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In 1950, A.O. Gelfond and N.I. Feldman established their well-
known measure of algebraic independence of a(j and a(j2, where a # 0
is algebraic, log a -:;é 0 and 8 is a cubic irrationality [8]:

The numbers a 0 and a s2 had been proven algebraically independent
by Gelfond [7]. The total degree of a polynomial P will be ab-

breviated as dp or deg P and the logarithm of its height as hP or
log ht P.

In Theorem 1 of this paper we improve the lower bound - exp(t4+E)
to - exp(Cd’ P (dp + hp». We obtain this result from the proof of
Theorem 2. But in contrast with the theorems of Gelfond and Feld-

man and even the recent generalization of Gelfond’s result on a/3, a
by M. Waldschmidt and the author [4], where a is taken to be

well-approximated by algebraic numbers, the arithmetic nature of a
by itself is not specified in Theorem 2. However, as in [4], [2], both
lower and upper bounds on expressions in thèse numbers are used,
even when no transcendence measure for any of them is known. This

basic idea comes from G.V. Choodnovsky’s proof of the algebraic
independence of three numbers [5] based on Gelfond’s method. The
result of [2] applied to more instances than did the earlier lower
bound of Gelfond and Feldman, but was weaker than it in the case

they considered.
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Since then G.V. Choodnovsky has established the algebraic in-

dependence of n + 1 algebraically independent numbers by a remark-
able iterative application of a variant of Gelfond’s method. There it

was necessary for him to develop a useful extension of the concept of
a resultant to polynomials having a common factor (see Lemma 5 in
Section 3 below). We employ these so-called semi-resultants to

prove a theorem on a sort of simultaneous approximation problem
which will generalize and sharpen somewhat the result of Gelfond
and Feldman. (Actually the sharpening is obtainable from the original
structure of proof as well.) Choodnovsky himself has announced a
strengthening of the Gelfond-Feldman result to a lower bound of
- exp(C(hp + dP)3), but the details are yet to appear. We will obtain
our general result by making use of the following corollary of a
theorem of M. Mignotte and M. Waldschmidt [10]:

Let a E C, a = 0, log a -:é 0 with b algebraic but irrational. There are
absolute constants Co&#x3E; 0 and to &#x3E; 0 such that for non-zero

P(x), Q(x) E Z[x] with

we have

Earlier work in this direction would have sufficed, except that it

applied only when deg P + deg Q was below some fixed bound.
This work was conceived and mainly carried out at a conference in

transcendence theory at Cambridge University. We would like to

thank the Department of Pure Mathematics, Cambridge University,
but especially A. Baker, J. Coates and D.W. Masser for their hospi-
tality. The author also gratefully thanks D.W. Masser for helpful
conlments on a previous version of this paper.

1. Statement of Results

The first result applies to the situation of Gelfond and Feldman:

THEOR FM 1. Let a E C be algebraic, a gé 0, log a 7é 0 and (3 E C be
cubic irrational. Then there is a positive, effectively computable con-
stant C such that for every non-zero polynomial Q(x, y) E Z[x, y],
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We use an asertisk to denote the maximum of 1 and the function
value. Theorem 1 follows from the proof of the more general result:

THEOREM 2. Let a E C, a:,é 0, log a 0. Let (3 E C be a cubic irra-
tional. Then there is a positive, effectively computable constant D such
that for all relatively prime polynomials P(x, y), Q(x, y, z) E Z[x, y, z],
we have that

where

Theorem 2 actually holds in a somewhat stronger form involving the
partial degrees of P and Q.
Note 1. Any two of the three numbers a, a , a could appear in

the left hand polynomial in Theorem 2 as long as the corresponding
polynomials P, Q remain relatively prime.
Note 2. If Q(a, a13, a(32) = 0, then we have as good a measure of

algebraic independence for any two of these numbers which are
independent as Gelfond and Feldman did for alo and a132 when a is

algebraic. Thus we can conclude that when a is not algebraic, but is
very well approximated by algebraic numbers, then the three numbers
a, alo, a92 are algebraically independent. An example of such an a is

where ... stands for the intermediate consecutive integers. For when
a is irrational, but Q(a, a{3, a(32) = 0, then there is an eff ectively
computable C such that for rational approximations plq to a, we have

Note 3. If only two of the numbers a, alo and a a2 are involved in P
and Q, we can eliminate any common occurrence and then use the
result of Mignotte and Waldschmidt to produce our conclusion. If

only one of the numbers is involved, forming the resultant gives the
conclusion immediately.
Note 4. It is possible to deduce a non-trivial lower bound for

arbitrary pairs of relatively prime polynomials P(x, y, z), Q(x, y, z) in
Z[x, y, z]: If z occurs in P and Q, then form R, the resultant

eliminating z between the smallest prime factors P,, d of P and Q,
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respectively. Apply Theorem 2 to R and QI, using Lemma 5 below. (R
and QI are relatively prime by the standard representation of R as a
polynomial linear combination of Pl and Ql.)

Finally, consider the analytic curve

where a’ denotes as usual exp(z log a), for some fixed log a. It

follows from Theorem 2 that the coordinates exhibit no surprising
algebraic degeneracy. Since any one of the coordinates may even be
an algebraic number y (e.g. when t = log y/log a), we see that at times
the analytic curve intersects algebraic surfaces over Q, the algebraic
closure of Q. But by Remark 4, it does not even come close (in an

appropriate sense) to algebraic curves over Õ, except of course at
t = O.

What we actually will prove is the following more exact result,
where Co still denotes the constant in the result of Mignotte and
Waldschmidt:

THEOREM 3. Let a E C, a:;é 0, log a:;é O. Let f3 E C be a cubic

irrational. Then for a given CI &#x3E; Co, there is an effectively computable
constant C, depending only on Ch f3 and log a, such that if there are
two relatively prime polynomials P(x, y), Q(x, y, z) E Z[x, y, z] satis-
fying

where

then there is a polynomial U(x) E Z[x] with U(a) -:;é 0 and

The proof of the corresponding inequality for ao is obtained from
the following proof merely by interchanging a and ala everywhere
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below. For large enough C, in terms of Co, the inequalities (2) for a
and alo are contradicted by the result of Mignotte and Waldschmidt,
thus establishing Theorem 2. Theorem 1 follows on letting P be the
minimal polynomial f or a over Z and, if degyQ  deg,Q, interchang-
ing a la and a02 in the argument.

2. Proof of Theorem 3

We assume that Theorem 3 is false for large enough C.

Step 0. Preliminary Remarks. Without loss of generality we may
assume that both P and Q are irreducible over Z (see Lemma 2). By
our denial of (2), we have degyP &#x3E; 0 and a non-trivial lower bound on
the leading coefficient p(a) of P(a, y):

Since there are at most degyP distinct roots, we are forced to admit
that a root el of P (a, y) = 0 nearest a o satisfies

Moreover since el -a" formally divides
see easily that

The polynomial Q(a, el, z) is not identically zero since P and Q are
relatively prime. If z did not occur after the substitution of el for a s,
then we would simply form the resultant (see Lemma 5 below) of
P(a, y) and Q(a, y, z) with respect to y to fulfill (2). Similarly we even
obtain a lower bound on the leading coefHciënt q(a, el) of z in

Q(a, el, z). Arguing as before for P, we see that a root e2 of

Q(a, el, z) = 0 nearest to a/32 satisfies

In the proof, the Gothic lower case letters 1, n will be used to
denote triples of integers given by the corresponding Greek letters,
and absolute value signs will denote the sup norm. E.g. l=

(Ào, À 1, À 2) E Z(3) and Itl = max lÀ; 1. The coordinates will be non-nega-
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tive except in Lemma 5. In addition we set b = (1, f3, (32), l. b =

ÀO+IklP + À2f32 and similarly for n . b. We also let Bi = (1 . b)b 2 log a,
where b is the positive leading coefficient of the minimal polynomial
for jg over Z. The letters CI, C2, c3, ... will denote positive constants
depending only on f3 and log a. For simplicity of notation in the
proof, we will assume that all degrees in the proof are at least 1 and

all heights at least 2.

that there is a non-zero polynomial

The partial degrees of p will be referred to as degau and degeu. The
fact that u might be represented by several such p will present no
problem.

Let

It is easy to verify that when C is large enough, then

We note for use later in Steps 4 and 5 that
(i) since, from the definition of No and of LN,

we know that

(ii) since
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we know that

we know that

Step 1. We show that there exist

without a common nonconstant factor such that

and such that when we set the function

satisfies

for all 0  p  DN and Irl  LN/4. For after multiplying all these

expressions by b 21N (a 1++2)e3NLN, we obtain a linear homogeneous
system of at most 3N3/64 equations in N3 unknowns having
coefficients polynomials over Z in a, ap, a 02. We apply Lemma 1

below to solve them formally, i.e. with x, y, z substituted for

a, a@, ’a . We obtain the desired 0,,(x,y,z) on dividing the formal
solutions in Z[x, y, z] by their greatest common divisor, noting that
NLN-24DNIogN, and keeping in mind Gelfond’s result on the

height of a factor (Lemma 2 below).

Step 2. An application of the Cauchy integral formula on the circle,
say, Izi = N3/2, which is standard in transcendence proofs (see, e.g. [7,
pp. 157-158]) shows that for all 0p  DN and 111  LN log N,

Step 3. A result of R. Tijdeman’s (Lemma 4 below) shows that either
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or else

We now consider the two cases separately.
Case (i). When we substitute §i for aO and e2 for a132 in

we obtain an element of Z[a, bf3, el, e2] which is non-zero by in-

equalities (3), (4), (5). On taking the relative norm to Z [a, el, e2] we get
a non-zero q there with

and

Either the leadirig coefficient w(a, Çl) of q(a, el, z) or else

q(a, el, ç2)/w(a, el) has absolute value at most

When w(a, el) is larger, we see from Lemma 5 and the fact that
Q(a, el, e2) = 0 that the semi-resultant r(a, el) E Z[a, el] of q(a, el, z)
and Q(a, el, z) satisfies the inequalities

which are also satisfied by w(a, el) when it is smaller.
We finally take the resultant of r(a, y) or w(a, y) and P(a, y) to

obtain a non-zero element s(a) E Z[a] with
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Case (ii). By our denial of (2), we can assume a to be transcendental.
Since the 0,,(x, y, z) are without a common factor, not all the

4&#x3E;n(a, el, z) are zero. It is conceivable that the leading coefficient of
some non-zero 4&#x3E;n(a, el, z) has absolute value at most

exp(- N3 log N/389) and thus itself satisfies (8).
When the leading coefficients are at least exp(- N3 log N/389), we

will be interested in the monic polynomials 1Jtn(z) obtained from the

4&#x3E;n(a, el, z) on dividing by the leading coefficient. In fact, we apply
Lemma 5 to alter the definition of FN(z) somewhat. For this, let Qi(z)
be the minimal monic polynomial for e2 over Q(a, el). Let a-, be the
maximal non-negative integer such that for all n we can write

for some polynomial R"(z), whose coefficients naturally lie in O(a, el).
If ai = 0, then we obtain a non-zero r(a, Çl) E Z[a, Çl]’ satisfying (8),

from Lemma 5 by forming the semi-resultant of Q(a, el, z) and some
4&#x3E;n(a, el, z) not divisible by Ql(z). To check the bound on the absolute
value, evaluate Ql(z) and IP,,(z) at z = e2.

If (ri &#x3E; 0, we define a new function GN(z) by replacing cp(n) in the
definition of FN(z) with R,,(a 02 ). Then for 0 s p  DN and )1[ 
LN log N the expressions

are polynomials, say Sp,N =Y, aja°1, of degree at mo st c 1 NLN with
coefficients from 0(jg, a, el, a o2) having height at most

exp(Cl6DN log N).
Recall that we solved for 0(x, y, z) formally in Step 1, on replacing

a by x, a,’ by y and a ,2 by z in the equation for FN(z) corresponding
to (10). Therefore when we resubstitute el for ap and z for a ,2 in the
original equations, the expressions remain zero even after division by
Qi(z)" and substitution anew of a ,2 for z. Thus S,,N(el) = 0, and
consequently
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We now apply the Hermite interpolation formula to find that for

where m = min IB, - Bpf; If l, lf’l  LN. Using standard estimates (see [4,
lot,

p. 69] for details), we see that

Applying the Cauchy integral formula on rzr = N3/2 shows that for all

Now from the definition of o-1, we find that some Rn(a") is non-zero.
However there are still two possibilities for GN, as in Step 3 for FN.

If GN falls into Case (i), then for the relevant Po, (0, we can
substitute el for al3 and z for a132 in (7) and

and form the semi-resultant of the polynomial q(«, el, z) obtained
from (7) and Q(«, el, z) to obtain a non-zero r(a, ii) E Z[a, el]. If the
leading coefficient w of q(a, el, z) has absolute value at least

we consider Ql(z) and the monic polynomial q(a, el, z)/w evaluated at
z = e2 to see that r(a, el) satisfies (8). If, on the other hand, w is less
than the bound cited, it is less than the bound in (8). Recall that (11)
was obtained formally from (7) on replacing some of the a,’ (those
coming from cp(n» with el and a 82 with z, dividing by Ql(Z)UI, and
then replacing the remaining alo with el and z with a ,2 . Actually the
first step may as well have been to replace all ala with el. Now Qi(z)
is monic. So w is obtained from some coefficient of a 62 in (7) by
replacing a a with el, and hence w E Z [a, el], satisfying the remaining
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inequalities in (8). At any rate, we have seen that if GN falls into Case
(i), we can find an r(a, el) satisfying the inequalities (8).

If GN falls into Case (ii), then we simply form the semiresultant of
Q(a, el, z) and of a 0,,(a, el, z) for which (Tl is the exact power of

divisibility by Ql(Z). We then use Ql(Z) and (the monic polynomial
associated with) the corresponding Rn(z) evaluated at a R2 to show
that the semi-resultant satisfies (8), from our previous agreement on
the lower bound for the absolute value of the leading coefficient of
cIJn( a, el, z) and thus of Rn(z).
Thus we have shown that even in Case (ii) we can obtain a

non-zero r(«, el) satisfying (8). Taking the resultant with P(«, y) gives
us an s(a) E Z[al satisfying (9) just as in Case (i).

Step 4. There is a factor tN (a) = u(«)vN of s (a) with u (a) E Z[a] 
irreducible over Z, vN ? 1, satisfying

To verify this, refer to Lemma 3 below and the inequalities following
the definition of LN and DN. By the same token we can apply Lemma
5 to tN and tN,I, NO S N  Ni to see that the underlying irreducible
polynomial u (a ) is the same for N and N + 1 and hence for all N,
NoNN1.

Now since we see that

as desired.

By the definition of DN,
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and by inequality (i) after the definition of LN and DN, we see that

Therefore we can conclude from Lemma 2 below that

3. Lemmas used in the proof

LEMMA 1: Let R and S be positive integers with 16R - S. Let

aij E Z[x, y, z) satisfy

where H %-- 1. Then the system of equations

has a non -trivial solution CPh ..., CPs E Z[x, y, z] with

For a proof, see [7, Lemma 2, p. 1351 or, for the fund-amental one
variable case, [ 11, Lemma 3, p. 149] or [9].

LEMMA 3 : Suppose w OE C and P(x) G Z [x] , P(x) # 0, satisfy )P(w)j 
e-Ad(h+d) where k &#x3E; 3, d &#x3E; deg P, eh &#x3E; ht P. Then there is a factor Q(x)
of P(x) which is a power of an irreducible polynomial in Z[x] such
that
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For a proof, see [7, Lemma VI, p. 147].

where in the definition of Bo, the coordinates of n may be negative, but
not all zero, and

This is a special case of what Tijdeman proved in [12, Theorem 3, pp.
87-88].

the semi-resultant r of P and Q is defined by

where ’ means that the product is taken over all (i, j) F- M =

{(i, j) 1 ti = Uj}. Clearly r is non-zero.

LEMMA 5 (Choodnovsky): Let P(x) = poxm + ... + p,,, Q(x) =
qox" + ... + qn E C[x]. (i) Their semi-resultant r can be written as a
polynomial over Z in the pi and qi with

(ii) Let 0 E C, and let Pi(x), Ql(x) E C[x] be monic, relatively prime,
and satisfy
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Then when PI(x) and QI(x) divide P(x) and Q(x), respectively,

where k is an absolute constant.

For a proof, see [6, Lemma 4.12] or [3].
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