (x + h(y), y + a) € G, and € & G!. Then
®) a& H.
In fact, suppose ¢y =(x+ b, y—a) € G, with b €Ek. Then ¢’ = e =
(x + hy(y), y) € G. with hi(y)=b+ h(y —a) of positive degree. But

h| ¢'(t)~t by 1.2, and this contradicts ¢’ € G..
Now e = e for all ¢ € G, and hence
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) h(y +a’)=h(y) forall a’'€ H.

By 1.7.2, h € k[v] where v = fy(y) is an additive polynomial. We have
e(v)=fy(y+a)=v+b with b= fy(a)#0 by (8). Replacing x by
x + g(v) with g(v) € k[v] we do not alter the representation of ele-
ments of G/ since fy(a’) =0 and hence g(fy(y + a’)) = g(v) for a’' € H.
Repeating the argument given above we may assume, therefore, that
h = 0. Proceeding this way we obtain L = G, = G..

This discussion can be summarized as follows:

(10) After a suitable choice of variables L is of one of the
following two types.
L1: There exists n =(x,y + 1) € L and every ¢ € L is of the
form ¢ = (x + h,, y + a,) with ay, h, Ek.
L2: a,=0 for all ¢ € L, that is L fixes y.

(I.2.1) Suppose G = L. If L is of type L1, then G = G, by (4) and G
is isomorphic to a subgroup of k* by 1.3. Hence G fixes a variable by
1.9. If L is of type L2, then G fixes y.

(1.2.2) Suppose G2 L. Let W={w, | €G}. W is a finite, hence
cyclic, subgroup of k* and r = card W > 1. Let

e=(x+h(y),wy+a)eG

such that w generates W. Replacing y by y+(w—1)"'a we may
assume a=0. Then ¢(t)=t+cy with c €Ek* by (5) and ¢'(¢) =
t+(1+w+---+w HDecy=t, that is ¢"=1. Since o =
(x + Zosi<r—1 h(W'y), ), we have

an >, h(w'y)=0.

O=i=<r-1

(a) Assume L is of type L2.
Let h =2 b;y’. Then by (11)

(12) by > wi=0 forallj.

O=isr-1

If g(y) =2 cjy’ and x' = x + g(), then ¢(x") = x'+2 ((1 - wi)c; + b))y’
It follows from (12) that we can determine ¢; such that (1 - w')¢; +
b; = 0 for all j. Replacing x by x' (this does not change the type of L)
we may assume, therefore, that ¢ = (x, wy). Then L = {1} by 1.10 and
G fixes x.
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(b) Suppose L is of type L1.
Let y=(x+b,y+a)EL. Then oo '=(x+b+ h(y)—h(y + w'a),
y+w'a)EL and h(y)— h(y + w'a) = ¢, € k. By induction on i,

oY i =(x+b+c,+---+c,y+wia) with

¢i=h(y)-h(y +wia)Ek.

Let H be the subgroup of k* generated by {a,w’ I i=1,..,r,¢yEL}
It follows from the above that h(y) — h(y + d) = c, €k for any d € H,
and clearly the map d+> ¢, is a homomorphism on H. By 1.6 there
exists an additive polynomial f(y) such that f(d) = ¢, for d € H. Let
h'(y)=h(y)—f(y). Then h'(y+d)=h'(y) for d€H and h'(y)=
hy(v) € k[v] with v = fy(y) by 1.7.2. Since H is stable under multi-
plication by w € W,

13) fu(wy) = wfn(y),

and since no term b,,y™ with m =0 mod r appears in f,

(14) z f(w'y)=0.
By (11), (13), and (14),

0= Y h'(wy)= hi(w'v).
O=i<r-1 O=i=r-1
Arguing as in (a) we may assume, after replacing x by x'=x + gy(v)
with suitable g,(v) € k[v], that h,(v)=h'(y)=0. Again, this sub-
stitution does not change the type of L. In fact, if ¢ € L, then a, € H,
so fu(ay) =0 and ¢(x') = x + by + g((fu(y + a,)) = x' + by.

Since now h is an additive polynomial we can next change x to
x'=x + gx(y), where gy(y) is additive, with the effect of making h
vanish. Again this does not affect the type of L, for now ¢(x’) =
x'+ b, with b} = b, + g,(a,) E k.

Hence again ¢ =(x,wy)EG. If y=(x+b,y+a)EL and ¢'=
o = (x + b, wy + a), then order ¢’ # p, ¢'(t)—t £k* and ¢'(t)—t I b.
Hence b =0. So G fixes x.

Case II: G C AF..
Let ¢ =(aix+ b1y + ¢1, axx + b,y + ¢;) € G. If some eigenvalue of

M, = (Zl Zz) is not 1, then order ¢# p and ¢(t)—t & k* by 1.3. On
1 p
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the other hand, ¢(t)— ¢t divides both [, =(a;— 1)x+ b,y + ¢, and |, =
ax +(b;— 1)y + c, by 1.1. Hence [, and I, are linearly dependent.

We conclude that for each ¢ € G one cigenvalue of M, is 1. Then
the other is det M, € k*, and one finds by a straightforward cal-
culation that all M, can be simultaneously brought into lower trian-
gular form by a linear change of variables. This brings us back to case
I.

(1.11.1) CorROLLARY: Let the assumptions be as in 1.11 and let
X1 € B be a variable fixed by G. Then there exists y,€ B such that
B = k[x,, yi] and G = GG, is a semi-direct product, where

Gl={(x1,YI+h)|h€H}=H,
G ={xi, xy)|weE W}=W

with W and H subgroups of k* and k[x,]” respectively and W acting
on H by multiplication. Moreover,

B¢ = klxy, fu(y)']

where r = card W and fy(y,) € k[x,, y:] is monic and additive in y of
degree card H.

Prookr: This follows from 1.11, 1.7.1 and 1.7.2.

(1.11.2) REMARK: If card G is prime to char k then G = G,= W is
cyclic. It is clear that the proof of 1.11 simplifies considerably under
this assumption.

(1.11.3) REMARK: If char k = p >0 and ¢ € Aut, k™ is of order p,

then ¢ = (x + h(y), y) w.r.t. suitable variables (x, y) for k™.

In fact, by 1.8 we may assume ¢ € AF, or ¢ € E,. In the latter case
¢ =(x+ h(y), y + b) with h(y) €Ek[y] and b € k. In the first case this
form can be achieved by a linear change of variables. If b# 0 then h
can be made to vanish by changing x to x'= x + g(y) with suitable
g(y) € k[y] as we have seen in 1.2 of the proof of 1.11.

REMARK: It would be highly desirable to find a proof of 1.11 that
does not make explicit use of the structure theorem for Aut, k™
hidden in 1.8, particularly with a view of extending the result to
polynomial rings in three (or more) variables. If the latter were
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possible, one would have established, in conjunction with 4.3 below,
the cancellation property for k.

(2.1) LEMMA: Let A and A’ be noetherian domains with AC A’
such that qt(A)=qt(A’). Suppose A is normal prefactorial, every
height 1 prime of A’ contracts to a hight 1 prime of A and A* = A'*,
Then A= A'.

Proor: Let Q and Q’ be the set of height 1 primes of A and A’
respectively. If P € Q, then P is the radical of fA for some fE A
(since A is prefactorial) and f € A* = A", If P’ is a minimal, hence
height 1, prime of fA’, then PN A D fA and P'N A € Q by assump-
tion. Hence P'NA=P. Now Ay D Ap and qt(Ap) = qt(A). Hence

»=Ap since A is normal. It follows that A’'C Npego Ap C
n PEQ Ap = A.

For the remainder of this section we assume

(2.2) k is a field, A a finitely generated k-domain such that qt(A) =
qt(k™®) and in addition one of the following holds:

(i) A is factorial and contains a field generator, i.e., there exists
f € A such that qt(A) = k(f, g) for some g € qt(A);
(ii) char k =0 and A is factorial;
(iii) k is perfect and A is regular prefactorial.

(2.3) PROPOSITION: Let A be as in 2.2. Suppose
ACB'CB

where B = k', B' = k', qt(A) = qt(A"), B = A[t] for some t € B, and
every height 1 prime of B contracts to a height 1 prime of B'. Then

A=k,

ProoF: We may assume A C B'. Let S ={P,,..., P,} be the (finite)
=

set of height 1 primes P; of B’ such that A N P; = M; is maximal. Note
S# ¢ by 2.1. Write P; = fB’ with f; € B’ and let P’ be a minimal
prime of fiB. Then P\NA=M, MBCfBCP, and B/MB =
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(A/M))[t], where ¢ is the image of t mod M;B. It follows that

6)) MB =P’ = fB;
2 (f f)B=B fori#]j

Now PN B’ is a height 1 prime containing f;B’' = P;, hence PN B’ =
P; and we have

(3) MB’'=P; = fB';
“4) (f»f)B'=B' fori#j;
5) B'|P;C B/P;= A/IM'".

It follows from (5) that B/P’ is integral over B'/P; (since B/P’ has
only one valuation at infinity). Hence

(6) if MCB’' is a maximal ideal and f; € M, then there is a
maximal ideal N C B such that NN B’ =M.

Now f;B = P/ is regular and hence if M, N are as in (6) we have:
fi € N?, hence f; € M?, hence f,B' = P; is regular. By (5) and the affine
lemma of Liiroth (see [1], 2.7, for instance)

) B'|P;= AIM'".

Making use of (3), (4) and (7) we now proceed exactly as in the
proof of 1.3 of [5] to find x, v € B’ such that

8) B'=k[x,v] and f;€k[x], i=1,...,r
We claim:
(€)) Suppose A is factorial, Then x € A.

In fact, let g € k[x] be irreducible such that gt f, i=1,...,r. Then
gB’' N A is a height 1 prime, say gB'N A = aA with a € A, and

AlaA C B'[gB' = k[x]/g".

If aB’ # gB’, then some f; is a factor of a in B’ and a € M; (recall that
qt(A) = qt(B’)). Suppose this is the case. Arguing as in (6) we find a
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maximal ideal N of B’ such that g& N and N N A = M, But then
fi€ N, and this is impossible since (f;, g)B’'= B’. It follows that
aB’'=gB'. Hence g € A and x is integral over A, so x € A since A is
normal.

Suppose (i) or (ii) of 2.2 holds. In view of (8) and (9) we find, as in
the proof of 1.3 in [5], that A = k[x, uv] where u € k[x] is of minimal
degree such that uv € A.

Suppose (iii) of 2.2 holds. Using theorem 3.1 of [5] we find u € k[x]
such that A Ck[x, uv]= A’ and every height 1 prime of A’ contracts
to a height 1 prime of A. Then A= A’ by 2.1.

We record the following more precise version of 2.3 established
during the proof.

(2.3.1) CoROLLARY: There exists x € A such that A = k[x]", B’ =
k[x]™ and either A= B’ or there exists an irreducible f € k[x] such
that fB' N A is maximal and B/fB = k[x]1/f'". Moreover, if x has this
property and B’ = k[x, v], then A = k[x, uv] for some u € k[x].

REMARK: Let the notation be as in 2.3.1. It seems highly likely that
B = k[x]" as well. We will show this under special circumstances in
the next section.

(2.4) THEOREM: Let A be as in 2.2. Assume

(i) AC B =k such that B = A[t] for some t € A,

(i) if G = Aut, B and B' = B°, then qt(A) = qt(B’).
Then

A=k?,
More precisely, variables for A can be chosen as in 2.3.1.

PrOOF: B is a simple extension of B’= B¢ By 1.11.1, B’ = k',
Also, B is integral over B°. Hence all assumptions of 2.3 are satisfied.

3.

Let A be a k-algebra and FEA[T]=A", FZA. Put B=
A[T)/FA[T]. The canonical map from A to B is injective. We
identify A with its image and write B = A[t], where ¢ is the image of
T.
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(3.1) DEFINITION.

(i) Fis a Galois equation over A if

(a) F is prime;

(B) if G = Aut, B and B’ = B°, then qt(B’) = qt(A).
(i) G is of constant type if ¢(t)—t € k for all ¢ € G.

(3.2) THEOREM: Let k be a perfect field and A a k-algebra such that
A= A[T]=k[X, Y, Z]= k"
Suppose Z is a Galois equation over A. Then A = k2.

ProoF: Clearly A is finitely generated over k, regular and factorial,
so 2.2(iii) holds. Also B = A[T]/ZA[T]= k. Hence the theorem
follows from 2.4.

(3.3) THEOREM: Let k be a field, A=k and F € A[T] a Galois
equation over A such that B = A[T)/FA[t]= k. If G is of constant
type, assume also that k is perfect. Then A[T]= k[F]?.

A more precise description of F from which 3.3 will follow is given
in 3.8.4. We start by collecting some preliminary results. The first, a
substitute of sorts in positive characteristic for the epimorphism
theorem of Abhyankar and Moh [2], was obtained recently by R.
Ganong [3].

(3.4) ProPOSITION: Let k be a field and x € k[x,, y,] = k' such that
k[xy, y1l/x = k™. Then there is a unique k(x)-valuation V of k(x,, y)
not containing k(x)[x,, y,], and the residue field L. of V is purely
inseparable over k(x). Moreover, k[x:, y:] = k[x]™ if and only if L =
k(x).

(3.5) LEMMA: Let k be a field of characteristic exponent p. Suppose
k®= A = k[x, y] C k[xy, y.] = B = k' such that

B/xB = k!

and either

(i) [qt(B):qt(A)] =r <o with (r,p)=1,
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or
(ii) p > 1 and A = B®, where G C Aut, B is a finite p-group.
Then B = k[x]".

Proor: Consider

A'=k(x)[yl C k(x)[x,, )] =B’

By 3.4 the valuation at infinity V, of qt(A’) (given by —deg,) has a
unique extension V to qt(B’). Let L, and L be the residue fields of V,
and V respectively and f =[L:L,]. Then f = p™ for some m by 3.4.
Moreover, [qt(B’): qt(A')] = ef, where e is the ramification index of V
over V,. By 3.4 it is enough to show f = 1.

If (i) holds, then [qt(B’): qt(A")] = r is prime to p, hence f =1. So
assume (ii) holds. Then G has a normal subgroup G, of order p. Let ¢
generate G,. By 1.11.3 we can assume that x,, y, have been chosen so
that ¢ = (x;, y; + h(x,)) with h(x,) € k[x,]. Then B¢ = k', Moreover,
B /x = k™ by the argument used to establish (7) in the proof of 2.3.
By induction on card G, B% = k[x]" and it is enough to prove the
lemma in case G = G,. Let ~ denote images mod x and write B/xB =
klt]. Then ¢(t)—t €k and ¢(y)—y, = h(x). If ¢# 1, then h(x) Ek
by 1.2, and ¢ = 1 implies h(%)=0. Hence x | h(x,)— ¢ with ¢ € k. If
h(x;)— c#0, this implies x = ax;+ b with a €k* and b € k and we
are done. Otherwise h(x;) = ¢ € k* and B’ is unramified over A'. Then
V is ramified over V|, that is ¢ > 1, and since e¢f = p we have f = 1.

The next result was mentioned without proof in [5], 3.6. We need it
now and briefly indicate a proof.

(3.6) LEMMA: Let k be a field, k an algebraic closure of k and
F €k[T, S1= k™ such that

() k[T, S1/F = k'Y,
(ii) k[T, S1= k[F]™.

Then k[T, S]= k[F1".

ProoF: Let A be the pencil of curves C,={F = A IA €k} and
Pi,...,Ds the base points of A (they are all at infinity). Then, as is
well known, it follows from (ii) that all members of A, including the
generic member, “go through each other” in the sense that the
multiplicity of (the proper transform of) C, at p; is independent of A.
Moreover, the generic member is a rational curve over k(F). On the
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other hand, by (i) all base points of A are rational over k (they are on
C, which has one place at infinity rational over k), so the generic
member in fact is a rational curve over k(F), and this implies
k[S, T1=k[F1", as is again well known.

(3.7) LEMMA: Let k be a field of characteristic p >0 and F =
f(T)—g(S)EK[T, S]1=k?, where f and g are additive polynomials
over k. Suppose k[T, SI/F = k™. Then k[T, S]= k[F]".

PrOOF: By 3.6 we may assume that k is perfect. If deg f = p" and
degg =p™ with, say, m=n, and if a (resp. b) is the leading
coefficient of f (resp. g), the substitution S=S'+(a/b)* "T"""
changes F to F' = f'(T) — g(S’) where f'(T) = f(T)— g((a/lb)* " T""™)
is additive and degf' <p". The lemma follows by induction on
min(deg f, deg g).

We now turn to the proof of 3.3. Clearly B is a simple extension of
B¢ D A and we can choose variables x;, y, for B as in 1.11.1. We use
the notation established there and let p = char k.

(3.8.1) There exists x € A such that A = k[x]"! and B = k[x]"".

ProOF: (i) If A = BS, our claim follows from 1.11.1.

(i) Suppose A C BS. Clearly 2.2 (i) holds for A = k' and hence the
assumptions of 2.4 are satisfied. We choose x as in 2.3.1. Let k be an
algebraic closure of k and put B, =k ®,B. Clearly if f, is an irre-
ducible factor of f over k, then f;= ax + B with « €Ek* and B €k,
BS = k[f,]"" and B,/f;= k". Noting B% ~ k' we find B{!/f, = k' by
the argument for (7) in the proof of 2.3. Since [qt(B?): qt(B%)] =
card G,=r with (r,p)=1, we have Bf'=k[f]]"=k[x]" by 3.5().
Similarly B, = k[x]™ now follows from 3.5(ii).

(a) If G is of constant type, then k is separable over k by
assumption and B = k[x]" by [5], lemma 1.5.

(B) Suppose G is not of constant type. Then either there exists
¢ =(x;, wy,) €E G with w# 1 or there exists ¢ = (x;, y; + hi(x1))
with h(x;) € k[x,] — k. Choose y € B, such that B; = k[x, y]. In
the first case, ¢(y)= wy+ 8(x) with 8(x)€ k[x] and d((w —
Dy + 8(x)) = (w— 1)y, for some d €k* by 1.2. Hence B,=
k[x, y,] and B = k[x, y;]. In the second case, Y(y)=y+ h(x)
with h(x) € k[x] and h(x) = dh(x,) with d € k* by 1.2. Hence
x = ax;+ b with a € k* and b € k. Since x, x, € B, we have a,
b €k and B = k[x;,]"" = k[x]".
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ReEMARK: If char k = 0, we can finish the proof of 3.3 by referring
to [6], theorem 2.6.2. The remainder of the proof is devoted mainly to
establishing that F is a variable in k(x) @ A[T] in case char k =
p > 0. Even in characteristic 0, though, we have the bonus of finding
an explicit form for F.

(3.8.2) Let x be as in 3.8.1 and B = k[x, y] where y is chosen so that
G = GG, as in 1.11.1 (with (x,y) in place of (x;,y,)). Then B¢ =
klx, v] with v = fy(y)" and A = k[x, w] where w = uv with u € k[x].

Proor: This is clear from 1.11.1 and 2.3.1.

(3.8.3) Let x, y, v, u, w be as in 3.8.2. Let F’' be the minimal
equation of t over k[x, v]. Then either

(i) F'=f(T +c¢) —v, where f(T)€Ek[x, T] is monic additive of
degree p" =card H in T and c € k[x, v]= B,

or
(i) F'=f(T +c)—g(v), where f(T)Ek[T] and g(v)€E k[v] are
additive with deg f =p"=card H, 1<degg=p™ <p”",and c €
kix, v].
PRrOOF: Let ¢y = (x, wy + h) € G. Then by 1.2

6)) Y(t)—t=a,((w—1y+h) witha, €k*'

(a) Assume W#{1}. Let ¢ =(x,wy) with 1#wWEW, and =
(x, y+ h) with h € H. Then ¢ = ¢n and

t+a,(w=1y+h)=¢{t)=t+a,(w—1)y+a,h.

Hence a, = a, = a, and it follows that a, is constant for ¢ € G.
Hence

2) there exist d € k* and ¢ € k[x, v] such that y = d(t + ¢).

(B) Assume W ={1} and there exist h;, h,€ H such that h;# 0,
i=1,2 and h; £ kh,. Given any such pair put ¢; = (x, y + h;).



272 Peter Russell [20]
Then
t+ a.,,,,,,z(h; + hz) = l/l]l/lz(t) =t+ ad,'hl + a,hhz

and hence ay, = ay,y, = ay,- Again a, is independent of ¢ and
(2) holds.
(y) Suppose W = {1} and H = H'h with fixed h € k[x] and H' C k".

If y=(x,y+ah)€EQG, then (t)=t+ bh with bE k by 1.2 and the
map a+—b is a homomorphism on H'. Let g,(y) € k[y] be the unique
additive polynomial of degree < p" =card H' such that g,(a) =b for
a € H' (see 1.6). Let g,(y) = hg,(y/h) € k(x)[y]. Then g,(y) is additive
and g(ah) = bh for ah € H. Hence y(t —g\(y))=t—g,(y) for 4 €G
and t = g,(y)+ ¢ with é € k(x)[v]. Now deg, g, <p", deg,v = p" and
t € k[x, y]. Hence £,(y) € k[x, y] and ¢ € k[x, v]. This is possible only
if either deg, g, = 1, in which case (2) holds, or deg, g,>1 and h € k*.
In the latter case we may take h =1 and g, = g,. Then

3) HcCk* and t=g(y)—c, where g/(y)€kl[y] is additive of
degree p™ with 1<p™<p" and c € k[x, v]. Moreover, the
conjugates of ¢t are {t + g,(a) l a€e H}.

If (3) holds, let H, = g,(H) and put f(T)= fu(T). Then f(g:(y)) =
g(v) E k[v] and f(gi(y)) is additive in y, hence additive in v.
Moreover, deg, v =degrf =p" and deg, g = deg, g, = p™. Clearly the
minimal equation of t over k[x, v] is f(T + ¢) — g(v), so F'is as in (ii).

Now suppose (2) holds. Since fy(y)" — v is the minimal equation of
y over k[x, v] (see 1.7.2), the minimal equation for t is f(T +c¢) —v
where f(T)=fy(dT). Hence F’ is as in (i) (after multiplication by
d 7" € k¥*).

3.8.4 (i) Suppose 3.8.3(i) holds. Let u’ € k[x] such that u'c =c'€
k[x, w] and GCD(u',c')=1. Then u;= ulu"" € k[x] and

F=u,(u™"f(T)+u""f(c'lu"))" — w.
Moreover, if 7 is an irreducible factor of u’, then
e —w=a+bwmod 7

with a, b € k[x] and b# 0 mod .
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(i) If 3.8.3(ii) holds, then u =1, ¢ € k[x, w] and
F=f(T+c)-g().

PROOF:
(i) Let u/u™" = u,/u, with uy, u, € k[x] and GCD(u;, u,) = 1. Let

F" = uuF’
=, (u”" f(T)+u”"f(c'[u")) — uw.

Since f(T) is monic of degree p" in T, u’”"f(c'/u’) = c'™" + u’a with
a € k[x, w]. So clearly u,u is a polynomial # of minimal degree in
k[x] such that @F' € k[x, w, T] and it follows that F = F". Let 7 be
an irreducible factor of u,. Then F reduces to u;¢'”" =0 mod =, and
this is not possible since

¢)) kix, w, TY(F, w) = k[x]/='" is a domain.

Hence u, =1. Now let 7 be an irreducible factor of u’. Then F =
uc'™ —wmod m, and since (1) again holds, F is congruent to a
polynomial of degree 1 in w mod 7.

(ii) Letu’c = ¢’ asin (i) and put u?"'/u'™" = u;/u, with u;, u, € k[x] and
GCD(u;, uy) = 1. One sees as before that u,=1and F = u?"'F' =
wu'P"f(T) + uu"f(c'/u’) — u?"'g(wlu). Let 7 be an irreducible
factor of u. Then F reduces to uic’”" — a, w?"'=0mod = where
a,, is the leading coefficient of g. Since p" > p™ > 1 this is again
incompatible with (1), so u = 1 as claimed.

(3.8.5) Let F be as in 3.8.4 (i) or (ii). Then k[x, w, T]= k[x, F]".

PROOF:

(i) It follows from 3.8.3() that k(x)w, T]=kx)v, T]=
k(xX)v, T+ cl=k(x)IF', T+ cl=k(x)[F, T+c]. One sees in
the same way that F,, the canonical image of F in (k[x]/7)
[w, T1, is a variable if 7 € k[x] is irreducible and 7 t wu. If, on
the other hand, = | u, this follows from the considerations in
3.8.4(i). The conclusion now follows from theorem 4.1 below
applied to K = k[x] C k[x, w, T].

(ii) Suppose 3.8.4(ii)) holds. Let T'=T+c. Then k[x,w, T]=
klx, w, T'] and k[x, w, T')/f(T’)— g(w) = k[x, y]. By the cancel-
lation property for k[x] (see [1], 2.8), k[w, T'1/f(T") — g(w) = k!
and hence k[w, T']=k[F]" by 3.7. So clearly k[x,w, T]=
k(x, F11.
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(3.8.6) REMARK: Clearly if F is as in (3.8.4) and f = fy for some
H C k[x]* stable under multiplication by elements of W =
{weEk* | w’” =1}, then F is a Galois equation over k[x, w] with group
G isomorphic to the semidirect product HW.

Let us note that if u# 1, then the examples of “embedded planes”
obtained this way are all of the type described in [6], (3.8.2). Let us
point out also that if F is a Galois equation, then F + ¢ with ¢ € k* in
general is not Galois.

4.

(4.1) THEOREM: Let K be a locally factorial Krull domain and
F€eKI[X, Y]=K®. For each prime P C K let Lp = qt(K/P), denote
by Fp the canonical image of F in Lp[X, Y] and assume Lp[X, Y] =
Lp[Fp]". Then K[X, Y]= K[F]".

Proor: If P C K is a prime, then

(1) K[X, YI/PK[X, Y]=(K/P)[X, Y] is a domain,
(2) Lp(Fp) is algebraically closed in Lp(X, Y),

(3) Lp(Fp)N(K/P)IX, Y]C Lp[Fpl.

((2) and (3) are immediate consequences of Lp[X, Y]= Lp[Fp]™)
Also, since F is a variable, hence transcendental, modulo each
maximal ideal of K, the content of F — F(0) is (1) and

(4 Lp[Fp]lN(KIP)IX, Y]=(K/P)[Fp] by [6],(2.6.1)
Hence
(5) Lp(Fp) N(K/P)IX, Y]=(K/P)[Fp].

We have established (by (1), (2) and (5)) that K(F) is S-inert in
K[X, Y] relative to K, where S = K — {0} (see [6], 2.1.2), and by [6],
corollary 2.5.3, K[X, Y]=Symg(Q) ®x K[F], where Q is a finitely
generated rank 1 projective K-module. Hence KI[X,Y]=
Symx(Q P K), so QP K is free, so Q is free (since Q is of rank 1)
and K[X, Y]1= K[F]".

(4.2) REMARK: Let F =(F,,...,F)and X =(Xj,..., X,). Otherwise
keep the notation of 4.1, and assume F,,.. ., F, are part of a system of



[23] Simple galois extensions of two-dimensional affine rational domains 275

variables in Lp[X, Y] for each prime P C K. (1), (2) and (3) in the
above proof then hold. Moreover (4) is easy to establish if P = (0)
since K is normal. Clearly (4) is trivial for P#0 in case K is a
principal ideal domain. Hence the conclusion of the theorm holds in
that case.

(4.3) THEOREM: Let k be a locally factorial Krull domain and A a
k-algebra such that

A= A[T]=k[X, Y, Z]= kP
Suppose Z € A[T"] with n > 1 and invertible in k. Then
A=k,

ProoF: Suppose first that k contains a primitive n-th root of unity
w. Then Z € A[T"] if and only if Z is fixed by the A-automorphism ¢
of A[T] such that ¢(T) = wT. Put B= A[T] and C = B® = A[T"]. Let
K =k[Z] and P C K a prime. We define: L, = qt(K/P); Tp (resp.
Cp) = canonical image of T (resp. C) in (K/P)[X, Y]C Lp[X, Y];
@p = automorphism induced by ¢ on (K/P)[X, Y] or Lp[X, Y]; P'=
PNk

We claim:
(1) T#0.

Clearly TZ P'B and replacing, for the moment, k by k/P’ we may
assume P’'=(0). Let L = qt(k). If P =(0) we are done. Otherwise
M =PL[Z] is maximal and Lp=L[Z]/M. Write M = aL[Z] with
a€L[Z]. Now T is prime in L[X, Y, Z]=(L®:AIT] and T =0,
ie, TEPBCaL[X,Y,Z], implies T=ab with b€ L. This,
however, is impossible since ¢(T)= wT# T whereas ¢(ab) = ab.
Hence Tp#0.
Note (K/P)[X, Y]= Cp[Tr] and

(2) Lp[X, Y]=S"'Cp[Tp] with S=(K/P—{0})C Cs.

It follows from (1) and (2) that order ¢p =n and Lp[X, Y]=
Lp(X, YI°?[Tp]. By (1.11.1) we can find X;, Y, € Lp[X, Y] such that
Lp[X, Y] = Lpl[X,, Y] with ¢ (X;)= X, and ¢p(Y))=wY,. By 1.1,
(w—=1)Ts |(w—1)Y, and hence T, is a variable in Lp[X, Y.

If k does not contain a primitive n-th root of unity, we adjoin one,
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again calling it w. Then k[w]D k is an integral extension, and so is
K[w]D K. If P is a prime of K, let P’ be a prime of K[w] such that
P'NK = P. Then Lp D Lp is a separable extension. By what we have
shown, Tp € Lp[X, Y] is a variable in Lp[X, Y], and by [5], lemma
1.5, Tp is a variable in Lp[X, Y]. It follows from 4.1 that B =
k[Z, U, T] for some U € B. Hence A = B/TB = k%,
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