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§ 1. Introduction

We present here an investigation of the chain-level geometry of the
Steenrod reduced squaring operations, including geometric proofs of
their existence and uniqueness. These operations are constructed in
homology, using the topology of mappings of cycles into Euclidean
spaces. Roughly speaking, the i-th Steenrod homology operation
assigns to a k cycle X a subcycle of double points for a map of the
support of X to R k+i or, alternately, a subcycle of branching points
for a map of the support of X to Rk+i-1. This operation is uniquely
characterized in 4.2 as being a natural transformation of degree i on

homology which satisfies a self-intersection axiom (4.1). We work

throughout in the category of subanalytic sets ([5], [9], [10], [11], [12],
[14], [15]), which includes both polyhedra and real analytic varieties.
A similar construction for polyhedra occurs in [18].
The necessary preliminaries on the subanalytic category are

presented in §2. Our principal geometric object, a compact mod 2
k-chain in Rm, X, is uniquely determined by its supporting set, X,
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which is a compact (purely) k dimensional subanalytic subset of Rm.
The boundary, sum, push-forward, and restriction of mod 2 k-chains
are introduced, and various formulas involving these four con-

structions are discussed in 2.5. The resulting subanalytic homology
theory H* is naturally equivalent to ordinary singular homology
theory on the subanalytic category (2.6). The theory of slicing ([6], [7],
[8]) leads to an intersection product for mod 2 chains in Euclidean
space.
A stable homology operation is a natural transformation on H*

which commutes with suspension. The crucial observation of §3 is

that such an operation of degree i is equivalent to a function G, called
a geometric homology operation, that assigns to each compact mod 2
k-chain X, a homology class G(X) E Hk-i(X, aX; Z2) which is natural
with respect to subanalytic homeomorphism, suspension, and restric-
tion to certain open subanalytic subsets of X.

In §4 is established the uniqueness of the Steenrod homology
operations pi. (This homology proof uses neither classifying spaces
nor equivariant homology.) The self-intersection axiom for (D’ implies
that is the identity, 03A61 is the Bockstein operation, 03A6i is stable, and

pi(a) = 0 whenever a E Hk(A), where A is a subanalytic subset of Rm
with m :5 k + i.

The existence of the Steenrod homology operations is established in
either §6 or §7, which may be read independently. Both involve the
double point pair chain D(f), which is defined in §5 for any subanaly-
tic map f : X ---&#x3E; Rk+i of a compact mod 2 k-chain X in Rm such that

These conditions are satisfied, for example, by the restriction to X of
almost all linear maps from Rm to Rkli (2.3). (They are also satisfied
by many topologically "unstable" maps (8.1(3)(6)(7)(8)(9)).) The

compact mod 2 (k - i)-chain -D(f), which is defined by slicing, has
support contained in Clos[X2 n {(x, y) : x ~ y, f (x) = f(y)}]. The pro-
jection of X2 onto the first factor pushes D(f ) forward to the double
point chain D(f ), a compact mod 2 (k - i)-chain in Rm. Thus, if f is an
injection, then D(f ) = 0, by definition. Alternately, taking the boun-
dary of the image of D(f ) in the symmetric product u(X2) leads to the
branching point chain B(f), a compact mod 2 (k - i - l)-chain in Rm. If
f is locally an injection, then B(f ) = 0, by definition. The homology
class Bi+1(X) of B(f ) in Hk-i-I(X, aX ;Z2) is independent of f, and Bi+1
is a geometric homology operation whose corresponding stable
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homology operation satisfies the self-intersection axiom 4.1 for i &#x3E; 0.

Similar facts are true for D( f ), Di(X), and i &#x3E; 1 provided f satisfies the
additional condition:

(7.6(2)) shows that Bi = Di for all i.

In 8.2, we determine the action of the Steenrod homology opera-
tions on the homology of real projective space, by computing D(f)
for special functions f mapping the Veronese variety Pk, into R"’ for
i = 0, l, ... , k. In 8.1, we study the geometry of D(f ) and B(g) for
several maps f

In §9 it is shown that 03A6i(03B1) = 0 for any a E Hk(A, B ; Z2) whenever
there exists either a continuous injection of (A, B) into

(Clos R+ k+i , Rkli) or a continuous local injection of A into R k+i-1.
Theorem 9.2(2) for B = j# is dual to Thom’s nonembedding theorem
[22, III, 1.5], while 9.2(2) for B ~ and 9.2( 1 ) are apparently new.
Homology operations were first studied by Thom and Wu in the

early fifties (cf. [24], [26]). They were also considered briefly by
Steenrod. From the viewpoint of stable homotopy theory, stable

homology operations are canonically dual to stable cohomology
operations (cf. [18, §5]). It is shown in §10 that the operations (D’ are
dual in this way to the modulo 2 Steenrod cohomology operations Sq i

of [22].
One motivation for working in homology, rather than cohomology,

is that characteristic classes for singular analytic varieties are

naturally defined in homology (cf. [23], [19]). In fact, applying Steen-
rod homology operations to the modulo 2 fundamental class of a

compact real analytic variety ([1, 3.7], [8, 7.1]) yields intrinsic

homology classes which generalize the Stiefel-Whitney classes of the
normal bundle of a manifold (10.3). Our branch point description of
these normal classes generalizes Thom’s description for smooth

manifolds using singularities of maps [25, p. 80]. That the normal

Stiefel-Whitney classes of a smooth manifold can also be described
using double points follows from a theorem of Ronga [21]. The use of
singular loci of maps to define intrinsic invariants of algebraic
varieties has a long history (cf. [17]).

All of our proofs use only the basic properties of subanalytic chains
described in §2. Complete details of many of these proofs have been
included because of the relatively recent development of subanalytic
theory. We have used triangulations in the proofs of 2.6(2)(4), 4.2, and
7.2, but not in our subanalytic constructions of Bi and Dl.
The present work all carries over if the word "subanalytic" is
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replaced throughout by "semialgebraic". Much of the theory also
carries over for the homology with infinite chains, H Inf , defined as in
2.6(1) except with mod 2 chains having closed, possibly noncompact
supports. Thus, any paracompact real analytic variety A, which has a
fundamental class in HInf(A; Z2) ([1,3.7], [8, 7.1]) has "normal classes"
in H Inf j(A; Z2) for 0:5 i  k.
We wish to thank Thomas Banchoff for his help with the examples

in 8.1 and his idea for the proof of 7.6(2). We also wish to thank
Dennis Sullivan and Herbert Federer for leading us toward the points
of view expressed in this paper.

§2. Subanalytic sets, maps, chains and homology

2.1. Subanalytic sets and maps ([14], [10])
The smallest class of subsets of paracompact real analytic spaces

which contains singleton subsets and which is closed under the

formation of locally finite unions, intersections, complements, con-
nected components, inverse images by real analytic maps, and direct
images by proper real analytic maps, is the class of subanalytic
subsets. A continuous function between subsets of paracompact real

analytic spaces M and N is a subanalytic map if its graph is a

subanalytic subset of M x N.

2.2. Some notations

Following [10, §2], we use, for any subanalytic subset A of a real
analytic space, the symbols, Clos A, Fron A, and dim A to denote,
respectively, the closure of A, the frontier of A ([Clos A] - A), and
the dimension of A. We shall often use the fact (See e.g. [10, §2]) that
any subanalytic subset A of M admits a locally-finite partition S
(called a subanalytic stratification) into connected, subanalytic, real

analytic submanifolds S, such that dim R  dim S and R C Fron S for
every R E Y which intersects Fron S. Since [ 11, Embedding Lemma]
any finite dimensional subanalytic set B admits a proper subanalytic
embedding into R1+2dimB, we will hencef orth only consider subanalytic
subsets of Euclidean space.
For any nonempty subanalytic subset A of Rm, we use the map

to express the suspension of A, SA = C([- 1, 1] x A), and the cone of A,
CA = (([0, 1] x A), as (1 + dim A)-dimensional subanalytic subsets of
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R x Rm. For any subanalytic map f from A into a subanalytic subset B
of Euclidean space, the function, Sf : SA - SB, where

is a subanalytic map.

2.3. LEMMA: For any bounded k and 1 dimensional subanalytic
subsets A and B of Rm and integer n with supfk, 11:5 n :5 k + 1 + 1, the
set,

Q = Hom(R’, Rn) n {p : dim[(A + B)

is a subanalytic subset of Hom(Rm, Rn) with dim Q  mn.

PROOF: The dimension of the subanalytic set,

does not exceed k + 1 + mn - n, because, for each (x, y ) E A x B with

x ~ y,

Since the projection map g of Q’ onto Hom(Rm, R") may be stratified
as in [9, 4.4],

is an at most mn - 1 dimensional subanalytic set.

2.4. Integral k-chains
We recall from [10, § 2] that an oriented k dimensional subanalytic

submanifold of an open subset M of Rm defines, by integration, a
linear functional on the space Dk(M) of smooth k forms with com-
pact support in M. An arbitrary sum T of integral multiples of such
oriented subanalytic submanifolds is an integral k-chain in M. (The
terminology "k dimensional subanalytic chain in M" is used in [10].)
Then the support of T, spt T, is a closed (but not necessarily compact)
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subanalytic subset of M. From [10, §2], we recall that

T + T’ and T - T’ are integral k-chains in M whenever T’ is

another integral k-chain in M,
aT, where ôT(03C8) = T(d03C8) for E Dk-1(M), is an integral (k - 1)-

chain in M whenever k - 1,
f #T is an integral k-chain in R" whenever f is a subanalytic map

into R" with spt T C domain f C M and f spt T is proper,
T x S is an integral (k + 1)-chain in M x N whenever S is an

integral 1-chain in N,
TL A is an integral k-chain in M whenever A is a subanalytic

subset of M.

For an open subanalytic subset U of M, an integral k-chain T U
in U is well-defined by the condition, (T ) U)(~) = T(f/) whenever
ç E Dk( U), 03C8 E q;k(m), and 03C8 , U = ç. Note that although evaluation
of T U and T U on differential forms both involve restricting
integration to U n spt T, T U is an integral k-chain in M while
T U is an integral k-chain in U; thus,

2.5. Mod 2 k-chains, compact mod 2 k-chains
Two integral k-chains T and T’ in M are said to be congruent

modulo 2 if T - T’ = 2T" for some integral k-chain T". The resulting
congruence classes are called mod 2 k-chains in M. (The terminology
"k dimensional subanalytic chain modulo 2 in M" is used in [10].)
Then the support of X,

is a closed (not necessarily compact) subanalytic subset of M. (The
notation, spt2 X, is used in [4, 4.2.26], [7], and [10].) We will call X a
compact mod 2 k-chain whenever X is compact. By the stratification
theorem of [10, §2], X may be represented by an integral k-chain T
which has spt T = X and which is the sum (as in 2.4) of disjoint
oriented subanalytic submanifolds (of multiplicity one).
For any two mod 2 k-chains, X and X’, in M, note that

It follows that a k dimensional subanalytic subset G of M determines
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a unique mod 2 k-chain, 0, in M with (0) = G if and only if

for some (and hence any) subanalytic stratification 9’ of G.
By [10, §21, the mod 2 chains,

(whenever X’ is a mod 2 k-chain in M),
(whenever k - 1),
(whenever f X is a proper subanalytic map),

(whenever Y is a mod 2 1-chain in M),
(whenever A is a subanalytic subset of M),
(whenever U is an open subanalytic subset of M),

are well-defined because of the relation of the corresponding integral
operations and multiplication by 2. For notational convenience only
we also define the set

aX = 0 in case X is 0 dimensional.

In case n = 1, the mod 2 (k - l)-chain,

is defined for all y E R.

A mod 2 k-chain Y in M is said to intersect suitably with the

chain in M, called the intersection modulo 2 of X and Y, is defined by

Each of the following relationships is true whenever both terms in
the relationship are defined.
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(5) f #X C f (X) with equality whenever

with equality whenever A is open.

whenever A is open.

for any subanalytic homeomorphism

where q is the projection of Y x X

Properties (6) through (13) follow essentially from the definitions.
Properties (2), (4), and (5) follow from [10, 4.4(4)(3)(2)]. Reference to
[4, 4.1.6, 4.1.8, 4.3.11] is useful for properties (1), (3), (14), and (21).
Property (23) involves properties (3) and (4), and property (24) in-
volves properties (18), (20), and (21). Properties (14) through (21) are
not as readily verified as (1) through (13) and involve the continuity of
slicing (See [10, 4.5]).
To prove (22) in case k = dim X = n, it suffices to show that both

sides of (22) agree near each point x of the locally finite set X fl
g-1{y}. For this purpose, we may assume X is compact. Since
ax fl g-1{y} = 0, there are, by [7, 3.2, 4.1 Case 1], a closed ball B
centered at y in R n - g(aX) and a connected component A of
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hence,
In case k &#x3E; n and (22) is false, we may, by [7, 3.1, 3.2], choose a

But applying (19) and the case k = n twice then gives a contradiction
to the last inequality.

2.6. Subanalytic homology theory
(1) Assuming ADB are subanalytic subsets of Rm and k is a

nonnegative integer, we recall from [10, 4.6] the Z2 vector spaces,

Lk(A, B ) = {X : X is a compact mod 2 k-chain, X C A, and aX C B},

(Thus we abbreviate the usual notations, Hk(A, B; Z2) and Hk(A; Z2)
because we work here only with the coefficient group Z2.) For any
subanalytic subsets A’ D B’ of a Euclidean space and subanalytic map

1 induces, by 2.5(4)(5), a homomorphism

Also, for subanalytic sets A :D B D C, the boundary operator induces,
by 2.5(1), a homomorphism

By the elementary arguments of [4, 4.4.1] (which use only properties
2.5(1) through 2.5(8), 2.5(10), and 2.5(13)), the operations Hk and a, on
the category of subanalytic sets and maps, satisfy the axioms of
Eilenberg and Steenrod for a homology theory with coefficient group
Z2. We refer to these as, respectively, the identity, naturality, boun-
dary, exactness, homotopy, and dimension axioms.
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(2) There is a natural equivalence between subanalytic homology
and ordinary singular theory on the subanalytic category. In fact,
using the triangulation theorem ([11 Theorem 2] or [15]), one readily
obtains a natural transformation from subanalytic theory to singular
theory which induces an isomorphism on the homology of a singleton
set (See [3, III, 10.1]).

(3) Here, for notational convenience only, we adopt the con-

ventions,

(when treating subsets of a fixed Rm). Since S maps, by 2.5(4)(8),
Lj(A, B) into Lj+1(SA, SB) and Bj(A, B) into 9lJj+l(SA, SB), S induces
a homomorphism

which is by the exactness of a Mayer-Vietoris sequence [3, 1, 5.6], an
isomorphism for all j ? 0. Similarly, C induces a homomorphism,

which is, by the naturality and exactness axioms, an isomorphism for
all j &#x3E; 0.

(4) By use of the triangulation theorem ([11, Theorem 2] or [15])
and formation of the second barycentric subdivision [3, II, 9.9], there
exists, for any subanalytic pair (E, F) D (A, B) in Rm, an arbitrarily
small, open subanalytic pair (U, V) so that (A, B) is a strong

subanalytic deformation retraction of ( U nE, V ~ F). In particular,
with (E, F) =(A, B), the inclusion map t of (A, B) into (U, V) in-
duces an isomorphism,

(5) For any nonnegative integers k and 1 with

homology intersection product in Rm,

is well-defined in [10, 4.6] by letting, for K E Hk(A, B) and À E

H(A, B), K.A equal Hkli-,,,(£)-’ of the homology class in

Hk+j-m(U, V) of X ~2 y for any X E Hk(i)K and Y E Hj(i)A which
intersect suitably. From [10, 4.6] and 2.5(17)(18), it then follows that
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By [10, § 2], the latter conditions hold for all a off an at most m - 1
dimensional subanalytic subset of Rm.

2.7. The homology of the support of a compact mod 2 k-chain
Let X be a compact mod 2 k-chain in Rm.

(1) The fundamental class of X is the homology class X E
Hk(X, aX) of the cycle X E Lk(X, aX).

(2) The self-intersection class of X in Rm is the homology class
X . X E H2k-m(X, .2-XJ where 2k - m and X is the fundamental class

by 2.5(3)(4)(5)( 17).
(3) For any integral k-chain T representing the modulo 2 con-

gruence class X with spt T = X as in 2.5 and integral (k - 1)-chain S
representing aX with spt S = ax, there exists an integral (k - l)-chain
R so that aT - S = 2R. It follows that spt R C X, that spt aR C aX,
and that the homology class in Hk-l(X, aX) of the modulo 2 con-
gruence class of R is independent of the choice of T and S. This class
03B2(X) E Hk-I(X, dX) is called the Bockstein class of X.
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(4) For any open subanalytic subset U of Rm such that Fron(X n
the function sending a compact mod 2 j-chain W to

; there is an induced homomor-

phism,

whose value on

§3. Geometric homology operations

3.1. DEFINITION: For any integer i, a stable homology operation 0 of
degree i on H is a sequence of natural transformations, Bk : Hk - Hk-i
for k &#x3E; 0  k - i, such that SOk = Ok,,S.

3.2. DEFINITION: For any integer i, a geometric homology operation
G of degree i on H is a function which assigns to each compact mod 2
k-chain X in Euclidean space with k &#x3E; i, a homology class G(X) E
Hk-i(X, 2-XJ such that:

whenever h is a subanalytic
homeomorphism of X,

(2) G(X) L U = G(X L U) whenever U is an open subanalytic subset
of Euclidean space with Fron(X fl U) C a(x LU).

3.3. THEOREM: G is a

geometric homology operation of degree i on H, and X, Y, and Z are
compact mod 2 k-chains in Rm, then :

PROOF oF (3): Apply 3.2(3) and 3.2(2) with the open set
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PROOF OF (4) IN THE SPECIAL
apply 3.2(2) after observing that

PROOF oF (2): Noting that

we use the boundary axiom, 3.2(1), (3), and the special case of (4)
with Y = fOl x X and Z = C aX.

PROOF OF (1): Here we use the map,

to define the mapping cylinder of observe that

and apply 3.2(1), (2), the special case of (4), and the identity and
naturality axioms.

PROOF OF (4) IN THE GENERAL CASE: Noting that

we here use 3.2(1), (2), the special case of (4), and the identity,
naturality, and boundary axioms.

3.4. THEOREM: Suppose G is a geometric homology operation of
degree i on H.

for all compact mod 2

(2) If i = 0 and G ~ 0, then G(X) equals the fundamental class of X
for all compact mod 2 k-chains X.

PROOF OF (2): Clearly G(X) is either 0 or the fundamental class of
X in case X is a fixed singleton set in some Euclidean space. By
3.2(1)(3), the corresponding alternative holds in case X is any other

k-chains X.
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singleton set or in case X is subanalytically homeomorphic to [-1, I]k
for k E {1, 2,...}. Finally, for an arbitrary compact mod 2 k-chain X
in Rm, this alternative also holds by 3.2(2), because there is, for each
stratum S of a subanalytic stratification [10, §2] of X, an open subset
U or Rm so that X L U is subanalytically homeomorphic to [-1, I]k.

Suppose now that i = k &#x3E; 0. To show that G(X) = 0, we may, by
3.2(2), assume that X is connected. In this case we may also assume
that aX = 0, because, otherwise, Ho(X , aX ) = 0. Letting h be the

homeomorphism projecting {0}xX onto X, we infer from 3.2(1) and
3.3(2) that

because a CX is connected and because the support of any compact
Mod 2 0-chain which represents DG(CX) has, by the triangulation
theorem ([11, Theorem 2] or [15]), an even number of points.

3.5. The groups of operations O and W
The set 0 of stable homology operations on H and the set W of

geometric homology operations on H are graded abelian groups under
addition, where, for each integer i, Ci and Cfji are the operations of
degree i.

THEOREM: (Compare [18, 1.3]) The map

and compact mod 2

k-chain X with fundamental class x is a degree-preserving isomor-
phism whose inverse,

is well-defined by choosing - f or any G E Gi, subanalytic pair (A, B),
and a E Hk(A, B) with k &#x3E; i - a compact mod 2 k-chain X E Lk (A, B)
representing a and letting (JG)(a) = Hk-i(LX)G(X), where tx is the

inclusion map of (X, dX) into (A, B).
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PROOF: We prove the theorem in the following six steps:
(1) .!J8 E Cfii whenever 8 E Oi. Suppose k, X, h, and U are as in 3.2. If

X is the fundamental class of X, then Hk(h)(X), XL U, and SX are the
fundamental classes of, respectively, h#X, X LU, and SX. Thus, 90
satisfies 3.2(1) because 0 is natural and 3.2(3) because 0 is stable. To
see that .!J8 also satisfies 3.2(2), we use the naturality of 0 and the
commutative diagram

where L and K are inclusion maps, to verify that

and then note that Hk-i(K) is, by 2.6(4), the excision axiom and [3, 1,
12.2], an isomorphism.

(2) J is well-defined by 3.3(4)(2) and the boundary axiom.
(3) JG e Ci whenever G E Gi. The naturality of c1G follows from

3.3(1) and the naturality axiom. The stability of JG follows from
3.2(3) and the naturality of S.

(4) 0 and Y are clearly additive.
(5) 0 - j = idw because any compact mod 2 k-chain is a represen-

tative of its own fundamental class.

(6) c1 o.j = ido because any member of 6 is natural.

3.6. COROLLARY: If B is a stable homology operation of degree i on
H, then :

(2) For i = 0, Ok is either the zero operation for all k or the identity
for all k.

PROOF: Combine 3.4, 3.3(2)(4) and 3.5. (Moreover, conclusions (3)
and (4) follow directly from the stability of 0, and (1) and (4) are true
without the assumption of stability.)
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§4. The Steenrod homology operations

4.1. DEFINITION: For each nonnegative integer i, a natural trans-
formation cPi of degree i on H is called a Steenrod homology operation if
0’(a) = a. a whenever a E Hk(A, B), k i, and A D B are subanalytic
subsets of Rk+i.

4.2. THEOREM: (Uniqueness) For each nonnegative integer i there is at
most one Steenrod homology operation of degree i.

PROOF: Suppose 0  i  k are integers and 0 : Hk ---&#x3E; Hk-i and 17: Hk 
Hk-i are two natural transformations such that 8(a ) = a. a = ’JI(a) for
all a as in 4. 1.

In case i = 0, 0 and 71 are both the identity map because X n2 X =
X for any compact mod 2 k-chain X in Rk.

In case 0  i = k, 8 and q are both, by naturality, the zero opera-
tion. In fact, for any subanalytic sets B C A C Rm, we may let 6 be
the family of connected components of A and choose one point
xE e E for each E E E so that xE E B whenever E n B ~ 0. With

F = {XE: E E ZI and G = B ~ F, we define f: (A, B) ---&#x3E; (F, G) so that

f(x) = xE whenever x E E G 6 and deduce from the identity, natural-
ity, and dimension axioms that

We now assume 0  i  k. To prove that 0 = n, it suffices, by 2.6
and naturality, to show that 8(X) = 7I(X) for the fundamental class X
of any compact mod 2 k-chain X in Rm.
For this purpose, we may assume dX = 0, because, by naturality

and the excision axiom (as in 3.5(1)),

and,ay = 0 where U = (R x Rm) -- C ax, y = {0} x X + C ax, 6.!1 is the
fundamental class of Y and h: ({0} x X, {01 x dX) --- &#x3E; (X. dX is the

projection map. Finally, we may also assume, by naturality and [11,
Theorem 2] or [15], that X is a compact polyhedron in R"’.

Choose, by 2.3, a map p E Hom(Rm, Rk+i) so that
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and let W be a simplicial decomposition of X with respect to which
the map p | X is simplicial. Let b(C) denote the barycenter of C for
each 

L = Ufconvex hull of 1

Since

and p |X is simplicial, p L locally has a Lipschitz inverse, and
there is an e &#x3E; 0 so that

Inasmuch as K is a subanalytic deformation retract of X - L and
dim K = k - i - 1, there is an open subanalytic neighborhood V of L so

compact mod 2 k-chain Z = q#(X L V) in Rk+i with fundamental class
L and the subanalytic homeomorphism g = [q (X L V)]-l to con-

clude, by naturality and the excision axiom (as in 3.5(1)) and by the
self-intersection hypothesis, that

Finally, the injectivity of the homology homeomorphism L V follows
by applying the exactness and excision axioms, 2.6(4), and [3, 1, 12.2],
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to the commutative diagram

4.3. COROLLARY: SO’= O’S for any Steenrod homology operation
4’

PROOF: Since S-’O’S is a natural transformation, and, since, by
2.5(24),

for any a as in

4.4. T’HEOREM:

(0) The identity operation on H is the Steenrod homology operation of
degree 0.

(1) The Bockstein operation J(03B2) (see 2.7(3) and 3.5) is the Steen-
rod homology operation of degree 1.

PROOF OF (0): We need only observe that X n 2X=X for any
compact mod 2 k-chain X in Rk.

PROOF OF (1): Using the integral analogues of 2.5(3)(4)(13) we
readily verify that 03B2 is a geometric homology operation. By 3.5 and
4.2 it suffices to show that 03B2(X) = X . X for any compact mod 2
k-chain X in Rk+l with fundamental class x.

For this purpose, we use [8, 6.1] to choose U, V, and a as in

and we let For any open
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for (t, x) E R X Rk+l. Inasmuch as the support of the integral k-chain
T = (dG,) LX is X, it suffices, by 2.6(5) and 2.7(2)(3) to prove that the
modulo 2 congruence class of 2(aT) | W equals (X n2 y) W for any
open ball W in Rk+l with center in X ~ fx : dist(x, aX) &#x3E; la Il and radius
la l. To verify this we choose one of the two open subsets I of W for
which (a Clos 1) 1 w = X 1 W and set

modulo 2 congruence class of and compute,
using the integral analogue

4.5. THEOREM:

PROOF: Using the subanalytic homeomorphism,

(x1, - ..., Xm) E A, we may apply 2.7(2) to a representative of Hk (h)(a).
Theorem 4.5 shows that, if they exist, the Steenrod homology

operations provide obstructions to embedding subanalytic sets in low
dimensional Euclidean spaces. This gives some motivation for the
construction of the Steenrod homology operations, using double
points, which follows in §5 and §7.

§5. The double point pair chain

Let m be a fixed positive integer,

5.1. The chain C(Z)
Suppose Z is a mod 2 1-chain in T, and Z is subanalytic as a subset

of (not only r, but also) (Rm)2. Then the closure of Z in (Rm)2 (which
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is subanalytic by the stratification theorem [10, §6]) supports, by 2.5, a
unique mod 2 1-chain C(Z). Since az = T n aC(Z), 9Z is also a

subanalytic subset of (Rm)2.

to obtain a stratification 9’ of (Rm)2 satisfying

where, for each S E g with S C Z and dim S = k,

and p(S) # S because sign si p(S) and sign Si S are constant func-
tions which differ for any Thus, by
cancellation modulo 2,

5.2. The double point pair chain D(f)
compact mod 2 k-chain X

in Rm, and subanalytic maps satisfying the condition (see

the map

subanalytic, and -chain in T. Moreover

subanalytic stratification

D(f) is the compact mod 2 (k - j)-chain in (Rm)2:
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THEOREM:

any subanalytic homeomorphism

for any subanalytic subset U of Rm

for any other subanalytic map

for every t E R with ltl1 and every

PROOF oF (4): Here we shall essentially use a subanalytic map
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dimensional slice determined by linear inter-

polation between f and 0(1, .). In detail, let

and note, by 2.3, that

is an at most 1 - 1 dimensional subanalytic subset of L. Moreover, the

maps q and r belong to L - J, where q(x, y, z) = y and r(x, y, z) = z

sets

are subanalytic with dim

because, for each 

Since the restrictions to C and D of the projection map 71: [0,1] x

Y x Y x L --&#x3E; L may be stratified as in [9, 4.3],

is an at most 1 - 1 dimensional subanalytic subset of L. By the

triangulation theorem, [11, Theorem 2] or [15], there exists a

subanalytic curve 0:[0,1]---&#x3E;L-J with 0(0)=r and 8(1) E L --- K.
Letting p = 0(l) and defining the maps
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because and that

because, for every , For the slices

we recall and apply 5.1 to M and N to

conclude that

(In the above proof, note that q and r may belong to different path
components of L - J, in which case (1- t)p + tq E J for some 0  t 

1).

§6. The branching point chain

Let m, T, ~, and p be as in §5. Recalling from [4, 1.9] the Euclidean
space we use the real analytic maps,
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in expressing, for any subanalytic subset A of Rm, the two-fold

symmetric product of A, 03C3,(A 2) , as a subanalytic subset of a Euclidean
space. Thus, u -1{U(X, y)l = {(x, y), (y, x)l, u(r) n u(L1) = 0, u ’L1 and
T u(L1) are analytic diffeomorphisms, o- j r is a two-sheeted analytic
covering map, and T[u(A2) n u(L1)] = A (even though T[u(A2)] is not
necessarily contained in A).

6.1. DEFINITION: For k, j, and f as in 5.2 with j  k, we observe
that p#D(f ) = D(f ) (hence 03C3#D(f ) = 0). Using the Z2 vector-space
isomorphism,

we note that (au - ua)D(f) C u(L1) and define the branching point
chain as the compact mod 2 (k - j - l)-chain in R’",

THEOREM: If X, f, g, h, and U are as in 5.2 and j  k, then

PROOF OF (0):

PROOF OF (1):

PROOF OF (2): : Letting

we infer that p#E = E and that, by 2.5(7),
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PROOF oF (3): Letting 5 be as in 5.2(3) and letting &#x26; and T be
defined as 0’ and T were above with Rm replaced by R X Rm, we
observe that S03C4#03C3, = T#ú5#S domain (03C3,) and use 2.5(2)(4) and 5.2(3)
to compute

PROOF oF (4): Letting À, g, v, M, and N be as in the proof of 5.2(4)
we conclude from 2.5(1)(4)(5)(6)(14) and 5.1 that

6.2. DEFINITION: For any compact mod 2 k-chain X in Rm,
B’(X) E Hk(K, aX) is defined as the fundamental class of X and, for
i E {1,2,..., k}, Bi(X) E Hk-i(X, aX ) is well-defined as the homology
class of B(f ) for any subanalytic map f: X Rk+i-1 satisfying 5.2(*)
with j = i -1 by 2.3 (which shows the existence of such f), 6.1(0)
(which shows that B(f) E Lk-i(K, aX), and 6.1(4) (which shows that
independence of the choice of f).

THEOREM: B’ is a geometric homology operation of degree i on H.

PROOF: This is clear for i = 0. For i &#x3E; 0, properties 3.2(1) and 3.2(3)
follow from 2.3, 6.1(1), and 6.1(3).
To verify 3.2(2), we use 2.3 to choose a subanalytic map f satisfy-

ing 5.2(*) with j = i - 1 as well as the estimate,
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and then apply 6.1(2).

6.3. THEOREM: For any compact mod 2 k-chain X in Rm with

fundamental class X:

PROOF OF (0): See definition 6.2.

PROOF OF (2): Choose U, V, H2k-m(t), r, s, and a as in 2.6(4)(5) with

subanalytic subset G of s ;l{0}. Thus, by 2.5(2)(4)(5),

Moreover, by 2.5(19)(20)(22),

Conclusion (2) now follows from 2.6(5) because

PROOF oF (1): By 6.2, (2), 3.5, and 4.2 J(B’) is the unique Steenrod
homology operation of degree 1, thus, B1 = P by 4.4(1).



359

6.4. COROLLARY (Existence): The branching point operation j(Bi)
is the Steenrod homology operation of degree i for every nonnegative
integer i.

PROOF: Combine 3.5, 4.2, 4.4, 6.2, and 6.3(2).

6.5. REMARK: One may verify 6.3(1) without appealing to the

uniqueness theory of §4. Choose first, by 2.3(3), p E Hom(Rm, Rk) so
that f = p | X satisfies 5.2(*) with j = 0, and second, a subanalytic
stratification 9’ of X as in [9, 4.4] with g = p, L = X, and % = {K, aX ,
B(f), aB (f)}. Let T be the integral k-chain in Rm obtained by using,
for each k dimensional S E Y, the diffeomorphism fis to pull back to
S the standard orientation of the open subset f (S) of R k. Then 03B2(X)
is, by 2.7(3), the homology class in Hk-l(X, aX) of the modulo 2

congruence class A(f ) of the integral k-chain 2-1[(aT) L(Rm ,...., aX)].
To show that A(f) - B(f) E Bk-1(X, aX ), one computes the modulo 2
multiplicities of A(f ) and B(f ) at each k - 1 dimensional R E Y with
R fl ax = 0 by counting the number of adjacent k dimensional S E y
which are mapped by f to each side of f (R ).

§7. The double point chain

Let m, k, j, X, f, sf, and D(f) be as in 5.2 and ir:(R’ )2 --B&#x3E; R’,
ir(x, y) = x for (x, y) E (Rm)2. The double point chain is the compact
mod 2 (k - j)-chain in Rm,

7.1. THEOREM:

then :
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Using 5.1, 5.2(0), and 2.5(22), we compute that

PROOF oF (1): Apply 2.5(2) and 5.2(1).

PROOF oF (2): Note that by 2.5(9) and

apply 2.5(10) and 5.2(2).

PROOF oF (3): Letting 8 be as in 5.2(3) and 7T be defined as 7r was
above with Rm replaced by R x Rm, we observe that ir#&#x26;#S = S-ro and
then apply 5.2(3).

PROOF oF (4): Letting Y, and À be as in the proof of 5.2(4), we
choose J, 0, IL, v, M, and N as before with L replaced by

Under the usual identification of L with (m + 2k + 2 j ) X (k + j )
matrices, I becomes a closed quadrant in a Euclidean subspace of
dimension i = (m + 2k + 2j)(k + j - 1) + 2. To obtain the crucial esti-
mate, dim J  ! - 1, we repeat the proof of 2.3 (with Hom(Rm, R"), A,
and B replaced by I, Y, and either Y or a Y) by computing that

whenever

that
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because (b - t,)-’(R"j) = X - aX for all b E I, we conclude from 5.1,
2.5(4)(5)(6)(14), and the proof of 5.2(4) that

7.2. LEMMA: For any compact mod 2 k-chain X in Rm, j E
{0, 1,..., kl, continuous function g : (K, ôX) - (Clos Rk+j, Rk O+j), and
E &#x3E; 0, there exists a subanalytic map f : X ___&#x3E; Rk+j satisfying 5.2(*) such

PROOF: By the subanalytic triangulation theorem, ([ 11, Theorem 2]
or [ 15]), we may assume that X and aX are compact polyhedra in Rm.
In this case, we may appeal to either [16, 4.8] or [28, Chapter 6,
Theorem 18] to obtain first, a piecewise linear map h : aX  Rô+’ so
that

and

and

7.3. DEFINITION: For any compact mod 2 k-chain X in Rm,
DO(X) E Hk(X, aX) is defined as the fundamental class of X and, for
i E (1, 2, ..., k}, D(X) E Hk-(K, aX ) is well-defined as the homology
class of D(f ) for any subanalytic map f: X  Rk+i satisfying 5.2(*)
with j = i and satisfying f-1(R+j) = X ’- ax in case 9X 7é 0 by 7.2
(which shows the existence of such f), 7.1(0) (which shows that
D( f ) E Lk-i(X, X)), and 7.1(4) (which shows the independence of the
choice of f).

THEOREM: Di is a geometric homology operation of degree i on H.
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PROOF: This is clear for i = 0. For i &#x3E; 0, properties 3.2(1) and 3.2(3)
follow from 7.2, 7.1(1), and 7.1(3).
To verify 3.2(2), we recall the proof of 7.2 to choose a subanalytic

For any subanalytic homeomorphism g mapping Rk+i n

7.4. THEOREM: For any compact mod 2 k-chain X in Rm with

fundamental class X:

PROOF oF (0): See definition 7.3.

PROOF OF (2): Let f and iF be defined as rand 03C0 were in 5.0 and

7.0 with Rm replaced by R x Rm, choose U, V, a and Y as in the proof
of 4.4(1), and let

Then dim
and

suffices, by 2.6(5), to show that the modulo 2 support of
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compute

PROOF OF (1): By 7.3, (2), 3.5, and 4.2, J(Dl) is the unique Steenrod
homology operation of degree 1; thus, D1 = J3 by 4.4(1).

7.5. COROLLARY: (Existence) The double point operation J(D’) is

the Steenrod homology operation of degree i for every nonnegative
integer i.

PROOF: Combine 3.5, 4.2, 4.4, 7.3, and 7.4(2).

7.6. REMARKS:

(1) One may verify 7.4(1) without appealing to the uniqueness
theory of §4. As in the proof of 4.2, we may assume aX = 0. Choose
first, by 2.3(4)(5), a subanalytic map f : X B Rk+l so that dim X 2 rl

f(x, y): x ~ y, f (x) = f ( y )) = k - 1 and so that dim f-l{ w}  0 whenever
w E Rk+1, and second, a subanalytic stratification 9’ of X as in

[9, 4.4] with = {X, D(f)}. Let = g&#x3E; n {S: dim S = k}, R =

Y ~ {S : dim S = k - 1}, and G be the unique bounded open subset of
R k+l with aG = f,,X. If T = EREE (f |1 R)#’[(aG.) Lf (R)] where Go is as
in the proof of 4.4(1), then it suffices to show that the modulo 2

congruence class of 1(aT)L(X-aX) 2 equals D(f ). This involves a
local argument (similar to the proof of 4.4(1)) about (x, y) for each
pair x, y of distinct points in (U e) - aX with f (x) = f (y).

(2) One may verify the equality Bi = D’for all i without appealing to
the uniqueness theory of §4 by recalling 7.2, 7.3, and 6.2 and by
establishing the following:

PROOF: The function p 0 f satisfies 5.2(*) with j replaced by j - 1



364

because f satisfies 5.2(*) and

§8. Real projective space

Then dimensional real

analytic projective space, called the Veronese variety. For

i E {0,..., k}, let (tJ be the nonzero element of Hi(pk) = Z2 ([2, 6.1.3]).
This is the image of the fundamental class of P‘ under the usual
embedding of P’ into Pk.

8.1. Some specific projections of the Veronese surface
Since w 2 = ol(,W2) = D1(P2) = B1(p2), (tJj is generated either by D(f)

for any subanalytic map f : p2 ___&#x3E; R3 having a 1 dimensional double

point pair set or by B (g) for any subanalytic map g : p2 R3 having a 2
dimensional double point pair set.

(1) Steiner’s Roman surface (cf. [13, p. 303]), f: p2 R3,
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Here D(f) is the sum of the three

cycles, x = 0, y = 0, and z = 0, in PZ. The double point image of f is
the collection of points (u, v, w) in R3 with at least two coordinates
zero and u’ + v’ + w’  1/2. B (f ) consists of the six points, [0,21/2/2,
:t21/2/2], [2 1/2 /2, 0, +21/2/2], [21/2/2, :t21/2/2, 0]. The images of these six
points are "pinch points" of the image of f.

double point image of f is the line segment, 0  u  2 1/2 /2, v = 0 = w, in
R3. B(f) consists of the two points, [1,0,0] and [o, 0, 1], whose images
are pinch points of the image of f.

occurs with zero multiplicity in D(f) because the image of f is tangent
to itself along the line segment, u = 0 = v, -2 1/2 /2  w  21/2 /2.

Here D(f) is not defined

because the double point pair set of f has dimension two.

because the double point pair set of r has dimension two. The circle,
x = 0, is mapped to the origin; off of this circle, f is an embedding.

cycles, x = 0, y = 0, and z = 0. The image of g is the closed triangle
with vertices, (o, 0), (1, 0), and (0, 1).

along which g has a "fold".

radius 21/2 /2 about the origin in R2. Moreover g maps the circle, y = 0,
to the origin, and g has a fold along y = :t21/2/2. Over the interior of K
minus the origin, g is a double covering.
Note that, in (7), (8), and (9), g is the composition of the map of (3)

by the projection map of R3 onto one of the coordinate planes.

8.2. Evaluation of tPi on H,(Pk)
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By first enumerating possible double-point pairs ([xo,...,Xkl,
[yo, ..., Ykl) of f ô according to various différences in sign between xjxo

we repeatedly form transverse slices in

find that fk k is injective and that, for

is the sum of certain k - i dimensional linear

subvarieties of I*. Since each such subvariety generates W k_,@ k our

formula

This is consistent with results obtained in cohomology using [20, 4.2,
4.4], Thom’s identity [20, p. 91], and 10.1 below.

§9. Embedding and immersion in Euclidean spaces

In this section we prove a nonembedding theorem for subanalytic
sets which is dual to Thom’s nonembedding theorem [3, III, 1.5]. In
fact we extend Thom’s theorem to pairs of spaces, and we prove an
analogous non-immersion theorem, which is also new.
We pass from subanalytic maps to arbitrary continuous maps by

the following result on maps which are "almost" immersions or

embeddings. It generalizes a theorem of C. Weber [27, p. 134, Cor.].

9.1. THEOREM: For any compact mod 2 k-chain X in Rm and

i E {1,2,.... k}, there is a positive numberex such that :
(1) If there exists a continuous map

for which

then



367

(2) If there exists a continuous map
for which

then D’(X)=0.

PROOF: Recalling the notations L1, qjJ(f), U, T, 03C0, and or from §5, §6,
and §7, we choose, by the reasoning of 2.6(4), relatively open
subanalytic neighborhoods N of u(L1 n X2) in u(X2) and Na of

u[L1 n (aX)2] in N so that the pair (u(L1 ~ X 2), u[L1 n (aX)2]) is a

strong subanalytic deformation retract of (NN,9) with retraction r,

PROOF OF (1): Choose e as in (1) and, by the compactness of X, a

which is empty because

2.5(2)(4) and 6.1,

PROOF OF (2): Choose by the compactness of X, a positive y so

chains P, Q, and R so that

Since u is a two-sheeted covering map, branched along 2!, D(f)=
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9.2. By an embedding we mean any continuous injective map. By
an immersion we mean any continuous locally injective map.

Recall from 6.4 and 7.5 that the Steenrod homology operation 0’
equals J(B’) = J(D’) for any nonnegative integer i.

THEOREM: Suppose A D B are subanalytic sets and i, k, and n are

positive integers.
(1) If A immerses in R n then «P’(a) = 0 whenever a E Hk (A, B) and

(2) If (A, B) embeds in (Clos R+, n Ro n)@ then f/)i(a) = 0 whenever

PROOF: If X E Lk (A, B ) represents a and i : (X, aX)  (A, B ) is the
inclusion map, then by 3.5,

Since any immersion of A into R" induces an immersion of X into
Rk+i-1 for i &#x3E; n - k and any embedding of (A, B) into (Clos RB, Rô)
induces an embedding of (X, dX) into (Clos R++‘, Râ+i) for i &#x3E; n - k,
(1) and (2) follow from 9.1(1) and 9.1(2).

§10. Relation to cohomology operations

Let H* be the modulo 2 singular homology functor, which is, by
2.6(2), naturally equivalent with modulo 2 subanalytic homology H*
on the subanalytic category. For each nonnegative integer i, let cpi be
the operation on H * corresponding to the Steenrod homology opera-
tion Bcpi on H*. The following theorem describes the relation between
the operations 0’ and the Steenrod operations Sq’ on modulo 2
singular cohomology H* [3].

Let ( , ) be the Kronecker pairing between H* and H * and, for
each nonnegative integer i, let Sqq i be the modulo 2 cohomology
operation which is determined by the relations,
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PROOF: Following Milnor and Stasheff [20, p. 136], we define an
action of Sq’ i on homology by the identity (a, Sq’03B2 ) = (Sqia, {03B2). The
naturality of this action follows directly from the naturality of the
action of Sqi on cohomology. Therefore, by the uniqueness theorem
4.2, we have only to check that the action of Sq’ i on homology
satisfies the self intersection axiom of 4.1.

Let a E Hk(A, B) where k &#x3E; i, Au B are subanalytic subsets of Rm,
and m = k + i. To show that sq’(03B1) = a . a, we may assume that A and
B are compact. Let M and N be compact m dimensional subanalytic
manifolds with boundary in Rm such that N is contained in the

interior of M, and M and N contain A and B, respectively, as strong
subanalytic deformation retracts. Let t:(A,B)---&#x3E;(MN) be the in-

clusion map and let « be the fundamental class of M. By Poincaré-
Lefschetz duality [2, VIII, 7.2], there is a class j8 E
Hm-k(M --- N, Fron M) such that Hk()a = eW where ~ is the cap
product. Then Hk-;(i)(a . a):= ({3v{3)rB.Átl where ~ is the cup

product. Thus, by the naturality of Sq‘, the parallelizability of M, the
cap product formula of [20, p. 136, 11-F] (the proof of which uses the
Cartan formula for Sqi [3, 1, 1(5)]), and the cup product axiom for Sq ’
[3,1, 1(3)],

hence,

This is just a restatement of the formula
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