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Abstract

Let g be a complex semisimple Lie algebra, U(g) its enveloping
algebra, Prim U(g) the set of primitive ideals of U(g) and b a Cartan

subalgebra for g. For g simple of type An-l (Cartan notation), Jantzen
[3], 5.9 conjectured that the cardinality of each Prim U(g) fibre

projecting onto a fixed regular integral central character and onto a
fixed nilpotent orbit in g* is just the dimension of the appropriate
irreducible representation of the symmetric group Sn. Here it is

suggested that the appropriate formulation of this conjecture for
general g involves the dimensions of certain subspaces of polynomials
on fj* which determine the dimensions of the irreducible finite

dimensional representations of parabolic subalgebras of g. Its reduc-
tion to the Jantzen conjecture for type An-i is essentially a com-
binatorial result of Garnir [14]. Then through a careful study of ad A
finite homomorphisms of induced modules (which gives some results
of independent interest) the Jantzen conjecture is reduced to two

open questions. The first involves the principal series and would give
a lower bound (involving the dimensions of the above-mentioned
subspaces) on the cardinality of each regular integral fibre. In case
An-i this is just the number of involutions in Sn and coincides with
Duflo’s upper bound [13], II.2. The second is a problem of Borho [1],
3.3 which whenever the last part of [21], 4.3 holds (for example in
type An-1 [25], 4.1) fixes the associated nilpotent orbit.

* Work supported by the C.N.R.S.
** Present address: Department of Mathematics, Tel-Aviv University, Ramat Aviv,
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1. Introduction

Unless otherwise specified all vector spaces are assumed over the
complex field C.

1.1 For each vector space V, let S( V) denote the symmetric
algebra over V and V* the dual of V. For each Lie algebra a, let U(a)
denote its enveloping algebra and Z(a) the centre of U(a). For each
associative algebra A let jl(A) (resp. Spec A, Prim A) denote the set
of two-sided (resp. prime, primitive) ideals of A and A A the set of
classes of irreducible representations of A, with a similar convention
for a group. For U (a) A we simply write a". A ring is said to be

Noetherian if it is left and right Noetherian.
1.2 Let g be a complex semisimple Lie algebra. The principal aim

of this paper is the classification of Prim U(g). Take I E Prim U(g).
Then the map 11’: I-I n Z(g) is a surjection of Prim U(g) onto
Max Z(g) with fibres of finite cardinality [10], 8.5.7 (b), [13], II, Thm.
1. Give U(g) the canonical filtration [10], 2.3.1 and identify gr(U(g))
with S(g). Identify g* with g through the Killing form and call X E g*
nilpotent if ad X is nilpotent. As noted in [6], Sect. 7, the zero variety
’(gr I) of gr I is contained in the cone .N’ of nilpotent elements of g*
which under the adjoint group G is a finite union of orbits. Suppose
further that the radical ’B/gr I of gr I is always a prime ideal. Then
since G is algebraic, there is a unique nilpotent orbit 0 c g* whose
Zariski closure 6 coincides with ’V(gr I) and hence a map K of
Prim U(g) into .N’/G (c.f. [3], 2.9). This gives rise to the following
problem. For each Â E Max Z(g), (J E .N’/G determine card{1T-I(Â) rl
J{-I«(J)}. For g simple of type An-i: n = 2, 3,..., (Cartan notation) and
for regular integral A, J.C. Jantzen conjectured [3], 5.9 that these
numbers are just the appropriate dimensions of the irreducible

representations of the symmetric group Sn. (Recall that Sn is in

natural bijection with .N’/G. The non-regular case is handled by [5],
2.12 and it is generally supposed (c.f. [21], Sect. 4) that the non-
integral case mirrors the integral case.)

1.3 In attempting to prove Jantzen’s elegant yet mysterious con-
jecture, it is clearly important to find a reinterpretation which applies
to any semisimple Lie algebra. Now although most primitive ideals in
type An-, are not induced ones, they all take the form (c.f. 9.3 and [5],
4.5 d)) of a minimal prime ideal containing an induced one. This leads
us to suggest (see 8.2) that for C polarizable [10], 1. 12. 8, or

equivalently for any Richardson orbit 6 (see 8.2), the cardinality of
7r’*(À) n J{-I«(J) is the dimension of the space generated by the
polynomials on $* which determine all possible dimensions of finite
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dimensional irreducible representations of an appropriate subset of
parabolic subalgebras. Then through a careful study of locally ad g
finite homomorphisms of induced modules (Sects. 4-7) and [21-25],
we are able to reduce the Jantzen conjecture to the following two
open questions, 9.1 and 10.2. First to show that for each induced ideal
J one has VgrJ E Spec S(g) - a problem suggested by Borho [1], 3.3.
Second to show that the simple subquotients of the spherical principal
series of different multiplicity (or just of non-commensurable multi-
plicity, 10.5) in the sense of the Hilbert-Samuel polynomial, neces-
sarily admit different annihilators. Our more general conjecture for an
arbitrary semisimple Lie algebra further requires the solution of

certain combinatorial questions involving the Weyl group and the root
system. In type An-h these are resolved through results of Specht
[33], Garnir [14], Schensted [31] and Knuth [27].

1 should like to thank M. Duflo, G. Cauchon, A. Lascoux and N.

Spaltenstein for useful conversations concerning this work.

2. The Hilbert-Samuel polynomial

To set notation we recall some standard results concerning the
Hilbert-Samuel polynomial.

2.1 Let A be an associative algebra which we shall always assume
finitely generated and with an identity. Given T, T’ subspaces of A we
set TT’ = lin span{tt’: t E T, t’ E T’l and for each k E N, we define Tk
inductively through To = C, Tk = T k- ’T and set T-I = 0. Now suppose
that T is a finite dimensional generating subspace of A containing the
identity. Then the subspaces T-1 C TO C TI C ..., define a filtration
for A. For each k E N, set Tk = Tk/Tk-I and let

denote the associated graded algebra which we shall always assume
commutative. If M is a finitely generated left A module, fix a finite
dimensional generating subspace M° and for each k E N, set Mk-1 =
T k-lMO@ Mk = MkIMk-1 . Then

is a graded module for gr A satisfying the hypotheses of [32], Chap.
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II, Thm. 3. Through its conclusion there exists a polynomial qT(M)
(the Hilbert-Samuel polynomial) such that qT(M)(k) =yk =0 dim M, =
dim Mk, for all k sufficiently large. We set d(M) = deg qT(M) and let
eT(M)/d(M) ! denote the coefhcient of kd(M) in qT(M). We recall that
d(M) + 1, eT(M) are positive integers which do not depend on the
choice of generating subspace Mo and d(M) (denoted by dim M in
[25]) does not depend on the choice of generating subspace T
(whereas eT(M) does). We define d(A) (which coincides with Dim A
defined in [6]) and eT(A) through A considered as a left A module.
When A = U(a), for some finite dimensional Lie algebra a, we shall
always take T to be the image of the canonical embedding of a Q C in
U(a) (which defines the canonical filtration {U(a)k: k = 0, 1, ...}, of
U(a)) and we simply write e(M) for eT(M). We identify gr( U(a)) with
S(a).

2.2 Recall the well-known [32], Chap. II, Prop 10

LEMMA: Let 0 --&#x3E; MI ---&#x3E; M --- &#x3E;M2--*0, be an exact sequence of finitely
generated A modules. Then one of the following hold

(i) d (Mi)  d (M ) and d (M2) = d(M), eT (M2) = eT (M ) .
(ii) d(MI) = d (M) = d (M2) and eT (M) = eT(MI) + eT (M2).
(iii) d (M2)  d (M) and d (Ml) = d(M), eT(MI) = eT(M).

2.3 Let a be a finite dimensional Lie algebra, A = U(a) and V a left
and right U(a) module (which we can consider as a left U(a) Q U(a)
module). Set LAnn V = f a E A: a V = 01, RAnn V = la E A : Va = 01.
We shall say that V is ad a finite if for each X E a, the endomorphism
ad X : v - Xv - vX of V is locally finite. Suppose V is ad a finite and
finitely generated as a U(a) Q U(a) module. Then we can choose a
finite dimensional subspace V° of V which generates V as a

U(a) 0 U(a) module and satisfies (ad X) V° C V°, for all X E a. Let
T denote the image of a@C in U(a). Then for all k EN, one has
TkVO = Tk-I VOT = Tk-2VOT2 =... = VOTk, and in particular that

It follows that V is finitely generated as a left and as a right U(a)
module and the Hilbert-Samuel polynomials for these three actions
coincide. We use d(V), e(V) to denote the common invariants.

1 

An elementary computation gives

LEMMA: Suppose V is finitely generated as a left and a right U(a)
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module and Ann V = LAnn Vo U(a) + U(a) @ RAnn V. Then
(i) d(U(a)@ U(a)/Ann V) = d( U(a)/LAnn V) + d( U(a)/RAnn V),
(ii) e(U(a) U(a)/Ann V) = e( U(a)/LAnn V)e( U(a)/RAnn V).

2.4 The f ollowing generalizes [25], 3.1.

PROPOSITION: Let g be a semisimple Lie algebra and V an ad g
finite U(g) 0 U(g) module of finite length. Then

(i) d( U(#)lLAnn V) = d( U(#)lRAnn V) = d(V).
(ii) If -v/gr(LAnn V) and Vgr(RAnn V) are both prime ideals, then

they coincide. (Recall that U(g) is given the canonical filtration).

By 2.3, [13], Prop. 7 and [23], 3.2, 3.6, we have

This gives (i). For (ii) observe that gr(LAnn V) C Ann gr V (with gr V
prescribed by 2.1 and 2.3) and so by (i), d(V) = d ( U(g)/LAnn V) =
d(S(g)/gr(LAnn V)) &#x3E; d (S(g)/Ann gr V) &#x3E; d(gr V) = d(V). Given
Vgr(LAnn V) prime, one obtains Vgr(LAnn V) = VAnn gr V and
hence (ii).

3. Induced modules

3.1 Let g be a semisimple Lie algebra, $ a Cartan subalgebra for g,
R C $* the set of non-zero roots, R+ C R a system of positive roots,
B C R+ a Z basis for R, sa the reflection corresponding to the root a,
W the group generated by the sa : a E R, P(R) the lattice of integral
weights. Fix a Chevalley basis for g and let Xa denote the element in
this basis of weight a E R. Let n (resp. n-) denote the subalgebra of A
spanned by the Xa : a E R+ (resp. a E R-) and set b : = n Q fj. For each
subset B’ C B, set R’= ZB’ f1 R, R’+ = R, fl R’, WB, the subgroup of
W generated by the sa : a E R’, wB, the unique element of WB, taking
B’ to -B’, P(R’)++ = {A E $*: 2(À, a )/(a, a) E N+, for all a E B’),
B" = IA e *: (,k, a) = 0, for all a E: B’l. Let pB, D b (or simply, p)
denote the subalgebra of g with reductive part b (D (@ CXa : a ER’},
mB, (or simply, m) the nilradical of pp and a-B, (resp. p if B’ = B ) the
half sum of the roots in R’+. Given À E P(R’)", let VB,(À) denote the
simple finite dimensional pa module with highest weight À - p and in
the notation of [10], 5.1 set MB,(A) = ind(VB’(À), pB, t #), IB,(A) =
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Ann MB{A). We remark that dim VB{A) = dim VB{A + v), for all v E
B". When B’ is the empty set, MB{A) coincides with the Verma
module M(A) for g, b, B, p as defined in [10], 7.1.14. We let L(A)
denote the unique simple quotient of M(,k) and set I(,k) = Ann L(A).
If MB,(A) is defined it is a quotient of M(A) and so I(A) D IB{A).

Let u H ‘u (resp. M’-&#x3E;M) denote the involutory antiautomorphism of
U(g) defined through ‘Xa = X-a: a E R, tH = H, for all H E t (resp.
X = -X, for all X E g). Set mB’ = tmB’ (or simply, m-).

LEMMA: For each B’ C B, A E P (R’)++,
(i) d(MB{Á» = dim mB’.
(ii) e(MB,(,k» = dim VB{A).

Take M = MB{Á), M°= VB,(A) in 2.1. Then M identifies with

U(g)@u(p)Mo= U(m-)@Mo and for all kEN, we have Mk =

U(m-)k@Mo, which gives the required assertions.
3.2 Identify U : = U(g) 0 U(g) canonically with U (g (f) g), set

j(X) = (X, -X), for all X E g and k : = j(g). Given A, IL E fj*, M (resp.
N) a subquotient of M(A) (resp. M(li», define Homc(M, N) as a U
module through «aob),x)m=’âx6m, for all a, b E U(g), x E

Homc(M,N), meM. Let L(M, N) denote the subspace of

Homc(M, N) of all t finite elements (which is a U submodule and ad A
finite in the sense of 2.3). Given A, IL E P(R’)++, then

L(MB,( ), MB,(I£» is non-trivial iff k - 1£ E P(R), [9], 5.8.
3.3 Call A e $* dominant if 2(A, a)/(a, a) e N-, for all a E R+ and

regular if (A, a) 0 0, for all a E R. For each À E $*, set W(A) =
{w E W : wk = A ), R, = f a E R : 2(A, a)/(a, a ) E Z), R1 = R+ fl RA, WA
the subgroup of W generated by the sa : a e RA and WA the unique
element of WA taking R1 to -R1. Given A, IL E fj* such that À - 1£ E
P(R), then WA = WJL and we say that A and 1£ belong to the same
facette of $* if W(A) = W(IL) and there exists w E WA such that wA
and WIL are both dominant. Given A, IL E P(R’)++ consider

(MB{-A)@MB{-IL»* as a U module through transposition and let
LB{A, IL) dénote the subspace of ail r-finite éléments (which is an ad g
finite U module and non-trivial iff A - IL E P(R)). If B’ is the empty
set we simply write L(A, li). If li is dominant, then [12], Thm. 4.2,
L(A, IL) admits a unique simple quotient V(,k,.u) and we set

V(A, WIL) = V(w -’,k, IL), for all w E WJL (c.f. [12], Thm. 4.1).

LEMMA: For all.

are simple U(g) modules, then
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(i) is clear (see proof of [13], Prop. 9). (ii) follows from (i) and [9],
5.5.

REMARK: We shall eventually see (c.f. 6.2 (iii)) that (ii) holds
without restriction on simplicity.

3.4 Given À E fj*, let À denote its orbit under W, which may be
identified with the element I(A)f1Z(#) of Max Z(g). Set Bei =
(I(&#x3E; ): ..t E Â). Then aei C 7T-l(À) (notation 1.2) and indeed [13], Thm. 1
equality holds. Given k E P(R) we may further identify À with an
element of t" (by taking the unique simple t module with extreme

weight A) and then t" = P(R)IW. Let P (R )+ denote the dominant
elements of P(R). We give P(R)+ (which we sometimes identify with
N": r = rank g) the topology induced by the Zariski topology on $*.

4. The primeness of the ring L(MB,(A), MB,(A»

Retain the notation of Section 3. We start with some standard

reasoning.
4.1 A t-finite U module M is said to admit a f ormal character (with

respect to t) if each isotypical component Mv: v E t" has finite multi-
plicity, which we denote by [M : û].

LEMMA: Suppose M # 0 admits a f ormal character. Then M admits
at least one simple subquotient.

Choose û E t" such that Me 0 0. Let N’ be a submodule of M for
which Ni has minimal non-zero multiplicity and set N = UN . By
construction every proper submodule of N has no isotypical component
of type v. Hence the sum N of all proper submodules of N is a proper
submodule of N and so N/N is the required simple subquotient.

4.2 A U module L is said to admit a central character if there

exists ll E Max(Z(g) @ Z(g» such that z - A (z) - 1 is nilpotent for
every z E Z(g) @ Z(g).

LEMMA: Let L be a t finite U module. If L admits both a f ormal and a
central character, then L has finite length.

Let (À, iî): k, IL E b* define the central character of L (c.f. 3.4). By
[12], Thm. 4.5, the simple subquotients of L form a subset of

( V(A ’, &#x3E; ’): A ’ e Â, &#x3E; ’ e il ). Recall [12], 3.4 that V(À’,li’) has a non-
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zero isotypical component of type (A’- li)^ and this can have at most
(card W)2 values. Now if L has infinite length, then by 4.1 it admits

infinitely many simple subquotients which therefore cannot all belong
to the above set. This contradiction proves the lemma.

REMARK: Obviously L has length --5(card W)2 _ maxf[M: (,k’-
JI’) A]: A’ E Â, ’ E 1}.

4.3 PROPOSITION: For allk, ii E b* and every subquotient M (resp.
N) of M(,k) (resp. M(&#x3E;)) one has

(i) L(M, N) has finite length as a U module. In particular it is

finitely generated as a left or a right U(g) module (cf. 2.2).
(ii) L(M, M) is a Noetherian ring.

It is clear that (- Â, - ¡1) defines the central character of L(M, N).
Identify t with g. Given F a finite dimensional g module consider
M@F as a g module through X(m@f)=Xm@f+m@Xf:XEg,
m E M, f E F. We have Homg(F, L(M, N)) = Homg(M@ F, N) up to
isomorphism (c.f. [8], 6.2). Now M@ F has a formal character

with respect to b and so taking account of the possible simple
subquotients of N (c.f. [10], 7.1.7, 7.4.7, 7.6.1) it follows that L(M, N)
admits a formal character. Hence (i) obtains from 4.2 and (ii) from
the fact that U(g) is Noetherian.

REMARK: B y [5], 3.6 there is integer n(g) depending only on g which
is an upper bound to the length of any Verma module for g. By [20],
2.2 we then have dim Homg(MD F, N) S n (g) dim F.

4.4 In the remainder of Sect. 4, we fix B’ C B and A E P(R’)++. For
all v e B ", the identity map on U(rtt-) (notation 3.1) induces a j(m)
invariant linear isomorphism OÂ-’ (or simply, 0,) of MB,(A) onto

MB{A - v). Suppose further that v E P(R)+. Then by [9], 8.4 we have
OA-’EE L(MB,(A), MB,(A - v)) and we let 0’-’ (or simply, 0,) denote
the unique simple t module it generates. It is clear that for all

,k, li E P(R’)++, 0 # a E L(MB,(Ii), MB,(A )) one has 0»a # 0.
4.5 The action of U(g) in MB{A) defines an embedding of

U(g)/IB{A) in L(MB,(A), MB,(,k» which may be strict [9], 6.5 (see also
10.5) even if MB,(A) is a simple module. Conversely equality can hold
[8], 6.10 even if MB,(,A) is not simple. In fact since L(MB,(A), MB,(A» is
generated by its ad rn- invariant elements, it follows that equality
holds whenever tn- is commutative and dim VB,(A) = 1. Set P(R’)" -
(A E P(R’)++: -wB,A is dominant} = (A E P (R’)++: 2(A, a )/(a, a ) §É N+,
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for all a E R+"R’+}. For all À E P(R’)++, there clearly exists v E

B’.l n P(R)+ such that k - v E P (R’)’. The importance of this set

derives from the following result of Conze-Berline and Duflo [9], 2.12,
4.7, 6.3.

THEOREM: For all B’ C B, and all À E P(R’)V,
(i) MB,(Á) is a simple U(g) module.
(ii) U(g)/IB’(Á) = L(MB’(À ), MB,(Á».

REMARK: (i) is a special case of a result of Jantzen [18].

4.6 A result of Lepowsky [29], Thm. 1.1, states that Ma (À) admits a
unique simple submodule if dim VB,(A) = 1. This presumably fails in
general. Yet it does have the following important variation:

PROPOSITION: Consider MB,(À) as a L(MB,(Á), MB,(A)) module.

Then MB,(À) admits a unique simple submodule.

Choose v E B’.l fl P(R)+ such that À - v E P(R’) v and set

L : = L(MB{Á - v), MB,(Á»6J1 which (c.f. 3.2, 4.4) is a non-zero left

ideal of L(MB,(Á), MB,(A»). Now for all O;;é m E MB{Á), we have
0 0 6J1m E: MB,(,k - v ) and so U(g)O,m = Ma (À - v), by 4.5 (i). It fol-

lows that N : = Lm = L(Mp(À - v), MB,(À»MB,(À - v), is a non-zero

L(MB,(Á), MB«À)) submodule of Ma (À) which is independent of the
choice of m. Consequently for any non-zero simple L(MB(À), MB,(Á»
submodule No of MB{Á), we must have No::&#x3E; LNo = N and so N
satisfies the conclusion of the proposition.

4.7 We denote the submodule in the conclusion of 4.6 by NB,(A).
Consider NB«À) as a U(g) module (the latter given the canonical
filtration).

LEMMA:

(i) d(NB’(Á» = dim mB’,
(ii) e(NB«À )) = dim VB«À ),
(iii) d(MB,(Á)/NB{Á»  dim ma.

Choose v (=- B,l n P (R)’ such that Á - v E P(R’) V. Set A =

U(g)/IB’(Á - v), B = L(MB’(À), MB,(À - V)), C = L(MB’(À - v), MB,(Á»,
V = Va (À - v), M = MB’(À - v), D = End M. By 4.4, we have 0» E B.
By 4.5 (ii), A = L(M, M) and so 0»C is a right ideal of A. Further-
more by [26], 4.2, A m- is a prime Goldie ring which by [24], 5.8 is a
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quotient of U(8)’- and is hence [42] finitely generated. Recall [9], 8.4
that 0, is a j(n) invariant weight vector of j(b) weight v.

Consider A m- / 0,C’- as a finitely generated right A’" module. By
[39], 2.3 (which trivially generalizes to Goldie rings) it is enough to
show that d(A m- / lJvCm-)  d(A m-). This follows easily from the

dimensionality estimates (i) and (ii) given below. First for each

IL E P(R)-, let A-- (resp. B:-, C:-) denote the subspace of A’- (resp.
Bm-, C’-) of j(b) weight vectors of weight 1£ and identify M with
U(rn-) Q V. Then A"’ is a j($) submodule of D’- which is in turn
isomorphic to U(m-) @ End V (c.f. 5.8). This gives dim A:-  00.
Since AO, C B and aO, = 0 : a E A implies a = 0, we obtain

Set JI* = -WBII. Recalling that M is a simple module it follows from
[9], 5.5, 5.8 that dim C:-  dim B*. Yet Olle = 0: c E C implies c = 0
and so

By [26], 4.2 each regular element s E Am is regular in Dm . The
latter identifies with U(m-)@End V in which the elements of U(m-)
act by right multiplication in M = U(m-) @ V. Thus for each m E M
we can choose a E D"’- such that a V = Cm. If sm = 0, then sa V = 0
and so saM = 0. Consequently sa = 0, which by the regularity of s
implies a = 0 and hence m = 0.
By (*) we can choose c E Cm such that s : = Bvc is regular in A m-.

We have shown that cm ¥- 0 for all 0 0 m E M and so

dim(U(m-)kc(1 0 V» = dim(U(m-)k@ V), @ for all k E N . Since cM C
CM C NB{À) it follows by 3.1 that d(NB (À)) &#x3E; d(Mp (À - v)) = dim MB’
and equality implies e (NB«A )) * dim VB,(A - v) = dim VB«A ). Yet the
opposite inequalities obtain from 3.1 and the fact that NB,(,k) is a

submodule of MB{À). This gives (i) and (ii), which combined with 2.2
(i) imply (iii).

4.8 THEOREM: For all B’CB, À E P (R’)++,
(i) NB{À) is a faithful L(MB«A), MB,(A)) module.
(ii) L(MB,(À), MB,(,k» is a prime, Noetherian ring.
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by 4.3 (i), A has finite length as a U module and so by 2.4 (i) we must
have d(U(g)/R) = d(U(g)/L). This contradiction gives (i). Combined
with 4.3 (ii) and 4.6 this gives (ii).

5. Localization

5.1 Let A be a prime, Noetherian ring and S the set of regular
elements of A (so then Fract A = S-’A). Given M a left A module,
set S-’M : = S-IA@AM (or simply, Fract M). We shall say that M is
divisable (by S) if the map m - 10 m of M into S-’M is injective
(equivalently, if for each s E S, 0#m E M one has sm 0 0).
Obviously any submodule of a divisable module is divisable. In

particular any left ideal of A is divisable as a left A module. Suppose
in addition that A and M are finitely generated. Then d(M):5 d(A),
by [25], 2.1. Suppose further that M is divisable. Then we have the

LEMMA: d (M) = d (A).

Suppose d(M)  d(A). Choose 0 # m G M and set N = Am, L =
Ann m. Then for every left ideal K of A we have d (K/(K n L) 
d (A/L) = d (N)  d (M)  d (A). Hence by [39], 2.3 if K 0 0, then K fl
L 0 0 and so ([15], Lemma 7.2.5) L n S 0 0. This contradicts the

divisability of M.
5.2 Retain the notation and hypotheses of 5.1 and suppose in

addition that d(A)  00. Let rk M denote the maximum number of
direct summands of non-zero left A submodules of M. Recall that M

is assumed finitely generated and so S-1M is finitely generated as a
left S-’A module. By ([15], Lemma 4.3.2, Thms. 2.1.6, 7.2.1) we can
write S-1M as a direct sum of k:=rkM simple S-’A modules
Q1, Q2, ..., Qk each isomorphic to a fixed minimal left ideal L of
S-’A. Let N be any A submodule of M.



46

(ii) e(M) = e(L fl A) - rk M. In particular rk M divides e(M).

(i) Let Mo be a finite dimensional generating subspace for M. By
the hypothesis of (i) there exists s E S such that sM° C N. Then
d (MIN ) S d(AIAs)  d (A) = d(M).

(ii) Set Pi = A rl Q; : i = 1, 2,..., k. We have S -’Pi = Qi and d (Pi) =

d(M) by 5.1. Let N be the direct sum of the Pi (which may be
considered as a submodule of M). We have S-’N = M and so by (i)
and 2.2 (iii) that e(M) = e(N). Hence it is enough to show that

e(P;) = e(L fl A), for all i. Set P = Pi. Let pO be a finite dimensional

generating subspace for P and cp the S-’A module isomorphism of
S-Ip onto L. Choose s E S such that scp(pf) C A. Then P’ : = ASP° is
an A submodule of P and S-Ip’ = S-’P by the left Ore condition on
A. Hence d(P/P’)d(P) by (i). Again ço(P’) = As ço(PO) C L n A;
S-I(cp(p’» = çP(S-’P’) = L and so d«L n A)/cp(P’»  d(L fl A) by (i).
Hence e(P) = e(P ’) = e(L f1 A), as required.

5.3 (Notation, Sects. 3, 4). Fix Ài E P (R’)++ such that Ài - Àj E
P(R): i, j = 1,2,3.

Choose v EE Bl n P(R)’ such that A2 - V e P(R’)’ and a finite

dimensional t submodule F of L(MB,(À2 - v), MB,(Ai)) such that

L(MB,(À 1), MB’(lk2»F 0 0. Then i9,L(MB, (À 1), MB,(À2» F is a non-zero
two-sided ideal of the prime Noetherian ring U(A)IIB’(À2 - v). By 2.2,
[1], 2.4, [25], 2.1 and [6], 3.6, we have 2 dim ma = d ( U(g)/IB-(A2 - V» =
d(O,,L(MB,(,ki), MB,(À2» F) - d(L(MB.(Àt), MB,(,k2») where the last step
obtains from the fact that 8." F are finite dimensional and t stable. By
4.3 (i), and [25], 2.1, 2.8 we obtain the opposite inequality.
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(i) By 5.3, there exists b E L(MB,(À2), MB,(Ai)) such that 0 # ba E
L(MB,(,k 1), MB,(À 1» and so (i) follows from 4.8 (i). (ii) follows from (i) and
4.6.

5.6- COROLLARY: For all 0 0 a E L(MB,(À2), MB,(À3» one has

aL(MB’(ÀI), MB{À2» ¥- 0.

By 5.5, aL(MB,(À,), MB’(À2))MB’(Ài) D aNB{À2) ¥- 0.
5.7 In the remainder of Sect. 5 we fix k, j£ E P (R’)++: À - p E P (R).

LEMMA: Choose vEB,.1np(R)+ such that MB’(À-v) is a simple
U(g) module. Then L : = L(MB«À - v), MB’(À»8v contains a regular
element of L(MB«À ), MB«À )).

Taking 4.8 (ii) into account this follows exactly as in the proof of
[9], 8.5.

5.8 For all a E U(m-), x e Hom(VB«p), VB,(À», define ra @ x E

(Hom(MB,(.L), MB,(À»y(m) through (ra @ x)(b @ e) = ba @ xe, for all

b E U(m-), e E VB«p ). It is clear that the map a @ x - ra @ x extends
linearly to an isomorphism of U (m-) (D Hom(VB,(it), VB,(À» onto

(Hom(MB,(p,), MB,(À»)i(m), and we identify Hom(VB,(p,), VB,(À» with
the image of 1 @ Hom(VB«p), VB«À)) under this map.

5.9 THEOREM: For all À, p E P (R’)++: À - .L E P (R ), L(MB«p ),
MB«À)) and L(MB«À), MB«À))Hom(VB«&#x3E;), VB«À)) are finitely
generated divisable left L(MB«À), MB,(À» modules and considered as
submodules of Hom(MB,(p,), MB,(À» satisfy

Take 0 # a E L. By 5.6, there exists b E L’ such that 0 # ab E A and
so if s E A is regular, we have sa 0 0. Hence L is divisable. By an
argument which exactly parallels [9], 5.10, it follows that for each
finite dimensional subspace T C K, there exists v e B’l. n P(R)+ such
that T0» C L(MB,(À + v), MB«À)). This and 5.6 establishes the divis-
ability of AK. Choose a E K. By 4.5 and [9], 5.10, there exists

v E B’l. n P(R)+ such that eva eL(MB,(À), MB,(À -v)) and that
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Ma (À - v) is a simple U(g) module. By 5.7, we can choose b e
L(MB«À - v), MB,(A)) such that s : = b0v is regular and we have
sa E L. Thus Fract AK C Fract L. In particular, taking g = A, we
have (Hom(MB{A), MB{A»)j(m) C Fract A. Thus by 5.8 we obtain

Fract AK = Fract(A Hom( VB«&#x3E; ), VB«À ))).
It is clear that each X E tn- is locally ad-nilpotent in A and for each

0 0 a E U(m-), we have am = 0: m E Ma (À), implies m = 0. Set

Z : = U(m-)n-" {O} C Z(m-). Through the argument of [7], 2.4, each
z E Z is locally ad-nilpotent in A ; has trivial right annihilator and so is
regular (either by 4.8 (ii) and [15], 7.2.3, or by ad-nilpotence). Thus Z
is an Ore subset for both U(g)/IB{A) and A. Define c(m-) (or simply,
c) as in [24], 2.6. We recall [24], 2.6 that U(C)R = U(m-)n which in
particular gives that IB{A) n U(c) = O. Thus the embedding
U(#)/IB,(A) ÙA restricts to an embedding of U(c) and through the
ad-nilpotence of rtt-, by an argument which exactly parallels [24], 3.3,
we find that Z-’L = Z-I(U(c)Lm-). Combined with our earlier in-

clusions this proves the theorem.

5.10 Set m = dim m and let dm denote the Weyl algebra of index m
over C. We note the following result which obtains from 5.9 and the
methods of [26].

THEOREM: For all B’ C B, A E P (R’)++,
(i) L(MB,(A), MB{A»m- is a prime, Noetherian ring.
(ii) Fract L(Ma (A), Mp (A))’"’ = Fract(Hom(MB«À ), MB{A»ym).
(iii) Fract L(MB{A), MB«À)) = Fract(Um@End VB«À)), up to an

isomorphism.

6. Multiplicities

In 6.1-6.4 we fix B’ C B and take k, 1£ E P (R’)++: A - &#x3E; E P (R ) and
JI E B’l. n P(R).

6.1 (Notation 4.4). In general 0»§É L(MB«A), MB,(A - v)). Yet 0» E
Hom(VB{A), VB«A - v)) and so by 5.9 there exists s regular in

L(MB«A - v), Mp (A - v))) such that sO, E L(MB«A), MB«A - v)). Let
0, denote the finite dimensional t module generated by s0». (For
v E P(R)+ one can choose s = 1, though for our purposes the precise
choice of s is irrelevant.)

LEMMA: For all 0 # a E L(MB,(Ii), MB{A», one has O,a 0 0.

By the divisibility of L(MB,(.u), MB,(A - v)), the relation seva = 0
implies 0»a = 0 and so a = 0.
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6.2 LEMMA:

Set M = L(MB,(Ii), MB,(Á - v»l 0,,L(MB,(Ii), MB,(Á», J =
0,L(MB,(À v), Ma (À)). By construction JM = 0 and by 4.8 and 6.1, J
is a non-zero two-sided ideal of the prime, Noetherian ring
A : = L(MB«A - v), Me (À - v)). By 4.3 (i), M is a finitely generated left
A module and so by 5.4, [25], 2.1 and [6], 3.6 we obtain d(M) S
D(AIJ)  d (A) = 2 dim m. By 5.4, 2.2 and 6.1 this gives e(L(MB,(p),
MB,(A - v)) = e(e»L(MB,(p ), MB,(A ))) * e(L(MB,(..t), MB’(À». Replac-
ing v by -v gives (i). An analogous argument (with Ov on the right)
gives (ii). Combined with 3.3 (ii) and 4.5 (i) they give (iii).

6.3 PROPOSITION: Both dim VB«p) and dim VB,(Á) divide

e(L(MB,(p), MB«A))).

By 6.2 it suffices to prove the first assertion with À E P (R’) v . By 4.5
(ii), 5.2, 5.4 and 5.9, it is enough to show that dim VB-( p, ) divides
e(U(g) Hom(VB«p), VB’(À»). Yet the latter is clearly a direct sum of
dim VB,(p) isomorphic U(g) submodules and so the required assertion
is obtained.

6.4 LEMMA: For all À, J.L E P (R’)++: À - IL E P (R), there exists a

positive integer c(g) depending only on g such that

e (L(MB,(I£), MB,(,k»):5 c dim VB{IL) dim Vp (A).

Let T denote the image of m- C in U(m-). Set L = L(MB{IL),
MB,(Á», M = MB,(p ), N = MB,(À ), Mk = T k 0 VB«p ), Nk =

Tk @ VB,(À), Lk = f a EE L: (ad’ T)a = 0}, for all k E N. If a E Lk, then
aMk = 0 implies aM = 0 (c.f. [8], 9.9, Eq. (14)). Let E be a finite
dimensional generating subspace for L considered as a left U(g)
module and let F denote the image of g Cf) C in U(g)/IB’(À). By the
ad-nilpotence of rtt-, we can assume E to be ad T stable without loss of
generality and that there exist r, s E N+ such that F k E C L kr+s, for all
k E N. Choose t E N such that EM° C N’. Since E is ad tn- stable, it
follows by induction on tE N that EMf C Nf+1 and so F kEM" C
Nk+f+l, for all k, tE N. In particular, pkEMkr+s C Nk+kr+s+1 and so by
our first observation dim F’E - dim M(k+l)r dim N k(,+1)+,+,. Setting
dim rtt- = m, this gives
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Taking 5.4 into account, the assertion of the lemma holds with

c(g) = (r + 1)2m(2:), which depends only on g (if m, r refer to the case
m- = n-).

6.5 Fix r E N+, P a finite dimensional subspace #0 of

Q[xl, x2, ..., xr] and f2 a Zariski dense subset of N’. Assign to the pair
P, f2 the integer P’ defined as follows. Pick a basis pk-1 for P with
Pi E Z[Xl, x2, ..., Xr]. Fix s E N, and let P,s be the smallest positive
integer for which we can write for all i = 1, 2,..., k,

Set

This is independent of the basis chosen. Obviously P " -- dim P.

LEMMA: For each s E N+, there exists a Zariski dense subset f2’C f2
such that pA,s = dim P, for all À E ,fl’. In particular pn = dim P.

Fix s. We can write lIl as a union of (2s + 1)(dim P)2 subsets in each
of which the Zij are constant. At least one such subset must be Zariski

dense and this clearly satisfies the conclusion of the lemma.
6.6 Given m, n E N+, let [m : n] denote the greatest common divisor

of m, n. Set e = rank g and let al, a2,..., a2t denote the fundamental
weights for g x g. These form a dual basis to B x B and in 6.5 we
identify Z2t with P (R ) x P (R ) and N 2,e with P(R)+ x P(R)+. Given
B’ C B, set DB,={wE W: w-1B’CR+}. For all k E P(R)++ one has
DBÀ C P(R’)++. For all w E DB,, define a polynomial pw-iB on $*
through

For all À E P(R)++, one has P,,,-’B(1k) = dim VB,(wÁ), [17], p. 257, Eq.
(40). Set d(#) = IIaER+ (P, a) (which depends only on g).

LEMMA: There exists a dense subset n of P (R)+ x P (R)+ such that
for ail B’cB, (p, A ) e lIl and all JL’EDB’JL, A ’ e DB,A one has

[dim VB,(&#x3E; ’): dim VB,(,k’)]:5 d(#).
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For each il e P (R)++ let Pp. denote the product of the

dim VB,(p ’): B’ C B, p ’ E DB,ii. Obviously f2 : = ((p, A ): IL E P (R)++;
A E p + pp.P(R)++} is a dense set. For (&#x3E;, A ) E f2, w, w’ E DB, we have
dim VB,(wÀ) = llaER’+ (wp, a) mod dim VB,(w’,u). Since {w-la: a E R’+}
C R+, the lemma follows.

6.7 REMARK (added to revised version): By a recent result of

Vogan (40, Thm. 1.1) e(L(MB,(&#x3E;), MB,(A») depends polynomially on
g,,k E $*. Since dim VB,(&#x3E; ), dim VB,(A ) are also polynomials it follows
from 6.3, 6.4 that e(L(MB«&#x3E;), MBr(A»)/dim VB,(&#x3E;) dim VB,(A) is a

rational number independent of A, g E $*.

7. Translation principles

7.1 Fix k,.u e * and M (resp. N) a subquotient of M(A) (resp.
M(.u». By 4.3 (i), L(M, N) considered as a U module, has finite

length which we dénote by e(L(M, N)). Here we combine the trans-
lation principles of Jantzen [19] and Zuckerman [34] to show that this
is bounded by an integer depending only on g.
For each v E P (R ), let ) denote the simple, finite dimensional

U(g) module with extreme weight v. Consider V(p) 0 V(i,’): v, v’ E
P(R) as a U module through (a@ b) . (v@ w) = tdv@ bw, for all

a, b E U(g), In particular V(0) is the trivial

1-dimensional U(g) module so we can also consider V(v) as a U
module through identification with V(v) @ V(O). Consider

V(v)@L(IL) as a U(g) module through X(v@ w) =
Xv@ w + v@Xw, for all X E g, v E V(v), Ml E L(IL). Then

V(v) @ L(IL) is a finite direct sum of U(g) modules admitting a central
character [19], Satz 1 (i), which we call its primary decomposition.
Let éP,+»&#x3E; dénote the projection defined by this décomposition onto
the primary component with central character (IL + v) ". The following
result is due to Jantzen [19] (as noted explicitly in [5], 2.9).

THEOREM: Suppose a and IL + v belong to the same facette of $*
(see 3.3). Then éP,+»&#x3E;(V(v) @ L(&#x3E;)) = L(&#x3E; ± v), up to a U(g) module
isomorphism.

7.2 Let f denote the category of finitely generated U modules
admitting a formal character and for each E Max Cent U, let

.:£A denote the subcategory of f admitting the central character A.
Each L Cz Y admits a primary decomposition and we let éPA denote
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the projection onto the primary component with central character A.
Given E a finite dimensional U module and L E .:£, then E 0 L E Y.
Moreover eA and EQ are exact functors (for détails see [34], Sects.
1, 2).
For each v E V(v), x E L(M, L(&#x3E; )) define fv,x E

Hom(M, V(z,) 0 L(I£» through fv,xm = v@xm, for all m E M. For the
action of U defined in 3.2 we have «a@ b) . fv,x)m = tafv,xbm =
’à (v 0 xËm), for all a, b E U(g). In particular, je X) . fv,x =
fxv,x + fv,(adX)x, for all X E g and so fv,x is t-finite. By 4.3, we have

L(M, L(g» E .:£ and with V(v) considered as a U module, it follows
that the map vox-f,,x extends linearly to a U module mono-

morphism of V( v) @ L(M, L( &#x3E; )) into L(M, V( v) @ L( &#x3E; )) . More-

over taking account of the action of U we have

fJ» -Â,-(IL+JI)"L(M, V( v) 0 L(&#x3E; )) = L(M, fJ»(IL+JI)"(V(v) @ L(&#x3E; )). Define the
exact functor ({J +JI of iE-g,-, into ’:£-Â,-(IL+JI)" through o"+,L

fJ» - Â, -(IL + JI)" ( V ( v) @ L).

PROPOSITION: Suppose u, li + v belong to the same facette of fj*.
Then

(i) ç §+»L(M, L(J.L» = L(M, L(&#x3E; + v)), up to isomorphism
(ii) e(L(M, L(li») =,e(L(M, L(IL + p»).

(iii) If E is a strict submodule of L(M, L(g», then ç ©+»E identifies
through (i) with a strict submodule of L(M, L(&#x3E; + v)).

(iv) For each LE ’:£-Â,-1 and each ad g submodule F of U(g) one
has p +v(LF) _ (ç§+»L)E

Through 7.1 and the above computation we may identify
ÇO"+,L(M, L(g» with a submodule of L(M, L(&#x3E; + v)). A similar

assertion holds for J.L replaced by .L + v and v by -v. Again since
g,.u + v belong to the same facette of h*, it follows by [34], Thm. 1.2,
that çog+, and ({J :+JI are isomorphisms and mutual inverses. This gives
(i)-(iii). (iv) is a trivial consequence of the fact that the second U(g)
factor in U acts trivially in V(v).

7.3 For each w E V(v’), y E L(V(v’)@L(A), N) define gw,y E

Hom(L(A ), N) through gw,yn = y(w@ n): n EN and consider V(v’) as
a U module through identification with V(O)@ V(v’). Then by 7.1 and
[34], Thm. 1.2 we obtain as in 7.2 the following

LEMMA: Suppose A, A + v belong to the same facette of $*. Then
é(L(L(A ), N)) = e(L(L(A + v), N».

7.4 COROLLARY: There exists a positive integer e(g) (depending
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only on g) such that for all À, JL E fj* and every subquotient M (resp.
N) of M(A) (resp. M(li» one has e(L(M, N)) S e(g).

Let M’ (resp. N’) be a maximal proper submodule of M (resp. N)
and set L = L(M, N), L’ = {x E L: xM C N’l, L" = {x E L: xM’ = 01.
Up to isomorphism, we have the U(g) module inclusions: L’ C

L(M, N’), L/L’ C L(M, NIN’), L" C L(MIM’, N), LIL" C L(M’, N).
Taking [5], 3.16 into account, it follows that we can assume M, N
simple without loss of generality. Then by [10], 7.6.1 (ii), and 7.2 and
7.3 it suffices to prove the assertion with M = L(A), N = L(JL) where
(A, A), (li, g):5 (p, p). The latter follows from the remarks following
4.2, 4.3.

7.5 (Notation 3.3). The above translation principle gives the fol-
lowing generalization of [23], 5.2.

THEOREM: Choose -À, -li E fj* dominant and regular withk - g E
P(R) (which implies that W" = WIL). Then for all w E W" one has

Since -A, -&#x3E; are dominant we have M(À) = L(A), M(&#x3E;) = L(&#x3E;)
and then by [9], 5.3, 5.5 we have L(-&#x3E;, -wA) = L(M(wA), L(&#x3E;)), up
to isomorphism. Since V(-&#x3E;, -wA) is the unique simple quotient of
L(-&#x3E;, -wA) it follows that RAnn v(-&#x3E;, -wA) is just the largest
two-sided idéal U(#) such that L(M(wA), L(&#x3E;))I c L(M(wA), L(&#x3E;)).
Now k, g lie in the same f acette of $*, so taking -P ± (A - u) in 7.2,
we find that I is just the largest two-sided idéal of U(g) such that

L(M(wA ), L(A ))I ç L(M(wA), L(A )). That is RAnn V(- &#x3E;, - wA ) =
RAnn V(-À,-wÀ) = I(wÀwÀ), by [23], 5.2. Finally LAnn

V(-&#x3E;, -wÀ) = ’(RAnn V(-wÀ, -&#x3E;)) = ’(RAnn V(-,k, - w-’,u» =
’I(wxw-li£) = I(wÀw-’I£), by say [23], 1.4, 3.1 (i), 3.9 (ii), which proves
the theorem.

7.6 The following is a partial answer to a question posed by Borho.

COROLLARY: Suppose that E/gr I E Spec S(g) for all I E Prim U(g)
(c.f. 1.2). Then f or all k e $* regular and all v e P(R) f or which À,
À + v lie in the same facette of b*, one has Vgr J(À) = Vgr I(A + v).

Apply 2.4 (ii) to 7.5.
7.7 Let X dénote the set of involutions of W.

COROLLARY: (A simple of type An-,). For all k, IL e P(R)+’, the



54

following two statements are equivalent
(i) card #g = card £.
(ii) card{Ann V(wÀ, w’&#x3E;): w, w’ e W) = card W.

This follows from 7.5 as in the proof of [23], 6.6.

8. The dimension polynomials

8.1 (Notation 6.6). Call B" C R+ a subbasis of R if there exists

w E W such that wB" C B. Given B’ C B, set -qB, = {W-I B’: w E DB,I,
which is just the set of all subbases of R conjugate to B’, and

e’= IB- e B- C BI. Let PB’ be the 0 vector space spanned by
the pB,,: B" E DB,.

8.2 Identify g with g* through the Killing form. After Richardson
[30] tnB- admits a unique dense orbit for the action of the subgroup of
G with Lie algebra pB,. Furthermore [2], 3.3 if XB, lies in this orbit,
then GXB- is a nilpotent orbit in g* which does not depend on the
choice of B’ E e’. It is called the Richardson orbit (JB’ associated with
99 P.

CONJECTURE: (Notation 1.2). For all A E P(R)++ and all B’ C B one
has card{TT-l(Â) fl J{-l«(J0153’)} = dim P*,.

Through [5], this holds for types AI-A4, B2, G2. From unpublished
results of Borho and Jantzen it holds for types B3, C3, D4
(excepting possibly if B’ is of type AI x Ai or A3).

8.3 In the next three subsections we shall assume that g is simple
of type An-1. Let P(n) denote the set of partitions of n. Given

e EE P (n), let e* denote its conjugate partition. A subbasis B" C R+ is
said to be of type e if ZB" n R is a system of type Aet-I x Af,-I x
... x Ai,-i: §* = (§t, §f, ..., §§’). The following is well-known

LEMMA: Given B1, B2 C R+ subbases of type el, e2 respectively.
Then there exists w E W such that wBI = B2 iff )1 = e2-

As noted in the proof of [2], 3.5 c), we have Ca, = Ca2 iff B1, = B2.
This and the lemma sets up a bijection between P(n) and the set of
Richardson orbits. Given B’ of type e, we write Ce for Oe,. (Of course
it is well-known (c.f. [11], 1.1) that in type An-I every nilpotent orbit is
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a Richardson orbit and that the set of all nilpotent orbits is in

bijection with P(n) through Jordan canonical form.)
8.4 Let e = (e,, e2,..., e,) be a partition of n and St(e) the set of

standard tableaux of type e. We recall that each T E St(e) is an array
of pairwise distinct entries t;; E {l, 2, ..., n}: 1 s i  ee, 1  j  ei with
tij  tik if j  k and tii  tk; if i  k. Let Rt(e) denote the set of tableaux
satisfying the above requirements with the exception that the tij need
not increase along the rows. For each T E Rt(e), we define a poly-
nomial pT E C) IX 1, x2, ..., xn-i], through

where yi = 0, yk = xl + X2 + - ’ - + Xk-1, k = 2, 3,..., n. Let Pe denote the
Q vector space spanned by the pT : T E Rt(e).

PROPOSITION: The set T E St(e)l form a basis for Pe and the
E is direct. In particular dim Pe = card St(e) and

dim Pe = card St(e) = card I.

Specht [33] proved the linear independence of the polynomials
which derive from the standard tableaux. Garnir, [14], Thm. III,
showed that the remaining polynomials belong to the Z module

generated by the former set. (See also [28], Chap. 0, Sect. 5).
8.5 E P (n ) and a subbasis B’ C B of type e. Set

For i E let xi denote the polynomial on defined

through Set 

2, 3,..., n. For each T E Rt(e), we define BT C R+ through

LEMMA: The map T- BT is a surjection of Rt(e) onto the set of
subbases of R of type Furthermore PBT = pT.

In type An-,, a subset B" C R+ is a subbasis iff for each pair
y, 8 E B" one has y - R. Now given y, 8 E R+, we can write

= 8 = ak + ’f’ ... + ’OEe-1 

f or some k, t, r, s E 2,..., satisf ying s &#x3E; r, t&#x3E; k. Then y -
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3,É R, iff ro k and s 0 e. Since the entries of T are pairwise distinct, it
follows that By is a subbasis. Again y + 8 E R, iff either e = r or
s = k. Thus to the ith column of T there corresponds a basis namely
U?=!(+u"/) for a s stem R of type A*_ . Given yE (resp.U 1=1 ({3tj+l,i - (3tj) for a system i of type Aj,-i. Given y e Rt (resp.
8 E R j) then r, s (resp. k, t) lie in the ith (resp. jth) column of T. If
i 0 j, then since the entries of T are pairwise distinct, so are the
r, s, k, t. Thus y - 8, y + 8 are not roots and it follows that BT is a
subbasis of type e. Conversely every subbasis of type At defines a

strictly increasing sequence from {l, 2, ..., n} of length t + 1, which
we can take to define a column of T. From our previous remarks it is then
easy to see that every subbasis of type ç is of the form BT : T E Rt(e).
The last part of the lemma is clear.

8.6 Return to the general case. Since CPB’ is a WB, module and DB,
identifies naturally with W/ WB, it follows that Pe, is a W submodule
of S()k (notation 2.1) with k = 2(card R - dim (Jae). After MacDonald
[37], Pe, is a simple W module and his argument further shows that if
M is a W submodule of S($) isomorphic to Pge,, then é a k and

equality implies that M = Pe,. Then by a result of Lusztig (c.f. [35],
Prop. 1.4) one has (Jae’ = (Jae" iff Pe, = P*,,. (Strictly speaking the said
result is claimed only when the base field has characteristic p &#x3E; 0. Yet

it is well-known that whether or not two given nilpotent elements lie
in the same G-orbit is independent of p for p sufficiently large and
coincides with the result for p = 0.)

9. A problem of Borho

9.1 CONJECTURE: ([l], 3.3). For all B’ C B, À E P(R’)++ one has
V gr IB{À) E Spec S(g).

If this holds, then by [1], 2.3 one has ’V(gr IB,(,k» = èe,.
9.2 Assume g simple of type An-, and recall that W is then

isomorphic to the symmetric group Sn on n elements. After Robinson
(c.f. [21], Sect. 5) there exists a bijection 0 of W onto U {St(ç) x
St(ç): ç E P(n)}. For each w E W, we write l/J(w) = (A(w), B (w» and
let e(w) denote the partition of n defined by the cardinalities of the
rows of A(w) (or B(w)).

LEMMA: Suppose 9.1 holds. Then for all -À, -JL E p(R)++,
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card Set ml = 0 and

X/gr I( wA ) D X/gr IB,( w ’A ). Combined with the above dimensionality
estimates and 9.1, this gives (i). By [23], 6.4, e(wkw) = e(wÀw-’) and
combined with (i) and 7.5, this gives (ii).

9.3 The proof of 9.2 (i) uses the fact that the I(wA): w E WÀ are not
all distinct and taking B’ : = B n -wR+ we can assume without loss of
generality that d(U(g)/IB,(wA)) = d(U(g)lI(wA)). This clearly further
implies that I(wk) is one of the minimal prime ideals containing
IB,(wA) and so it ought to be possible to classify Prim U(g) (for g
simple of type An-l) from just the study of induced ideals. This idea
is also suggested by the work of Borho-Jantzen (see for example, [5],
4.5 d)) and was the main motivation for the present paper. In principle
it further extends to algebras other than type An-i as is indicated by
the second part of [21], Conjecture 4.3 (which holds for algebras up to
rank 3 [25], 5.2). This fails in type D4 (when the (*) condition of [21] is
also not satisfied) and is a phenomenon related to the appearance [5],
4.5 e), of non-polarizable orbits in the integral fibres : À E P(R) (in
the sense of the 9if map). Two further consequences of the above
condition are noted below.

LEMMA: Take B’ C B, A E P(R’)++ and suppose that

d( U(g)/IB,(A )) = d(U(g)/I(A». Then
(i) MB,(A) is a simple L(MB,(A), MB,(A» module.
(ii) Let I be a minimal prime ideal containing IB,(A). Then

d(U(g)II) = d(U(g)IIB,(A)). Furthermore if 9.1 holds, then V(gr I ) =

.

Set m = dim mB,. Suppose (i) is false. Then L(,k) is a quotient of
MB(À)/NB(À) (notation 4.7). Then by 4.7 (iii), [25], 2.8, we have
d(U(g)/I(A» = 2d(L(A» s 2d(MB{A)/NB,(A»  2m = d(U(g)/IB{A»,
in contradiction to our hypothesis. Hence (i).

(ii) Let Ma (A) = MI :J M2 :J ... ::&#x3E; Mt+l = 0, be a composition
series for MB,(A) with L; := MÀM+i simple. Set Ii = Ann Li. Then
Ii E Spec U(g), 2d(Li) = d(U(g)lIi) and every minimal prime ideal
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containing IB{A) is one of the Ii (though not all are minimal). We
suppose further that the composition series is chosen to minimize
1 f i : d(L;)  m}. Now d(L1) = d(L(A» = m, by [25], 2.8 and the hypo-
thesis. Thus given d(Lj)  m, we let i be the largest positive integer
 j such that d(Li) = m and k the largest positive integer a j such that
d(L,)  m, for all r E f j, j + 1, ..., k}. By choice of the composition
series it follows that MJMk+l admits a unique simple quotient Li and
d(U(g)/Ii) = 2d(L;) = 2m &#x3E; 2d(M;+I/Mk+l) = d( U(g)/Ann M;+tlMk+l). It
follows from [25], 3.7 that Ii = Ann MJMk+l and in particular that
L C I,: r E fi + 1,..., k}. This proves (ii).

10. Main theorem and the Jantzen conjecture

10.1 For A, li E P (R)++, set A = (Â, ,1) and W(A ) =
(V(wA, &#x3E;): w E W), which by [12], 4.5 contains up to isomorphism
every simple t finite U module admitting a formal character

and with central character A. For each m E N , set Alm(A) =
IVEZ(A): d(V) = 2m}, m(A) = card{e(V): V E JCm(A)}, W,,,=
supfW,,,(A): A E P(R)++ x P(R)++} and let Pm denote the rational

vector space spanned by the polynomials {p (8) q: p, q E P0153,:
dim tttB, = m}. By 8.6, dim Pm = E ((dim PB)2: dim 0,Q, = m} (where the
sum is over distinct Richardson orbits).

THEOREM: For each m E N, one has W,,, dim Pm.

B y 6.3, 6.4, 6.6, there exists a dense subset n C P(R)++ x P (R)++
such that for each (A, IL) Ei f2

e(L(MB,(wIA), MB,(W2&#x3E;)) " (u(B’, Wl/V(B ’, W2»PWïIB{A)PW21B’(IL),
for all B’ C B ; Wh W2 E DB" where u, v are positive integers
 c(g)d(g). By 2.2 and 4.3 (i) the left hand side is a non-negative
integer linear combination of the {e(V): V E 1tm(A) with m =

dim mB’}. By 7.4 the coefficients are bounded above by e(g). Set

f = c(g)d(g)e(g) and take a basis {Pi} for Pm formed from the

{j!(PWI1B’ @ PW2fB’)}. Then we can write for all i,

where the Zij are non-negative integers :5 (f + 2)! By 6.5 this gives the
required assertion.
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REMARK 1: By the remark following Lemma 6.5, there exists a
Zariski dense subset f2’of P(R)++ x P(R)++ such that W,,,(A) dim Pm,
for all A Cz f2’. By 8.6, dim 2,,,IN P,,,:5 1,,r=w (dim 0,)2 =card W, as

expected.

REMARK 2: Suppose g is simple of type An-i. Then by 8.4, dim Y-,,,,.N
P,,, = Y, (card St(e»’ = card W = card 1t(A), for all ll E

P(R)++ x P(R)++. It follows that equality holds in the conclusion of
the theorem and that 6m(.) is locally constant on P(R)++ x P(R)++.

10.2 For all V E 1t(A), we have by 2.4 (i) that d(V) =
2 d( U/Ann V). Thus if d(V);;é d(V’), then Ann V;;é Ann V’. A rather
finer question is contained in the following

CONJECTURE: e(V);;é e(V’) implies Ann V;;é Ann V’.

10.3 Take g simple of type An-i and adopt the notation of 9.2.

COROLLARY: Suppose that 10.2 holds. Then for all -A E P(R)++ one
has I(wA ) = I(w’A ) iff A(w) = A(w’).

Sufficiency follows from [22], 5.1 and 7.9. Then for necessity it

suffices to show that card Z - ler=P(n) card St(e) = card X. Given 10.2,
this follows from 7.7, 10.1 and Remark 2 above.

10.4 From the classical theory of the symmetric group, one may
identify P(n) with Sn so that for all e e Ên one has dim e = card St(e).
Comparison with [3], 5.9 and applying 9.2 (i) and 10.3 we obtain the

COROLLARY: To establish the Jantzen conjecture, it suffices to es-
tablish 9.1 and 10.2.

10.5 The analogue of 10.2 fails for simple subquotients of Verma
modules. For example, take g simple of type C2. Set B = (ai, a2j with
a the short root and B’ = {al}. Then MB,(ai) = L(ai), MB,(ai + Q2) =

L(a 1 + a2) so e(L(al» = dim VB,(ai) = 2 and e(L(ai 1 + a2» =
dim VB,(al + a2) = 1, by 3.1 (ii). Yet Ann L(al) = Ann L(al + a2), by [5],
2.20. A similar reasoning using the multiplicity results of Jantzen [20]
shows that a corresponding result holds for regular central characters.
This bad phenomenon is linked to the failure [9], 6.5, of a question of
Kostant: Is L(M, M) = U(g)/Ann M for every simple U(g) module
M? In fact by [8], 3.1, IB,(al + al) is completely prime. Yet IB,(ai) =

IB,(a 1 + a2) and so by 5.10 (iii) the embedding
U(g)/IB,(ai)G+L(MB,(ai), MB,(ai)) is strict. An indication that the
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principal series subquotients are better behaved comes from the

following. Suppose V = J/l: J::J 1: lE Prim U(g). Then LAnn V =
RAnn V = I and by 2.2, 2.3 and [6], 3.5 we have e( V) = E(JII) =
e(U(g)/I) = yi e(U/Ann V). Thus simple quotients of the above form
satisfy 10.2. Finally we fix a positive integer h(g) depending only on g
and then given V, V’ E Jem(A) we say that e( V) and e(V’) are com-
mensurable (relative to h(g)) if one has e(V) = (ulv)e( V’) with u, v E
{l, 2, ..., h(g)}. It is clear that to obtain 10.4 it is enough to show that
Ann V = Ann V’ implies the commensurability of e( V) and e( V’). A
refinement of [25], 2.5 and 2.7 (along the lines of 6.4) reduces this
question to showing that (e( V»2 divides a g fixed multiple of

e( U/Ann V). (This has the advantage of being much more weakly
dependent on the filtration, changes of which are absorbed by the g
fixed multiple). A similar remark applies to the simple quotient L(wA)
of the Verma module M(wA). For this recall ([13], Lemma 6) that
there is a unique minimal idéal l(wA) of U(g) containing l(wA) and
U(g)/I(wA) (and hence Vw : = I(wA)/I(wA» identifies (c.f. [13], Prop.
10) with a submodule of L(-wA, -wA). Let V; denote the orthogonal
of Vw in M(wA) @ M(wA). B y say, [23], 5.4 (ii) we have U(g)/I(wA) C
(M(wA) (8) M(wA».l and so (M(wA) (8) M wA »i v£ = L(wA) (8) L(wA).
Now e(Vw) = e(U(g)II(wk», by [6], 3.6, so the question is whether
e( Vw) and e(L(wA)@L(wA)) are commensurable. This relates to

Kostant’s problem since the t finite part of (M(wA)(8)M(wA».l
identifies with the t finite part of (L(wA) @ L(wA))* which by the
argument of [9], 5.5 identifies with L(L(wA), L(wA».

11. Goldie rank

11.1 Let A be a Noetherian ring (not necessarily prime). We define
the Goldie rank rk A through rk A = supfk E N+: Xk = 0, Xk-l ;;é 0 : x E
AI. (This is one of the many possible definitions of Goldie rank which
coincide for prime rings). The origin of the space Pe,, 7.6, 8.2 and 8.6
suggests the following

CONJECTURE: Take -A E P(R)+ and w E W such that I(wA) E
J{-I«(J,). Then there exists pw E Pe, such that rk(U(g)/I(w(A + v)) =
pw(w(A + v)), for all -v E P(R)+ and these polynomials form a basis
for Pe,.

REMARKS : By [9], 8.6 one has rk(U(g)/I(wB{A») = PB{WB,A), for all
-A E P(R)++. Recalling [5], 2.14, one expects pw to be divisable by
PB’ with B’ = B n w-’ R -.
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This motivates an additivity principle for Goldie rank analogous to
2.2. A first step in this direction is indicated below.

11.2 Let M be an A module and N a submodule of M. Set

J = Ann M/N, I = Ann N. An elementary computation gives

LEMMA:

11.3 PROPOSITION: (Notation 11.2). Suppose that N is the unique
proper non-zero submodule of M (which is hence of length 2) and that
neither I D J nor J D 1. Then rk(A/Ann M) = rk(A/I) + rk(A/J).

Set r = rk(A/I ), s = rk(AI J). By the hypothesis, (J/(I n J) identifies
with a non-zero two-sided idéal of the prime Noetherian ring AII and
so considered as a subring we have Fract AII = Fract J/(J f1 J). Then
by the Faith-Utumi lemma [16], Thm. 4.6, there exists xi E J such that
xÍ E l, xÍ-I 1. Interchanging I, J gives x2 E I such that x2 E J,
Xs-l,É J. Set x = xl + x2. Then the hypotheses of the lemma give
x r-’(I rl j)xs-Im = x r-1(I fl J)M D xr-IJIM = xr-lJM = Xr-’N 0 0.
Choose y E 7 fl J such that Xr-lyXs-1,É Ann M. Then (x + y)r+s E Ann
M, yet (x + y)r+s-I = xr-lyxs-1 mod Ann MÉ Annlm and this establishes
the opposite inequality to 11.2 (ii).

REMARK: The assertion also holds if I = 7 D Ann M.
+

11.4 Take À E fj* and let M be a subquotient of M (À) of length 2.
We write M = Mi D M22 M3 = 0 and set Ii = Ann MJMi+l: i = 1, 2.

COROLLARY: There exist ZI, Z2 E fO, 1) such that rk( U(g)/Ann M) =
zi rk( U(g)lL) + Z2 rk( U (g)1 12).

This follows from 11.3 and [25], 3.7 by listing all possibilities.

REMARK: We do not know if this holds for any Noetherian ring A.
(One of the bad cases is when 12:J Il and yet Il 0 Ann M).+

11.5 The next problem is to compute rk(U(g)IIB{A». By [8], 3.3 we
have rk(U(g)IIB,(A)) sdim VB,(A). Unfortunately as noted in 10.5

equality generally fails. Inspection of the given example shows that
this failure is related to the presence of coefficients &#x3E; 1 in the B

expansion of a root and so equality might still hold in type An-i. An
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indication of this obtains from the following lemma. First we fix

B’ C B and Á E P(R’)++, setting M = MB,(A ), A = L(MB,(A ), MB,(A )).
Let d(m-) denote the algebra of differential operators on S(itt-) with
coefficients in S(trt-). Since ad in- is locally nilpotent in A, it follows
that (c.f. [8] 5.6, 10.3 (i)) we may write M = S(m-) @ VB,(A) with A
identified as a subalgebra of d(m-) 0 End VB,(A ). Set Z = Z(m-)". {O}.
Then (c.f. 5.9) Z is an Ore subset for A and for U(g)/IB{Á), and the
map mt---+l@m of M into Z-IM:=Z-IA@AM is injective. (We
remark that Z(tn-) identifies with a subalgebra of S(m-) 0 1). Define
c(ttt-) as in [24], 2.6. Then (c.f. 5.9) U(c) identifies with a subalgebra of
A. Set D = U(g)/IB{Á).

Set C = Z-’ U(c) which (c.f. [24], 2.6) is isomorphic to Kd(m-). We
may write c = ee m Ô, with tcb, m-cmocn- (c.f. [24], 2.6). Since
mé is locally ad-nilpotent on A, it follows as in [24], 3.3 that Z-’A is
generated over C by AmÕ. By 5.4, [24] 2.6 (ü), 6.7 (iii), and the
hypothesis on m-, each a E A mÕ is algebraic over Fract Z(m 0). Now
A mÕ is a direct sum of its ad b weight subspaces with weights in OR.
Thus the weights of A’-O are a linear combination of the weights of
Z(mé) and our hypothesis on g further implies that this is a Z linear
combination (c.f. [24], 4.17). Thus Z-’A is generated over C by
(Z-IAY and since C is central simple, this gives Z-’A = CQ (Z-’A)‘,
up to isomorphism. In particular, d«Z-’A)’) = d(A) - dim c = 0 (c.f.
[6], 6.1) and so (Z-’A)’ is finite dimensional over C. By 4.8 and [4], 4.5
it is a prime ring. By 5.10 (üi), it is isomorphic to End Va (A). Hence
(ii). Let F be the one-dimensional lowest weight subspace of VB,(A).
M is generated by U(g) over F and U(c)(1 @ F) = U(m-) @ F and so
(i) obtains from (ii) in an obvious fashion. The argument given in (ii)
shows that Z-’D is generated over C by (Z-’D)’ which hence
identifies with a subalgebra of End VB,(Á). Hence (iii). Under the

hypothesis of (iv), M is an indécomposable U(g) module of length
_ 2. Hence Z-’M is an indécomposable B module of length 2. By
11.5, it follows that VB(A) is an indécomposable E module of length
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2. Since C is algebraically closed, this gives the required assertion
(by say 11.3, [15], Thm. 1.1.1, Lemma 2.1.5).

EXAMPLE: Take n = 4, À E P(R)++. Set B = f al, a2, a3l taking the
usual numbering in the Dynkin diagram and set sa; = si : i = 1, 2, 3. By
[5], 4.17, card #g = 10. For just two of thèse ideals, namely I(S 1 S3À) and
I(s2À), the Goldie ranks of the corresponding quotient algebras fail to be
given by [9], 8.6. By [25], 3.7 the first of these coincides with the induced
ideal I{al,a3}(S2S1À) and so by (iv) we obtain rk(U(g)/I(sIS3À» = (a2,
À)(al + a2 + a3, A). By [22], Thm. 5.1 (or see [25], Fig. 1), one has

I(s2À) = I(SIS2À). Set M = M{a2,a3}(SIS2À). The results of Jantzen [20]
show that M admits a unique proper simple submodule N and up to
isomorphism, MIN = L(SIS2À), N = L(StS2S1À). Since neither

I(SIS2À) C I(SIS2S,,k) nor I(sts2À):) I(sls2stÀ), we may apply 11.3 and
(iv) which combined with [9], 8.6 gives rk( U(g)/I (s2. )) - 2(al, A )(a,
À)(al 1 + 2a2 + a3, k). From this one can easily check that 11.1 holds for A
simple of type An-1: n = 2, 3, 4. Excepting 5 cases (out of 26) a similar
calculation verifies 11.1 in type A4.

11.6 In general 11.5 (ii) fails because the weights of A mÕ can be
half-integer linear combinations of the weights of Z(mé) (c.f. [24], 6.8,
6.15) and this permits the strict inequality rk(U(g)IIB{À»  dim

VB’(À). Insight into this phenomenon obtains from the following
example. Set Al = C[x, dldx], take V to be a two-dimensional vector
space and set A = dl (8) End V, M = C[x] 0 V, considered as an A
module in the obvious fashion. Let D(A): A E C denote the subalgebra
of A generated by

It is easily verified that M is a simple D(A) module for all À E C. Yet
YIZ - zy i = 1 and so D( 1 ) is integral. That is 1 = rk D( 1 ) = 1 2 rk A. Here
we consider c as the Lie algebra generated by yiz and z2 = x. Set
Z = C[x] - {O}, which is an Ore subset for both A and D(A). Note that
Z-’A is not generated over Z-’ U(c) by (Z-IA)’. Finally when A # 1,
we have Z-’A = Z-ID(À), which shows that the good value of the
Goldie rank is recovered by an infinitesimal change in À.

11.7 As remarked in 1.2 and as indicated by the results of

[5, 13, 21-23, 25] the structure of #g should depend only on WA and so
in particular the non-integral fibres should satisfy the obvious ana-
logues of 8.2 and 11.1. For example, take g simple of type C2 and write
B = {al, a2} with a2 long. Take -À E $* dominant and regular such
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that BA = {ah a + a2}. Set UBA = 1(2a 2 1 + a2). Then by [36], 4.4 we have
2 rk(U(A)/I(wkk» = (ai, wkà)(al 1 + a2, wxÀ)/(al, a-B,)(al + a2, UBA) =
PBA (WAÀ). Apart from the mysterious fixed "correction factor" of 2 this
coincides with the Goldie ranks for the finite codimensional primitive
ideals in type A, x A1 (i.e. of type BA). It is the only known value of
the Goldie rank for U(g)II(wAÀ) when BA is not a subbasis.

11.8 Let f2R denote the subset of W defined by the Richardson
orbits through 8.6. To each e E W define e* E W through §*(w) =
e(w) det w: w E W. The idea that emerges from 8.2, 8.6 and 11.1 is

that the regular integral fibres Pl’: À E P(R)++ are parametrized by a
subset f2 of W containing QR. In particular one should have

card X = Y, fdim e: e e nl. A conjecture of Borho and Jantzen [5],
2.19 suggests that f2 = il *. Since ilR;;é il in général (for example in
type D4) the simplest hypothesis is that n = ilR U f2e. In type D4 this
predicts that card Kg = 36, for À E P(R)++ in agreement with the
results of Borho and Jantzen (private communication). It also

"explains" the mysterious appearance of a non-polarizable nilpotent
orbit 0 in the integral fibre. (More precisely 6 is the zero variety of
gr I for some I E Kg : À E P(R)+ in type D4 (c.f. [5], 4.5)). Moreover it
suggests a possible generalization of the situation described in 8.6.
Namely for each a E W, let n(o,) be the smallest integer such that a
occurs as a subrepresentation of the W module S(b)n(,). Then does
occur with multiplicity one in S(b)n(«)? (Unfortunately not. In type E7
multiplicity 2 can occur even for or E: f2 % [41]). In addition let Y: W-&#x3E;
NIG be the Springer surjection (defined through [38], 6.10 taking
Y = pe-1 where p is the projection onto the first factor in E). Then is
n(u) = 1(card 2 R - dim Y(a*))? (This is true for the representations
defined by a Poo’: B’ C B, as noted in 8.6). If so then one can complete
conjecture 11.1 in an obvious fashion to include the possible ap-
pearance of non-polarizable orbits in the integral fibres.

11.8 Reconsider the example of 10.5. Set V = U(g)/IB,(ai),
L = L(MB,(a i), MB,(a i)), and recall that the embedding V’-+ L is strict.
Set V=L/V. An easy calculation shows that V =

V(-(al + a2), -(al + a2», V’ = V(-(al + a2), -al) up to isomorphism
and that Ann V = Ann V’ (computed in U). Hence the truth of 10.2
implies e( V) = e( V’) which might seem extraordinary in view of the
relation rk L = 2 rk V. Nevertheless the example in 11.6 shows how
this phenomenon can occur. Adopt the notation of 11.6 and recall that
D(1) is isomorphic to the Weyl algebra dl. Take A =

dl @ End V: dim V = 2 and let e be the matrix with one in the upper
left hand corner and zeros elsewhere. Let B be the left D(1) sub-
module of A generated over e and 1- e. Since ey = y(l - e) and
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ez = z(1 - e), B is a subalgebra of A containing D( 1 ). It hence admits
M as a faithful simple module and so is prime, Noetherian. Since
ey 0 and yet (eyf = 0, one has 2 = rk B = 2 rk(D(1)). On the other
hand e(B) = 2e(D(I» = 2 for the filtration on D(1) induced by the
canonical filtration of dl.

Index of notation

Symbols frequently used in the text are given below in order of
appearance.
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