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ON THE CHOW GROUP OF

CERTAIN TYPES OF FANO THREEFOLDS

S. Bloch and J.P. Murre

COMPOSITIO MATHEMATICA, Vol. 39, Fasc. 1,
(c) 1979 Sijthoff &#x26; Noordhoff International Publishers - Alphen aan den Rijn
Printed in the Netherlands

Let X be either a quartic threefold in 4-dimensional projective
space P4, or the intersection of a quadric and a cubic hypersurface in
P5, or the intersection of three quadrics in P6. In this paper we study
the Chow group A 2(X) of such a variety X. The group A2(X) is the
group of those rational equivalence classes of cycles of codimension
two which are algebraically equivalent to zero. We work over an alge-
braically closed field k of characteristic different from two or three.

Our paper is, to a considerable degree, inspired by a paper of Tjurin
[24]. In that paper Tjurin studies the intermediate Jacobian of Fano
threefolds of index one and defined over the field of complex num-
bers C. A Fano threefold X is a smooth projective variety of

dimension 3 with ample anticanonical class - Kx; it is of index one if
-Kx = r D in Pic(X), with D a divisorclass containing a positive
divisor, implies r = 1.* Tjurin defines a generalized Prym variety, a
principally polarized abelian variety associated with a couple (J, u)
consisting of a Jacobian variety J of a curve and an endomorphism
of J satisfying a certain quadratic equation (see §7); in case a is an
involution one gets the usual Prym variety studied by Mumford [14].
In the case of a Fano threefold X the generalized Prym is obtained
from the 1-dimensional family of lines on X and the incidence

relation between them. Tjurin asserts that the intermediate Jacobian
of a Fano threefold is isomorphic to its generalized Prym, but his
argument is seriously flawed and yields only an isogeny (see footnote
6). Broadly speaking, we want to apply Tjurin’s ideas to A2(X) as well
as to the intermediate Jacobians, and to plug the gap in his arguments.
The three types of threefolds mentioned in the beginning are the

most natural examples of Fano threefolds of index one. Our results
about them are similar to the results in [16] and [17], namely we show
that the Chow group A 2(X) is isomorphic to the group of points of the

* See also the recent paper [25].
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generalized Prym of Tjurin and that the polarization of the Prym is
closely related to the cupproduct on Het(X, QI). In fact, more pre-
cisely, we show that the Chow group A 2(X) has a regular, universal
isomorphism into that Prym (see 8.18 for the definitions and 8.24 for
the main result).
Our method is as follows. Firstly we show that A2(X) is isomorphic

to the group of points of some abelian variety. We call this fact

weak-representability; this notion has been introduced in [4] and there
it has also been shown that this property is true for the quartics. For
the two other types mentioned, weak-representability follows easily
from the unirationality, cf [16]. Furthermore let A2(X)(l) be the
inductive limit of the groups of torsion elements of A2(X) of order In
(1 prime number =; Char(k)), then there is an isomorphism between
A2(X)(l) and H]i(X, Q/ZI(2». In fact there is a natural map (the cycle
map for torsion cycles) between these two groups for any smooth
projective variety X; this is shown by the first author in [5]. The
existence of this map depends on the proof by Deligne of the Weil
conjectures, but in our case it could be constructed by ad hoc
methods similar as the ones used in [17]. Our method consists now in

combining weak-representability with this isomorphism for torsion
cycles. In this way we reduce questions for the Chow group to
questions of étale cohomology. Next, using local constantness of
étale cohomology we reduce the question to the generic Fano defined
over C and thus use Tjurin’s result. For a typical example see 8.11.

In principle our method should work also for the other Fano

threefolds of index one provided some preliminary questions have
been settled (unirationality, family of lines, etc.). On the other hand
we have restricted (so far) our attention to "sufhciently general"
Fano’s (of the type considered), for instance we need smoothness of
the family of lines. (Note that there exists interesting examples of
Fano threefolds where this family is not smooth, see [23]).
For the case of the intersection of three quadrics in P6 the A 2(X)

has also been studied by Beauville [3], however from a somewhat
différent point of view.
A short description of the different sections: § 1 and 2 contain

preliminary results, mostly well-known, but for which there is usually
not a clear-cut reference. In § 1 we study the family of lines on X. We
have followed a useful paper of Barth and Van de Ven [2]; we like to
thank them for use of their - as yet - unpublished manuscript. §2 deals
with unirationality questions for two of the types under consideration,
well-known classically and due to Enriques, see [8] and [3], and a
result developed by one of the authors for the quartics [4]. §3 deals
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systematically with the notion of weak-representability (called
representability in [4]), §4 with the cycle map for torsion cycles and
§5 with the relation with the (classical) intermediate Jacobian (in case
k = C). In §6 and 7 we reproduce the part of Tjurin’s results relevant
for our purpose; in §7 it was necessary to fill a gap in Tjurin’s paper
(see footnote 6). Finally: §8 contains the main results, namely the
results on the Chow group and the polarization as mentioned above.

Notations:

X4 3 denotes a 3-dimensional variety of degree 4 in P4.
X" 3 == Q C denotes a 3-dimensional variety in P5 which is an

intersection of a quadric hypersurface Q and a cubic hypersurface C.
X g = Q Q’ Q" denotes a 3-dimensional variety in P6 which is an

intersection of three quadric hypersurfaces.
Qn : a quadric hypersurface in Pn+i.
Cn : a cubic hypersurface in Pn+l.
In a notation like V’, n denotes the dimension and d the degree of

V.

Gr(n, m) is the Grassmann variety of Pm’s in Pn (m  n).

§ 1. Lines on some special Fano varieties

Let V be a variety in projective space Pn. Consider

(1) F(V)= Il; 1 a line on V} C Gr(n, 1),

the variety of lines on V.

ii) F( V) is connected.
iii) Let U be the variety parametrizing the varieties V of the above

type (for each of the three cases respectively). Then there exists an
open, non-empty set Uoc U such that for V E Uo the F(V) is a

smooth curve.

REMARK 1.2: For V = XÉ this was proved by Barth and Van de V en
[2]. In fact Barth and Van de Ven proved the following more general
result (with k = C): let V = Xd_ be a hypersurface of degree d in Pn.
Then:

i) F(V) 7é 0 if d + 3  2n.
ii) F( V) is connected if d + S  2n or if n = 4, d = 4.

iii) There exists (with similar notations as above) a non-empty,



50

open set Uo C U such that for V E Uo we have F( V) smooth and of
dimension 2n - d - 3.

Since we don’t need this result for arbitrary hypersurfaces we
present here only a proof for proposition 1.1; this proof is a straight-
forward generalization of the proof of Barth and Van de Ven for the
case n = 4, d = 4. We need the following auxiliary result (see [2] for
the case m = 4):

LEMMA 1.3: Let A = (aij) be a matrix with (m - 1)-columns and
m-rows. Consider the matrix

(i.e. add m - 3 rows of zeros, etc., as indicated). Then the matrices A

for which rank (Â)  2m - 3 form a cone in the space km(m-l) of
codimension at least 2.

PROOF: Put W = km and consider the map

defined by In particular, consider

have

with

with
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CLAIM 1: i p W* is locally a fibering; i.e. the map q; (or better, its

differential 8cp) has maximal rank (= m).

PROOF: cp(A) 0 (0) means that the rank of A equals (m - 1). After a
change of coordinates we can assume

The assertion follows now by an easy computation.
Next consider in k2m-3 the vector space V spanned by the column-

vectors of the matrix A ; let VI be the subspace spanned by the
columns of the matrix

and similarly V2 the subspace spanned by the columns of

Clearly V = VI + V2. Finally put on k2m-3 the usual scalar form (., -)
obtained via the standard basis e; (i = 1, ..., 2m - 3) and (ei, ej) = Sij.
Then we have

and similarly

CLAIM 2: In W* we have

PROOF: V = VI + V2, and in W* we have dim VI = m - 1, dim V2 =
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lin. dependent::&#x3E;

PROOF: Consider in A m-I(w) ==: W the set

Clearly codimw(S) ? 2. Now consider E = cp-I(S) C Wm-I; then since
cp is a fibering in W* by claim 1, we have also

which proves the lemma by claim 2.

1.4: Turning to the proof of prop. 1.1, we still need several pre-
parations. Let V C Pn be a complete intersection defined by the
equations:

Let U be the space parametrizing the varieties V; note that U is a
projective space or a product of projective spaces. Consider the

correspondence
a

with

Let (Vo, 1) E Z. Now Io C Vo gives La (da + 1) linear independent con-
ditions on the coefficients of the equations (3) for Vo; i.e. q-1(lo) has
codimension 1(d,,, + 1) and is locally isomorphic to a linear space. Hence
we have
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Note that we have the (trivial) necessary condition:

Note also that, since GL(n) operates transitively on G and since
q-I(lo) is non-singular, we have that Z is non-singular.
For ( Vo, lo) E Z consider the map of tangent spaces

We have lo C Pn. Assume now that Vo is smooth along 10. Then we
have an exact sequence of normal bundles:

and hence an exact sequence:

LEMMA 1.5 : The following conditions are equivalent :
1. F( Vo) smooth in 10,
2. The map (8p) of (6) surjective in (Vo, 10),
3. ’TT surjective in (8),

PROOF: 12 is the well-known criterium of multiplicity 1.

3Ç&#x3E;4Ç&#x3E;5Ç&#x3E;6: immediate from the exact sequence (8). It remains to be
seen that 2V3.

After a change of coordinates we can assume that 10 is spanned by
the points (1, 0,..., 0) and (0, 1, 0,..., 0). For 1 E Gr(n, 1) in a neigh-
borhood of lo we can assume that it is spanned by the points
(1, 0, x2, ..., xn) and (0, 1, y2, ..., Yn) and we may consider (x, y) =
(x2, ..., Yn) as (local) coordinates on G = Gr(n, 1); let (X, Y) be the

corresponding coordinates in the tangentspace TIo(G). Furthermore
we use the coefficients a = (..., aa,ioil... in, ... ) of equations (3) as

coordinates on the parameterspace U of V; let A = (..., Aa,io... in, ...)
be the corresponding coordinates in the tangentspace T vo( U). Note
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that lo C Vo implies for the coordinates of Vo:

Next we compute the equations of T(Vo,lo)(Z) as subspace of T vo( U) x
Tb(G). For a point on 1 we have

and 1 C V gives - after substituting in (3) - the equations for Z:

Differentiating of (9) gives the equations of T Vo,lo(Z):

where we have abbreviated

Clearly if (A, X, Y) E T Vo,lo(Z), then (8p)(A, X, Y) = A. Now we have
the following interpretation for (10): consider the map

where 7r is from (8) and p is the restriction map (restriction of normal
bundle to 10). Also N vo/Pnllo = La (J1o( da). From this point of view the
L.H.S. of (10) is a section in F(lo, NVo/Pnllo); the first part is p(A) and
the second part is 7r(X, Y). Moreover, then the equations (10) read:
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(2) &#x3E; (3): 8p being surjective we can choose A arbitrary and solve
(10); since p is surjective this means 7r is surjective.

(3)&#x3E; (2): Take A, i.e. p(A), arbitrary; since 7r is surjective we can
solve (10’), i.e. 8p is surjective.

This completes the proof of Lemma 1.5.

1.6: The notations are as in (4). Let ( Vo, Io) E Z. Consider in q-1(lo)
the following set:

LEMMA 1.6: Suppose we are in the case V = X§, resp. xt resp. Xb.
Then Elo is closed. Moreover Elo is empty or has codimension at least 2
in q -’(10).

PROOF: By lemma 1.5 8p is surjective iff

because since Nvolp./lo = (fy(JIo(da), we have dim r(lo, Nvo/Pnllo) =
La (d« + 1). Hence 8p is surjective iff the rank of the matrix of the

equations for ker(7r) is maximal; moreover according to the above
these equations are given by (10’), or rather by (10), after putting
A«;ioil. .0...0 = 0. Hence the equations are

for a = 1,..., r. Hence the matrix of (11) is of the type as discussed
in lemma 1.3, i.e. of type
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with (I ] = i d« ) - rows for A and (n - 1 ) - columns and I [ (d + 1 ) -
rows for A. I.e., we have for m in lemma 3

This is satisfied for

. Lemma 1.6 follows now from lemma 1.3.

1.7: Notation again as in (4), let ( Vo, lo) E Z and consider in q-’(10)
the set

LEMMA 1.7: For

closed and of codimension at least 2 in q-’(10).

PROOF: Closed and 0 q-I(lo) easy. The assertion about the codi-
mension is laborious and is left to the reader.

is closed and of codimension at least 2 in q-’(1o).

1.9: PROOF OF i) oF PROP. 1.1: Eb from 1.8 is closed in q-’(1o) and
different from q-’(1o). Hence 8p is almost everywhere surjective,
hence (with the notations of (4)) p(Z) = U.

1. 10: PROOF OF iii) OF PROP. 1.1: Put

then Ul is open. Consider now the diagram (4) with Z Ui. The set
where 8p is not surjective is closed in Z j UI because it is locally
defined by the rank of the matrix of (11). The projection of this set on
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Ul is closed because p is proper; let Uo C Ul be its complement. Then
Uo is open and it suffices to see that Uo is non-empty. For that it

suffices to see that F( V) is smooth for V generic over k.
Suppose now that 1 E F(V) singular in 1. We have tr.degk( V) =

dim U, but on the other hand if k’ is the field obtained by adjoining
the Plücker-coordinates of 1 to k then tr.degk’( V) :5 dim q-l(l) - 2 =
(dim U - (d,,, + 1)}- 2, because V E E, and codim(El, q-I(l»  2,
by 1.6. Hence dim U = tr.degk( V) :5 tr.degkk+ tr.degk’(V) :5 2(n - 1) +
dim U - 3l ( da + 1) - 2. Hence

and this is a contradiction for

Hence F( V) is smooth.
(Note: for the proof of iii) we have not used 1.7).

1.11: PROOF oF ii) OF PROP. 1.1. (again we follow [2]): By the
connectedness principle it suffices to work in characteristic 0. Con-

sider the Stein factorisation of (4):

W normal, g finite, h-I(w) connected for w E W. Hence we have to
prove U = W. In our case (i.e., V = xt etc.) we have U is a

projective space or a product of projective spaces. Hence irl(U) = 0.
Hence U = W or g is ramified over a divisor D C U. In the latter case

there exists a divisor D’ C W such that g is ramified in the points of
D’. Put D" = h-1(D’), then p is not smooth in the points of D", (EGA
IV 17.7.77). Take ( Vo, lo) E D" and consider D"’=D"nq-I(lo), then
D"’ is a divisor in q-1(lo). This contradicts corollary 1.8 because now
D"’ C É,4. This completes the proof of 1. 1.

1.12: Finally we need also the following result on fourfolds:

LEMMA 1.12: Consider V=X4 , resp. xt resp. xt and defined over
the complex numbers C. Then :

i) F(V) 0 0,
ii) For V generic F( V) is smooth and of dimension 3.
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PROOF:

i) Follows from the easy fact that there is a line through every
point v e V (cf. [24], Lecture 4).

ii) Look to the diagram (4) in the present case. Again Z is non-
singular (see 1.4). Since we are now in char. 0, the assertion follows
immediately from Sard’s lemma ([15], p. 42) and a count of dimen-
sions.

§2. Unirationality and related questions

PROPOSITION 2.1: Let X6 3 = Q4 ’ C4 C PS be smooth and with Q4
smooth. Then X is unirational.

PROOF: This was proved by Enriques [8]; however a "rigorous
proof" requires a lot of details. We follow Enriques idea; see also
[21].

LEMMA 2.2: Let Q4 C PS be a smooth quadric and P E Q4. Then
there exists two families of 2-dimensional linear spaces (L[)uer, and
1L vI vEI’" such that:

Similarly for (Li).

PROOF: We can assume that Q4 = Gr(3, 1). Points P, T etc. on Q
correspond with lines p, t, etc. in P3. Take u E p C P3, then Lû = (q ; q
line in P3 going through ul. Similarly take a 2-plane v through p, then
Lv = lq; q C v C P31. Then for F’ we can take p, for r" the pencil of
planes through p. The properties a), b) and c) are now immediate.

LEMMA 2.3: Let P E X as above. Then there exists two families
{Eü}uEr- and IEvl,.r, of plane curves of degree 3 such that

d) for u sufficiently general (over k(P» we have that E’ u is smooth
in P.

Similarly for (El).

PROOF: X smooth : :} Xz5 a 2-plane ([3], 1.4.6). Hence for each u
we have L[ £ C4, hence Eû = L, u fl C4 is a plane curve of degree 3 (Vu,
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VP E X). Hence we have a), b) and c) by 2.2. To prove d) let us

denote by Tp(-) the tangent space in P and consider first Tp(Q4) n
Q4: this is a cone over a smooth quadric Q2 C P3 ; take H general (over
k(P)) then we have Tp(Q4) rl Q4 n H = Qr, with Q2 C P3 smooth.
Now IL.1, resp. {Lv}, resp. IL"1, can be obtained as follows: take the
two families ll,’,l and 11" VI of lines on Qt, then Lû is the join of P and l’ u
and similar for L". Now consider also TP(C4), then Tp(C4) Z Ql, for,
since X is smooth we have Tp (C4) n Tp(Q4) rl H = Tp(X) n H is itself
of dimension 2, hence Z Q2 . Since Tp(C4) 25 Q2 we have Tp(C4) à5 1 û
for u sufficiently general. Hence for such u we have Tp(C4) 25 L’, i.e.
Lû intersects C4 transversally in P, which proves d).

2.4. Construction of the rational curve V,(P)
Given P E X, take the system (Eu) (= IE’l or IE"1; we take one of

the two systems and drop the index now). Take u generic over k(P)
and consider Eu. Take the tangent to Eu in P; this tangent intersects

Eu in a "third" point Ru. Take the locus VI(P) of Ru over k(P).
Clearly VI(P) C X and VI(P) ==: Pi over k(P), because for the function
field we have k (P )( V 1(P )) = k(P)(Ru) C k(P)(u), with M E r - Pi over
k(P) by 2.3b.

LEMMA 2.5: P E VI(P).

PROOF: By a specialization argument it will be sufficient to prove
this for X generic and for P generic on X.

Consider as before the quadric surface

where H is a hyperplane, generic with respect to k(P). Next consider
the cubic C4 of X’3 = Q4 - C4 and consider

where T, T * and T** denote respectively the tangent space, the

tangent cone and the cone of lines on C4 through P. Now we claim
that

This is true since we are in a "generic situation": otherwise it would
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be false for any Xo and any Po E Xo, but fixing Po E Q4 we can easily
take C4 sufficiently general through Po such that (12) is true.
Take S E T$(C4) fl Qf and a line luo on Qf through S. Then (cf.

proof of 2.3) lu, and P span LUO C Q4 and consider the curve Euo of 2.3
given by E, = Luo n C4. Now PS!l Tj§*(C4), hence PS!l Euo, but on the
other hand since PS C T$(C4) we have that PS meets Euo in P with
multiplicity 3 (as line in Lé. Hence the point Ruo used in 2.4 in the
construction of VI(P) is the point P itself and hence P E VI(P).

LEMMA 2.6: Let P1, P2 E X with Pl 4 P2. Consider the curves Eu (Pi),
resp. Et(P2), of 2.3 constructed for the point P1, resp. for P2. Suppose
P2 E E,(Pl) and Pl E Et,,(P2). Then EUO(PI) = Eto(P2) (as curves).

PROOF: Following the interpretation of Q4 as Gr(3, 1) as in 2.2 we
have P,-,, a line in P3. P2 E Luo(PI) means that P2 meets pi in S, say.
But then S++index uo (see description in proof of 2.2) and hence

LUO(PI) is the collection of lines in P3 through S. Since Pi E Lto(P2), the
same is true for Lto(P2); hence L,(Pi) = Lto(P2), hence E,(Pi) = .

Et,,(P2)-

LEMMA 2.7: Let Pi be generic on VI(P). Then pe VI(PI).

PROOF: PI E VI(P)PI E Eu(P) for u generic over k(P) (see con-
struction 2.4). If P E VI(PI) then also P E Ej(Pi) for some to. Hence

by 2.6 we have E,,(P) = Ej(Pi). But now PP, is tangent to Eu(P) in P
by construction and, hence, is not tangent to Eu(P) = Eto(PI) in Pl as
it should be in case P E VI(PI).

LEMMA 2.8: For Pi, P2 independent generic on V,(P) we have

VI(PI) # VI(P2).

PROOF: If VI(P1) = VI(P2) then by specializing P2 to P we get

Construction 2.9: Let V2(P) be the locus of VI(PI), where Pl moves
over VI(P).

It follows from 2.8 that V2(P) is a surface defined over k(P). Also
from 2.5 follows that V,(P) C V2(P) and in particular P E V2(P).

LEMMA 2.10: The surface V2(P) is unirational over the field k(P)
(hence rational over k if P is a point defined over k).
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PROOF: By 2.4 we have a birational transformation

ÀI(P): PI’=:- Vi(P) defined over k(P). Consider now the rational map
À2(P) : P2 --&#x3E; V2(P), defined over k(P), as composition:

where u (P) is defined as follows: take a generic point PI of VI(P)
over k(P) and a generic point P of PI over k(P, Pl), then /£(Pl, P y =

À(PI)(PD = P*. Note that P * is a generic point of VI(PI) over
k(P, Pi) and hence a generic point of V2(P) over k(P).

Construction 2.11 : Let V3(P) be the locus of VI(P2), where P2 moves
over V2(P). It follows from 2.5 that V3(P):J V2(P ).

LEMMA 2.12: V3(P) = X.

PROOF (Cf [4]): If not then V3(P) = V2(P). By Lefschetz theory
V2(P) = X - F, with F a hypersurface. Take Pl and P2 independent
generic on X over k. Now V2(P1) n V2(P2) =xnFnF2 0 0 and in
fact of dimension (at least) 1, i.e. V2(Pl) n V2(P2) = r = FI U F2 U ...,
where r is a curve with irreducible components FI, F2, etc. Take R

generic on rI. Now Tl C V2(P1), hence V,(R) C V3(Pl) by construction
of V3(Pl) (see 2.11), i.e. VI(R) C V3(PI) = V2(Pl). Similarly V,(R) C
V2(P2). Hence V,(R) C V2(Pl) fl V2(P2) = F and since R E VI(R) and
Ré ri (i &#x3E; 2) we have VI(R) = rt. Take R * generic on Fi and in-
dependent of R then we get V,(R) = rI = V,(R*), a contradiction by
2.7 and 2.5. Hence V3(P) = X.

2.13. PROOF oF 2.1: Take a point P rational over k. Now we have a
sequence of rational maps

where 1/1 is defined as follows: take a generic point P2 on V2(P) over
k and P’ independent generic on Pi. Then 1/I(P2, P’) = À2(P2)(P’) = P *,
where À2(P2) is defined in the proof of 2.10. Note that P* is generic on
VI(P2) over k(P2) and hence generic on V3(P) over k.

PROPOSITION 2.14: Let X’ 3 = 0 ’ Q’ - Q" C P6. Suppose X is smooth.
Then X is unirational.
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PROOF: [3], 4.5.3.

2.15: Finally we turn to the case of a quartic Xfc P4. Here

unirationality is not known, however there is the following result:

PROPOSITION 2.15 ([4], page 14): Let X3 C P4 be a smooth quartic
which is sufficiently general. Then there exists a couple (X’, f), where
X’ is a smooth threefold and such that:

a) f : X’ ,-&#x3E; X is a surjective rational map of finite degree d.
b) X’ is a "conic-bundle" in the following sense: 3 rational map

g :X"-&#x3E; S, with S a smooth surface and such that the geometric
generic fibre of g is isomorphic to PI (i. e. if e is generic on S then
Xi= g-I(ç) x Sp k(e) ’::;PI).

c) Moreover S is such that the Chow group A2(S) is weakly-
representable (see §3) (resp. if k = C: is isogenous to the classical
intermediate Jacobian j2 ci (S) of S).

§3. Weak-representabilityl

3.1. Some notations:

In this section V denotes a smooth, projective variety defined over
an algebraically closed field k. CH’(V) is the Chow group of cycle-
classes of codimension i, i.e., the cycles of codimension i modulo

rational equivalence. A’(V) C CH’(V) is the subgroup of classes

algebraically equivalent to zero. Sometimes we work with dimension i
instead of codimension i, then we write CH;(V) and A;(V) respec-
tively. Finally CH‘( V)n and Ai(V)n denote the subgroups of classes
of order n.

Let K ::) k be an overfield. Write K as an increasing union of rings
Ra smooth and of finite type over k, and let

respectively

When K = K these correspond to the groups obtained by viewing VK
as variety over K.

’ See [4], there this notion is called representability.


