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Introduction

Let k be a field and B = k[2]. (If R is a ring, we write R[n] for the
polynomial ring in n variables over R.) Let A C B, where A is an

affine factorial k-algebra. It was shown in [5] (under some mild
additional restrictions on A) that if B = A[t] with t E qt(A) (the field
of quotients of A), then A = k[2]. D. Wright [9] proved that this is true
also if t" E qt(A) with t lying in some extension field of qt(A) and
n &#x3E; 1. We in turn extend the ideas of [5] and [9] to show: Suppose
B = A[t] is a simple extension of A and Galois over A in the sense
that G = AutA B is finite and qt(BG) = qt(A). Then A = k[2]. (The
restrictions on A mentioned above are again needed. See 2.4 for a
precise statement.) Let us note that the results of [5] and [9] as well as
[7] have been generalized in another direction in [6].
The proof of the above result breaks up naturally into two steps:

(i) Classification of actions by a finite group G on B such that B is
a simple extension of BG. It turns out that G fixes a variable in
B and Bo - k[2]. This we show in section 1. (The argument is
quite brief if card G is prime to char k and somewhat involved
otherwise.)

(ii) Analysis of A C BG C B with qt(A) = qt(BG). One finds A = k [21
by an argument very close to the one used to settle the

birational case in [5]. This is done in section 2.

As in [5], [6], [7] and [9] one derives, in a by now familiar way,
consequences concerning the cancellation problem for k[2] and the
problem of embedded planes from our main result. This is the content
of section 3.

Using techniques from [6] we prove the following results in section
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4: Let K be a locally factorial Krull domain and F E B = K[2] such
that for each prime P C K the canonical image of F in

Kp OK BIP(Kp @KB) = (KP/PKpi2] is a variable. Then F is a variable
in B. As a consequence of this and the results of section 1 we can

settle a further special case of cancellation for k[2]: Let k be a locally
f actorial Krull domain and A a k-algebra such that A[1] = A[T] =
k[X, Y, Z] = k[3] with Z E A[Tn] for some rt &#x3E; 1 invertible in k. Then
A = k[2]. .
As a matter of notation, by a statement A = K[n] we always mean

that K is (in an obvious way) a subring of A and A is K-isomorphic
with K[n].

1 would like to acknowledge the hospitality and lively mathematical
environment of Bhaskaracharya Pratishtana of Poona, India, which I
enjoyed during the preparation of this paper.

1.

Let k be a commutative ring, B a k-algebra and G C Autk B a finite
subgroup. Put

Suppose B is a simple extension of A, say B = A[t] with t E B. Then
any b E B can be written

and we deduce the f ollowing basic fact:

The next point is an immediate consequence of (1.1). The situation
described will arise numerous times in the sequel.

(1.2) Let K C B be a subring such that B = K[t’] for some t’ E B.
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REMARK: If R is a ring, we denote by R * the group of units and
by R+ the additive group of R.

In 1.5 and 1.6 we collect some more or less well known facts about

additive polynomials. The proofs are included for the convenience of
the reader.

(1.5) Let K be a domain of characteristic exponent p and H C K+
a finite subgroup. Put

Then f H ( T ) is a monic p-polynomial in T, that is

with ai E K and p" = card H. In particular, fH(T) is additive i.e., if R is
any K-algebra and Ti, T2 E R, then

PROOF: We may assume p &#x3E; 1. Let h E H. Then 1-lo:gi:5p-l (T - ih) =
TP - ThP-’. This proves the result in case card H = p. If card H &#x3E; p,
we can write H = Hl (D H2 with card Hi  card H, i = 1, 2.

One finds
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with H’ = f H2(H,). B y induction on card H, f H, and f H2 are p-poly-
nomials. Hence, so is fH.

(1.6) LEMMA: Let K be a field of characteristic p &#x3E; 0, H C K+ a

finite subgroup and

a homomorphism. Then there exists a unique additive polynomial
f(T) E K[T] such that

card H". Induction on card H now establishes the existence of f.
Uniqueness is obvious.

(1.7.1) LEMMA: Let K be a domain, B = K[1] and G C AutK B a
finite subgroup. Then there exists a finite cyclic subgroup W C K*, a
finite subgroup H C K+ stable under multiplication by elements of W
and T E B with B = K [ T ] such that

is a homomorphism and W = ir(G) is a finite, hence cyclic, subgroup
of K*. If W = {1}, set T = X. Otherwise, choose e E G such that
w = at/1 generates W and put T = X + (w - l)-’b,,, Then e(T) = wT
and clearly G is the semi-direct product of .p) = W and Ker 1T = H =

{acp l ’P E Ker ?r} C K+ with W operating on H by multiplication.
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PROOF: Let q = card H. Since W operates on H by multiplication,
we have q - 1 - 0 mod r and Wq= w for any w E W. Also,

Hence v E Be. Now B = K[T] is integral of degree rq over both K[v]
and B G. Hence B G. CR = K[v] n K[T] where K is the integral closure
of K, and it is easy to see that R = K[v] since v is monic in T (see also
lemma 2.6.1 of [6]).

Let k be a field, p = char k and B = k[2] for the remainder of this
section. We fix (for the moment) a system (x, y ) of variables for B. If

cp E Autk B = GA2, we write

to mean that cp is the k-homomorphism with
f 2 E B. Put

and

(1.8) Let G C GA2 be a finite subgroup. As is well known (see [4],
theorem 3.3, for instance), GA2 is the amalgamated product of its

subgroups AF2 and E2. It follows that G is conjugate to a subgroup of
AF2 or E2 (see [8]) or, which is the same, is a subgroup of AF2 or E2
after suitable choice of (x, y).

(1.9) LEMMA: Let B = [x, y] and suppose each cp E G is of the form

with a, b E k. Then G fixes a variable in B, i.e., there exist xl, YI such
that B = k[xi, YI] and CP(XI) = Xl for all cp E G, if and only if card G:5
card k.

PROOF: Clearly
If, say, G fixes y, then

prove the converse.
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Then b is determined by a whenever cp = (x + a, y + b) E Gand we
can find an additive polynomial f 2(x) such that f2(a) = b as ç ranges

subgroups with H stable under multiplication by elements of W.
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with ai e k and p n = card H. Since H is stable under multiplication by
elements of W,

In particular,

Put u = f(x, y) and v = y". Then BG’ = k[u, y] and BG = k[u, v]. (Both
steps follow from 1.7.2 modulo some confusion in the notation.) The

Making use of (2) and (3) we find

Hence,

The constant term w.r.t. T of 0 is

and the linear term is
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B, and we have reached a contradiction.

PROOF: The "if" part of the theorem is obvious and we proceed to
prove the "only if" part. By 1.8 we may assume G C E2 or G C AF2.

Let cp E G and write

Then

implies order cp Y-’ char k = p.

Hence
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(I.1) Assume v,:,x-’ 1 for some cp E G. It follows from (6) and (7) that

w,y = 1 and a, = 0 for all Ji E G. Hence G fixes y.
(1.2) Assume Vcp = 1 for all ç E G. Suppose q = (x + h(y), y + a) E L

with a# 0. We may then assume a = 1. Note that L = Gc by (4).
Suppose am y m appears in h(y) with m + 14 0 mod p. Replacing x by
x - (am/m + l)ym+l we eliminate the y’"-term from h(y) without dis-
turbing terms of higher degree or changing L. It is clear, therefore,
that we may assume

where only terms bjyj with j4 0 mod p appear in h2(y). Since q E G,,
17P = 1 and we must have h1(yP) = 0, that is

Let

and
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By 1.7.2, h E k[v] where v = fH(Y) is an additive polynomial. We have
e(v) = fH(Y + a) = v + b with b = fH(a):;é 0 by (8). Replacing x by
x + g( v) with g( v ) E k [v] we do not alter the representation of ele-
ments of G’ c since fH(a’) = 0 and hence g(fH(Y + a’)) = g(v) f or a’ E H.
Repeating the argument given above we may assume, therefore, that
h = 0. Proceeding this way we obtain L = Gc = G’C.

This discussion can be summarized as follows:

(10) After a suitable choice of variables L is of one of the

following two types.
L1: There exists q = (x, y + 1) e L and every ip E L is of the

form .p = (x + h.", y + at/1) with a.", ht/1 E k.
L2: a, = 0 for all Ji E L, that is L fixes y.

(1.2.1) Suppose G = L. If L is of type L1, then G = Gc by (4) and G
is isomorphic to a subgroup of k+ by 1.3. Hence G fixes a variable by
1.9. If L is of type L2, then G fixes y.

(1.2.2) Suppose W is a finite, hence
cyclic, subgroup of k* and r = card W &#x3E; 1. Let

It follows from (12) that we can determine cj such that (1- wl)cj +
b; = 0 for all j. Replacing x by x’ (this does not change the type of L)
we may assume, therefore, that cp = (x, wy). Then L = {1} by 1.10 and
G fixes x.
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Let H be the subgroup of k+ generated by
It follows from the above that ; &#x3E;

and since no term bmym with m --- 0 mod r appears in f,

Arguing as in (a) we may assume, after replacing x by x’ = x + gi(v)
with suitable gl( V) E k[ v], that hl( v) = h ’(y) = o. Again, this sub-

stitution does not change the type of L. In fact, if tp E L, then E H,

Since now h is an additive polynomial we can next change x to
x’ = x + g2(Y), where g2(Y) is additive, with the eff ect of making h
vanish. Again this does not affect the type of L, for now 4i(x’) =
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the other hand, cp(t) - t divides both Il = (a, - 1)x + b,y + ci and 12 =

a2x+(b2-1)y+ c2 by 1.1. Hence 11 and 12 are linearly dependent.
We conclude that for each cp E G one eigenvalue of Mcp is 1. Then

the other is det Mcp E k*, and one finds by a straightforward cal-

culation that all Mcp can be simultaneously brought into lower trian-
gular form by a linear change of variables. This brings us back to case
I.

(1.11.1) COROLLARY: Let the assumptions be as in 1.11 and let

xl E B be a variable fixed by G. Then there exists YI E B such that
B = k[Xh YI] and G = GIG2 is a semi-direct product, where

with W and H subgroups of k* and k[xl]’ respectively and W acting
on H by multiplication. Moreover,

degree card H.

PROOF: This follows from 1.11, 1.7.1 and 1.7.2.

( 1.11.2) REMARK: If card G is prime to char k then G = G2 = W is
cyclic. It is clear that the proof of 1.11 simplifies considerably under
this assumption.

then ç = (x + h(y), y) w.r.t. suitable variables (x, y) for k[2].

In fact, by 1.8 we may assume cp E AF2 or cp E E2. In the latter case
ç = (x + h(y), y + b ) with h(y) E k[y] and b E k. In the first case this
form can be achieved by a linear change of variables. If b 0 0 then h
can be made to vanish by changing x to x’ = x + g(y) with suitable
g(y) E k[y] as we have seen in 1.2 of the proof of 1.11.

REMARK: It would be highly desirable to find a proof of 1.11 that
does not make explicit use of the structure theorem for Autk k[2]
hidden in 1.8, particularly with a view of extending the result to
polynomial rings in three (or more) variables. If the latter were
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possible, one would have established, in conjunction with 4.3 below,
the cancellation property for k[2].

2.

(2.1) LEMMA: Let A and A’ be noetherian domains with A C A’
such that qt(A) = qt(A’). Suppose A is normal pref actorial, every

height 1 prime of A’ contracts to a hight 1 prime of A and A* = A’*.
Then A = A’.

PROOF: Let Q and Q’ be the set of height 1 primes of A and A’
respectively. If P E Q, then P is the radical of fA for some f E A
(since A is prefactorial) and f é A* = A’*. If P’ is a minimal, hence
height 1, prime of fA’, then P’ fl A D fA and P’ fl A E Q by assump-
tion. Hence P’ nA = P. Now Apl:J Ap and qt(Ap’) = qt(A). Hence
A’, = Ap since A is normal. It follows that A’ c np’EQ’ Ap’ C
npEO Ap = A.
For the remainder of this section we assume

(2.2) k is a field, A a finitely generated k-domain such that qt(A) =

qt(kl’]) and in addition one of the following holds:

(i) A is factorial and contains a field generator, i.e., there exists
f E A such that qt(A) = k(f, g) for some g E qt(A);

(ii) char k = 0 and A is factorial;
(iii) k is perfect and A is regular prefactorial.

(2.3) PROPOSITION: Let A be as in 2.2. Suppose

ACB’CB

where B = k[2], B’ = k[2], qt(A) = qt(A’), B = A[t] for some t E B, and
every height 1 prime of B contracts to a height 1 prime of B’. Then

A = k[2].

PROOF: We may assume A C B’. Let S = {P1, ..., PJ be the (finite)

set of height 1 primes Pi of B’ such that A n P, = mi is maximal. Note
S 0 0 by 2.1. Write Pi= fiB’ with fi E B’ and let Pi be a minimal
prime of f;B. Then Pin A = Mi, MiB c fiB C Pi and BIMIB =
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where t is the image of t mod M,B. It follows that

Now Pi n B’ is a height 1 prime containing f;B’ = Pi, hence
Pi and we have

It follows from (5) that B/Pi is integral over B’/P; (since B/Pi has
only one valuation at infinity). Hence

(6) if M C B’ is a maximal ideal and fi E M, then there is a

maximal ideal N C B such that N fl B’ = M.

Making use of (3), (4) and (7) we now proceed exactly as in the
proof of 1.3 of [5] to find x, v E B’ such that

We claim:

If aB’ gB’, then some fi is a factor of a in B’ and a E Mi (recall that
qt(A) = qt(B’)). Suppose this is the case. Arguing as in (6) we find a
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maximal ideal N of B’ such that g E N and N n A = Mi. But then
fi El N, and this is impossible since (/,,g)B’=BB It follows that
aB’ = gB’. Hence g E A and x is integral over A, so x E A since A is
normal.

Suppose (i) or (ii) of 2.2 holds. In view of (8) and (9) we find, as in
the proof of 1.3 in [5], that A = k[x, uv] where u E k[x] is of minimal
degree such that uv E A.
Suppose (iii) of 2.2 holds. Using theorem 3.1 of [5] we find u E k[x]

such that A C k [x, uv ] = A’ and every height 1 prime of A’ contracts
to a height 1 prime of A. Then A = A’ by 2.1.
We record the following more precise version of 2.3 established

during the proof.

(2.3.1) COROLLARY: There exists x E A such that A = k[x][l], B’ =
k[x][l] and either A = B’ or there exists an irreducible f E k[x] such
that fB’ fl A is maximal and B/fB = k[xllf"’. Moreover, if x has this
property and B’ = k[x, v], then A = k[x, uv] for some u E k[x].

REMARK: Let the notation be as in 2.3.1. It seems highly likely that
B = k[x][l] as well. We will show this under special circumstances in
the next section.

(2.4) THEOREM: Let A be as in 2.2. Assume
(i) A C B = k[2] such that B = A[t] for some t E A,
(ii) if G = AutA B and B’ = BG, then qt(A) = qt(B’).

Then

More precisely, variables for A can be chosen as in 2.3.1.

PROOF : B is a simple extension of B’ = BG. By 1.11.1, B’ = k[2].
Also, B is integral over BG. Hence all assumptions of 2.3 are satisfied.

3.

Let A be a k-algebra and FE A[T] = AU], Fe A. Put B =

A[T]/FA[T]. The canonical map from A to B is injective. We
identif y A with its image and write B = A[t], where t is the image of
T.
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(3 .1 ) DEFINITION.

(i) F is a Galois equation over A if
(a) F is prime;

(3.2) THEOREM: Let k be a perfect field and A a k-algebra such that

Suppose Z is a Galois equation over A. Then A = k[2].

PROOF: Clearly A is finitely generated over k, regular and factorial,
so 2.2(iii) holds. Also B = A[T]/ZA[T] = k[2]. Hence the theorem
follows from 2.4.

A more precise description of F from which 3.3 will follow is given
in 3.8.4. We start by collecting some preliminary results. The first, a
substitute of sorts in positive characteristic for the epimorphism
theorem of Abhyankar and Moh [2], was obtained recently by R.
Ganong [3].

(3.4) PROPOSITION: Let k be a field and x E k[xi, y,] = k[2] such that
k[Xh ylllx = k[l]. Then there is a unique k(x)-valuation V of k(xl, YI)
not containing K(x)[x1, y1], and the residue field L of V is purelynot containing k(x)[xl, YI], and the residue field L of V is purely
inseparable over k(x). Moreover, k[Xh YI] = k[xl[’] if and only if L =
k(x).

and either
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or

PROOF: Consider

By 3.4 the valuation at infinity VI of qt(A’) (given by - degy) has a
unique extension V to qt(B’). Let Li and L be the residue fields of Vi
and V respectively and f = [L:Li]. Then f = p m for some m by 3.4.
Moreover, [qt(B’) : qt(A’)] = ef, where e is the ramification index of V
over VI. By 3.4 it is enough to show f = 1.

If (i) holds, then [qt(B’) : qt(A’)] = r is prime to p, hence f = 1. So
assume (ii) holds. Then G has a normal subgroup Gi of order p. Let cp
generate G1. By 1.11.3 we can assume that x,, YI have been chosen so
that W = (xi, y, + h(xl» with h(Xl) e k[x1]. Then B G. - k[2]. Moreover,
BGllx = k[l] by the argument used to establish (7) in the proof of 2.3.
By induction on card G, BGI = k[x][’] and it is enough to prove the
lemma in case G = Gi. Let - denote images mod x and write B/xB =

k[t]. Then p(t) - tEk and Ç(gi) - gi = h(ii). If Ç # 1, then h(xl) E k
by 1.2, and Ç = 1 implies h(il) = 0. Hence x 1 h(xl) - c with c E k. If
h(XI)-C-:;éO, this implies x=axl+b with a E k * and b E k and we
are done. Otherwise h(xl) = c E k* and B’is unramified over A’. Then
V is ramified over V¡, that is e &#x3E; 1, and since ef = p we have f = 1.
The next result was mentioned without proof in [5], 3.6. We need it

now and briefly indicate a proof.

(3.6) LEMMA: Let k be a field, Î an algebraic closure of k and
FE k[T, S] = k[2] such that

PROOF: Let A be the pencil of curves CÀ = {F = À 1 À E k} and
pi, ... , P s the base points of ll (they are all at infinity). Then, as is
well known, it follows from (ii) that all members of A, including the
generic member, "go through each other" in the sense that the

multiplicity of (the proper transform of) C, at pi is independent of À.
Moreover, the generic member is a rational curve over k(F). On the
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other hand, by (i) all base points of A are rational over k (they are on
Co which has one place at infinity rational over k), so the generic
member in fact is a rational curve over k(F), and this implies
k[S, T] = k[F][l], as is again well known.

min(deg f, deg g).
We now turn to the proof of 3.3. Clearly B is a simple extension of

BG:) A and we can choose variables xi, yi for B as in 1.11.1. We use
the notation established there and let p = char k.

(3.8.1) There exists x e A such that A = k[X][1] and B = k[x][1].

PROOF: (i) If A = BG, our claim follows from 1.11.1.

(ii) Suppose A C BG. Clearly 2.2 (i) holds for A = k[2] and hence the
assumptions of 2.4 are satisfied. We choose x as in 2.3.1. Let k be an
algebraic closure of k and put B, = k Q9kB. Clearly if fi is an irre-

ducible factor of f over k, then fi = ax + 8 with a E k * and 8 E k,
B IG t---e k[fl][l] and Btlfl = trI]. Noting Brl = j{£2] we find Brl/fl = k-111 by
the argument for (7) in the proof of 2.3. Since [qt(Brl): qt(BG)] =
card G2 = r with (r, p) = 1, we have B = k[fl][1] = k[x ][1] by 3.5(i).
Similarly Bi = k[x ][1] now follows from 3.5(ii).

(a ) If G is of constant type, then k is separable over k by
assumption and B = k[x][1] by [5], lemma 1.5.

(3) Suppose G is not of constant type. Then either there exists


