Compositio Mathematica

W. CASSELMAN
 The unramified principal series of p-adic groups. I. The spherical function

Compositio Mathematica, tome 40, no 3 (1980), p. 387-406
http://www.numdam.org/item?id=CM_1980__40_3_387_0
© Foundation Compositio Mathematica, 1980, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numbam

THE UNRAMIFIED PRINCIPAL SERIES OF p-ADIC GROUPS I. THE SPHERICAL FUNCTION

W. Casselman

It will be shown in this paper how results from the general theory of admissible representations of \mathfrak{p}-adic reductive groups (see mainly [7]) may be applied to give a new proof of Macdonald's explicit formula for zonal spherical functions ([9] and [10]). Along the way I include many results which will be useful in subsequent work.

Throughout, let k be a non-archimedean locally compact field, r its ring of integers, \mathfrak{p} its prime ideal, and q the order of the residue field.

If H is any algebraic group defined over k, H will be the group of its k-rational points.

For any k-analytic group H, let $C_{c}^{\infty}(H)$ be the space of locally constant functions of compact support: $H \rightarrow C$. For any subset X of H, let ch_{X} or $\operatorname{ch}(X)$ be its characteristic function (which lies in $C_{c}^{\infty}(H)$ if X is compact and open).

Fix a connected reductive group \mathbf{G} defined over k. Let $\tilde{\mathbf{G}}$ be the simply connected covering of its derived group $\mathbf{G}^{\text {der }}, \mathbf{G}^{\text {adj }}$ the quotient of \mathbf{G} by its centre, and $\psi: \tilde{\mathbf{G}} \rightarrow \mathbf{G}$ the canonical homomorphism. If \mathbf{H} is any subgroup of \mathbf{G}, let $\tilde{\mathbf{H}}$ be its inverse image in $\tilde{\mathbf{G}}$.

Fix also a minimal parabolic subgroup \mathbf{P} of \mathbf{G}. Let \mathbf{A} be a maximal split torus contained in \mathbf{P}, \mathbf{M} the centralizer of \mathbf{A}, \mathbf{N} the unipotent radical of \mathbf{P}, and \mathbf{N}^{-}the unipotent radical of the parabolic opposite to \mathbf{P}. Let Σ be the roots of \mathbf{G} with respect to $\mathbf{A},{ }^{\text {nd }} \Sigma$ the subset of nondivisible roots, Σ^{+}the positive roots determined by \mathbf{P}, Δ the simple roots in Σ^{+}, W the Weyl group. For any $\alpha \in \Sigma$, let \mathbf{N}_{α} be the subgroup of \mathbf{G} constructed in §3 of [2] (its Lie algebra is $\mathfrak{g}_{\alpha}+\mathfrak{g}_{2 \alpha}$).

Let δ be the modulus character of $P: m n \rightarrow\left|\operatorname{det} A d_{n}(m)\right|$. Let w_{ℓ} be the longest element of W.

If H is a compact group, \mathscr{P}_{H} is the projection operator onto H-invariants.

In §1 I shall give an outline of the results from Bruhat-Tits that I shall need. Complete proofs have not yet appeared, but the necessary facts are not difficult to prove when G is split (see [8]) or even unramified -i.e. split over an unramified extension of k. There is no serious loss if one restricts oneself to unramified G, since any reductive group over a global field is unramified at almost all primes, and important applications will be global. As far as understanding the main ideas is concerned, one may assume G split. This will simplify both arguments and formulae considerably.

Since the first version of this paper was written, Matsumoto's book [12] has appeared with another proof of Macdonald's formula, in a more general form valid not just for the spherical functions on \mathfrak{p}-adic groups but for those related to more general Hecke algebras.

1. The structure of \boldsymbol{G}

Let \mathscr{B} be the Bruhat-Tits building of \tilde{G}. (Refer to [6], Chapter II of [10], and [13].)

There exists in \mathscr{B} a unique apartment \mathscr{A} stabilized by \tilde{A}. The stabilizer $\tilde{\mathcal{N}}$ of \mathscr{A} in \tilde{G} is equal to the normalizer $N_{\tilde{G}}(\tilde{A})$; let $\nu: \tilde{\mathcal{N}} \rightarrow$ Aut (\mathscr{A}) be the corresponding homomorphism. The dimension of \mathscr{A} over \mathbf{R} is equal to that of \tilde{A} over k, say r, and the image of \tilde{A} with respect to ν is a free group of rank r. Therefore the translations are precisely those elements of $\operatorname{Aut}(\mathscr{A})$ commuting with $\nu(\tilde{A})$, so that the inverse image of the translations is \tilde{M}. The kernel of ν is the maximal compact open subgroup \tilde{M}_{0} of \tilde{M}. Let \tilde{A}_{0} be $\tilde{A} \cap \tilde{M}_{0}$, which is maximal compact and open in \tilde{A}.

There exists on \mathscr{A} a canonical affine root system $\Sigma_{\text {aff }}$ Let $W_{\text {aff }}$ be the associated affine Weyl group. Choose once and for all in this paper a special point $x_{0} \in \mathscr{A}$, let Σ_{0} be the roots of $\Sigma_{\text {aff }}$ vanishing at x_{0}, and let W_{0} be the isotropy subgroup of $W_{\text {aff }}$ at x_{0}. Then Σ_{0} is a finite reduced root system and W_{0} its Weyl group. The homomorphism ν is a surjection from $\tilde{\mathcal{N}}$ to $W_{\text {aff }}$, and therefore induces isomorphisms of $\tilde{\mathcal{N}} / \tilde{M}_{0}$ with $W_{\text {aff }}$ and of $\tilde{\mathcal{N}} / \tilde{M}$ with W_{0}. It also induces an injection of $\tilde{A} / \tilde{A}_{0}$ into $\mathscr{A}: a \rightarrow \nu(a) x_{0}$, and one may therefore identify Σ_{0} with a root system in the vector space $\operatorname{Hom}\left(\tilde{A} / \tilde{A}_{0}, \mathbf{R}\right)$. The map taking the rational character α to the function $a \mapsto-\operatorname{ord}_{p}(\alpha(a))$ allows one also to identify Σ with a root system in $\operatorname{Hom}\left(\tilde{A} / \tilde{A}_{0}, \mathbf{R}\right)$. The two root systems one thus obtains are not necessarily the same or even
homothetic, but what is true is that each $\alpha \in \Sigma$ is a positive multiple of a unique root $\lambda(\alpha)$ in Σ_{0}. The map λ is a bijection between ${ }^{\text {nd }} \Sigma$ and Σ_{0}. Let $\Sigma_{0}^{+}, \Delta_{0}$ correspond to Σ^{+}, Δ. Let \mathscr{C} be the vectorial chamber $\left\{\alpha(x)>0\right.$ for all $\left.\alpha \in \Sigma_{0}^{+}\right\}$, and let C be the affine chamber of \mathscr{A} contained in \mathscr{C} which has x_{0} as vertex.

Let \tilde{B} be the Iwahori subgroup fixing the chamber C. It also fixes every element of C.

For each $\alpha \in \Sigma_{\text {aff }}$, let $\tilde{N}(\alpha)$ be the group $\{n \in \tilde{N} \mid n x=x$ for all $x \in \mathscr{A}$ with $\alpha(x) \geq 0\}$. Then:

$$
\begin{equation*}
\tilde{N}(\alpha+1) \subsetneq \tilde{N}(\alpha) ; \tag{1}
\end{equation*}
$$

For any $g \in \tilde{\mathcal{N}}, g \tilde{N}(\alpha) g^{-1}=\tilde{N}(\nu(g) \alpha) ;$
(3)

For any $\alpha \in{ }^{\text {nd }} \Sigma$, the group \tilde{N}_{α} is the union of the

$$
\tilde{N}(\lambda(\alpha)+i)(i \in Z)
$$

$$
\tilde{N}(-\alpha)-\tilde{N}(-\alpha+1) \subseteq \tilde{N}_{\alpha} \nu^{-1}\left(w_{\alpha}\right) \tilde{N}_{\alpha}
$$

If $\tilde{N}_{0}=\Pi \tilde{N}(\alpha)\left(\alpha \in \Sigma_{0}^{+}\right)$and $\tilde{N}_{1}^{-}=\Pi \tilde{N}(-\alpha+1)\left(\alpha \in \Sigma_{0}^{+}\right)$ then one has the Iwahori factorization $\tilde{B}=\tilde{N}_{1}^{-} \tilde{M}_{0} \tilde{N}_{0}$.

As a consequence of (2):
(6) For $m \in \tilde{M}$ and $\alpha \in \Sigma_{0}, m \tilde{N}(\alpha+i) m^{-1}=\tilde{N}\left(\alpha+i-\alpha\left(\nu(m) x_{0}\right)\right)$.

Let $\tilde{\alpha}$ be the dominant root in Σ_{0}, and let $S_{\text {aff }}$ be $\left\{w_{\alpha} \mid \alpha \in \Delta_{0}\right.$ or $\alpha=\tilde{\alpha}-1\}$. Then ($W_{\text {aff }}, S_{\text {aff }}$) is a Coxeter group, and in fact $\left(\tilde{G}, \tilde{B}, \tilde{\mathcal{N}}, S_{\text {aff }}\right)$ is an affine Tits system.

Recall that the Hecke algebra $\mathscr{H}(\tilde{G}, \tilde{B})$ is the space of all compactly supported functions $f: \tilde{G} \rightarrow \mathbf{C}$ which are right- and left- \tilde{B}-invariant, endowed with the product given by convolution. (Here \tilde{B} is assumed to have measure 1 , so that $\operatorname{ch}(\tilde{B})$ is the identity of this algebra.) As a linear space it has the basis $\left\{\operatorname{ch}(\tilde{B} w \tilde{B})\left(w \in W_{\text {aff }}\right)\right\}$.

$$
\begin{align*}
& \text { If } w \in W_{\text {aff }} \text { has the reduced expression } w=w_{1} \cdots w_{p} \tag{7}\\
& \left(w_{i} \in S_{\text {aff }}\right) \text { then } \operatorname{ch}(\tilde{B} w \tilde{B})=\Pi \operatorname{ch}\left(\tilde{B} w_{i} \tilde{B}\right) .
\end{align*}
$$

For any $w \in W_{\text {aff }}$, define $q(w)$ to be $[\tilde{B} w \tilde{B}: \tilde{B}]$. Then

$$
\begin{equation*}
\operatorname{ch}\left(\tilde{B} w_{\alpha} \tilde{B}\right)^{2}=\left(q\left(w_{\alpha}\right)-1\right) \operatorname{ch}\left(\tilde{B} w_{\alpha} \tilde{B}\right)+q\left(w_{\alpha}\right) \operatorname{ch}(\tilde{B}) \quad\left(\alpha \in S_{\mathrm{aff}}\right) \tag{8}
\end{equation*}
$$

For any $\alpha \in \Sigma_{0}$, define

$$
\begin{equation*}
a_{\alpha}=w_{\alpha} \circ w_{\alpha-1} . \tag{9}
\end{equation*}
$$

It is a translation of \mathscr{A} whose inverse image in \tilde{M} is a coset of \tilde{M}_{0}, and I shall often treat it as if it were an element of this coset. Because of (6),

$$
\begin{equation*}
a_{\alpha} \tilde{N}(\alpha+i) a_{\alpha}^{-1}=\tilde{N}(\alpha+i+2) \tag{10}
\end{equation*}
$$

or, in other words, $a_{\alpha}(\alpha)=\alpha-2$.
1.1. Remark: There is another way to consider a_{α} which may be more enlightening. If \tilde{G} is of rank one, then $\tilde{M} / \tilde{M}_{0}$ is a free group of rank one over Z, and a_{α} is the coset of \tilde{M}_{0} which generates this group and takes $-\mathscr{C}$ into itself. If \tilde{G} is not necessarily of rank one and $\alpha \in \Delta_{0}$, then the standard parabolic subgroup associated to Δ -$\left\{\lambda^{-1}(\alpha)\right\}$ has the property that its derived group is of rank one and again simply connected ([3] 4.3) and a_{α} for \tilde{G} is the coset of \tilde{M}_{0} containing the a_{α} for this group. If α is not necessarily in Δ_{0}, there will exist $w \in W_{0}$ such that $\beta=w^{-1} \alpha \in \Delta_{0}$; let $a_{\alpha}=w a_{\beta} w^{-1}$. If G is split, the construction is even simpler; let a_{α} be the image of a generator of \mathfrak{p} with respect to the co-root $\alpha_{*}: \mathbf{G}_{m} \rightarrow \tilde{\mathbf{G}}$.
It is always true that:

$$
\begin{equation*}
\text { For any } w \in W_{0}, w a_{\alpha} w^{-1}=a_{w \alpha} . \tag{11}
\end{equation*}
$$

For each $\alpha \in \Sigma_{\text {aff }}$, let

$$
\begin{equation*}
q_{\alpha}=[\tilde{N}(\alpha-1): \tilde{N}(\alpha)] . \tag{12}
\end{equation*}
$$

Because of (10), $q_{\alpha+2}$ is always the same as q_{α}, but it is not necessarily the same as $q_{\alpha+1}$. Macdonald ([10] III) defines the subset Σ_{1} with $\Sigma_{0} \subseteq \Sigma_{1} \subseteq \Sigma_{0} \cup \frac{1}{2} \Sigma_{0} ; \alpha / 2$ (for $\alpha \in \Sigma_{0}$) lies in Σ_{1} if and only if $q_{\alpha+1} \neq q_{\alpha}$. He proves that Σ_{1} is a root system, and for each $\alpha \in \Sigma_{0}$ defines $q_{\alpha / 2}$ to be $q_{\alpha+1} / q_{\alpha}$. Then:

$$
\begin{equation*}
\text { For } \alpha \in \Sigma_{0},[\tilde{N}(\alpha+1): \tilde{N}(\alpha+m+1)]=q_{\alpha / 2}^{[m / 2]} q_{\alpha}^{m} ; \tag{13}
\end{equation*}
$$

For $\alpha \in \Delta_{0}, q\left(w_{\alpha}\right)=q_{\alpha / 2} q_{\alpha} ;$

$$
\begin{equation*}
\text { When } \tilde{G} \text { has rank one and } \alpha>0 \text {, } \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\delta\left(a_{\alpha}\right)=1 /\left[\tilde{N}(\alpha): a_{\alpha} \tilde{N}(\alpha) a_{\alpha}^{-1}\right]=q_{\alpha / 2}^{-1} q_{\alpha}^{-2} . \tag{15}
\end{equation*}
$$

It may happen that $q_{\alpha / 2}<1$. For example, if \tilde{G} has rank one then there are two possible inequivalent choices of the special point, and if q_{α} is not always equal to $q_{\alpha+1}$ then for one of these choices $q_{\alpha / 2}$ will be <1,
for the other >1. The second choice is better in some sense; the corresponding maximal compact subgroup is what Tits [13] calls hyperspecial. In general, a simple argument on root hyperplanes will show that there is always some choice of x_{0} which assures $q_{\alpha / 2} \geq 1$ for all $\alpha>0$.

This completes my summary of the simply connected case.
The algebraic group of automorphisms of \mathbf{G} contains $\mathbf{G}^{\text {adj }}$, and therefore there is a canonical homomorphism from \mathbf{G} to $\operatorname{Aut}(\tilde{\mathbf{G}})$. Thus G acts on $\tilde{G}: x \mapsto^{8} x$. If X is a compact subset of \tilde{G}, so is ${ }^{8} X$, so that this action of G preserves what [6] calls the bornology of G. By [6], 3.5.1. the morphism $\psi: \tilde{G} \rightarrow G$ is \tilde{B}-adapted. This means ([6] 1.2.13) that for each $g \in G$ the subgroup ${ }^{8} \tilde{B}$ is conjugate in \tilde{G} to \tilde{B}, or that there exists $h \in \tilde{G}$ such that $h B h^{-1}=\psi^{-1}\left(g \psi(\tilde{B}) g^{-1}\right)={ }^{8} \tilde{B}$. The action of G on \tilde{G} therefore induces one of G on \mathscr{B}.

The stabilizer of \mathscr{A} in G is $\mathcal{N}=N_{G}(A)$. Let here, too, ν be the canonical homomorphism: $\mathcal{N} \rightarrow \operatorname{Aut}(\mathscr{A})$. The inverse image of the translations is M.

Theorem 3.19 of [4] and its proof assert that the inclusion of M into G induces an isomorphism of $M / \psi(\tilde{M}) Z_{G}$ with $G / \psi(\tilde{G}) Z_{G}$, hence that every $g \in G$ may be expressed as $m \psi(\tilde{g})$ with $m \in M, \tilde{g} \in \tilde{G}$. Since $m \mathscr{A}=\mathscr{A}$, this implies that one may choose the h above so that simultaneously $h \tilde{B} h^{-1}={ }^{8} \tilde{B}$ and $h \tilde{\mathcal{N}} h^{-1}={ }^{8} \tilde{\mathcal{N}}$. Therefore ψ is $\tilde{B}-\tilde{\mathcal{N}}$ adapted ([6] 1.2.13).

Since $\tilde{\mathcal{N}} / \tilde{M} \cong \mathcal{N} / M \cong W, \psi$ is of connected type ([6] 4.1.3). Let $G_{1}=\left\{g \in G| | \chi(g) \mid=1\right.$ for all rational characters $\left.\chi: G \rightarrow G_{m}\right\}$. If $G^{\text {der }}$ is the derived group of G, then $\psi(\tilde{G}) \subseteq G^{\text {der }} \subseteq G_{1}$; [4] 3.19 implies that $\psi(\tilde{G})$ is closed in G and $G^{\text {der }} / \psi(\tilde{G})$ compact, while it is clear that $G_{1} / G^{\text {der }}$ is compact. Therefore $G_{1} / \psi(\tilde{G})$ is compact.

Let

$$
\begin{aligned}
& B=\left\{g \in G_{1} \mid g x=x \text { for all } x \in C\right\} \\
& K=\left\{g \in G_{1} \mid g x_{0}=x_{0}\right\} .
\end{aligned}
$$

Since \tilde{B} is compact, so is $\psi(\tilde{B})$ and furthermore $B \cap \psi(\tilde{G})=\psi(\tilde{B})$. Therefore since $G_{1} / \psi(\tilde{G})$ is compact, so is B. Since $B \subseteq K$ and K / B is finite, K is also compact. The subgroup K is what [6] calls a special, good, maximal bounded subgroup of G.

Let $\mathcal{N}_{K}=\mathcal{N} \cap K$ and $M_{0}=M \cap K=M \rightarrow B$. The injection of \mathcal{N}_{K} / M_{0} into W is an isomorphism ([6] 4.4.2). From now on I assume every representative of an element of W to lie in K. Such a representative is determined up to multiplication by an element of M_{0}.

The triple (K, B, \mathcal{N}_{K}) form a Tits system with Weyl group W, and therefore

$$
\begin{equation*}
K \text { is the disjoint union of the } B w B(w \in W) ; \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
[K: B]=\Sigma[B w B: B]=\Sigma q(w)(w \in W) . \tag{17}
\end{equation*}
$$

The group G has the Iwasawa decomposition ([6] 4.4.3)

$$
\begin{equation*}
G=P K \tag{18}
\end{equation*}
$$

and a refinement:
(19) $\quad G$ is the disjoint union of the $P w B(w \in W)$.

Let

$$
\begin{aligned}
& M^{-}=\left\{m \in M \mid m^{-1} \mathscr{C} \subseteq \mathscr{C}\right\} ; \\
& A^{-}=A \cap M^{-} .
\end{aligned}
$$

The group A^{-}is also $\{a \in A||\alpha(a)| \leq 1\}$ for $\alpha \in \Delta\}$, so that this terminology agrees with that of [7].
The group G has the Cartan decomposition ([6] 4.4.3):

$$
\begin{equation*}
G=K M^{-} K . \tag{20}
\end{equation*}
$$

Let ξ be the canonical homomorphism ([6] 1.2.16) from G to the group of automorphisms of \mathscr{A} taking C to itself, and let $G_{0}=$ $G_{1} \cap \operatorname{ker}(\xi)$. The triple ($G_{0}, B, \mathcal{N} \cap G_{0}$) form a Tits system with affine Weyl group isomorphic to $W_{\text {aff }}$, and ψ induces an isomorphism between the Hecke algebras $\mathscr{H}(\tilde{G}, \tilde{B})$ and $\mathscr{H}\left(G_{0}, B\right)$ ([6] 1.2.17). Define Ω to be the subgroup of \mathcal{N} / M_{0} of elements taking C to itself. Then elements of Ω normalize B, and hence for any $\omega \in \Omega, w \in W_{\text {aff }}$

$$
\begin{equation*}
\operatorname{ch}(B \omega B) \operatorname{ch}(B w B)=\operatorname{ch}(B \omega w B) \tag{21}
\end{equation*}
$$

in $\mathscr{H}(G, B)$. Furthermore the group \mathcal{N} / M_{0} is a semi-direct product of Ω and $W_{\text {aff }}$, and
G is the disjoint union of the $B x B\left(x \in \mathcal{N} / M_{0}\right)$.
(In fact, (G, B, \mathcal{N}) form a generalized Tits system - see [8].) As a corollary of (7), (8), (21), and the isomorphism between $\mathscr{H}(\tilde{G}, \tilde{B})$ and $\mathscr{H}\left(G_{0}, B\right):$
1.2. Proposition: In any finite-dimensional module over $\mathscr{H}(G, B)$ each $\operatorname{ch}(B x B)(x \in \mathcal{N})$ is invertible.

For $\alpha \in \Sigma_{\text {aff }}$, define $N(\alpha)$ to be $\psi(\tilde{N}(\alpha))$. Since $\psi \mid \tilde{N}$ is an isomorphism with N, all the properties stated earlier for the $\tilde{N}(\alpha)$ hold also for the $N(\alpha)$. In particular, for example:

$$
\begin{equation*}
B \text { has the Iwahori factorization } B=N_{1}^{-} M_{0} N_{0} . \tag{23}
\end{equation*}
$$

From now on let $P_{0}=M_{0} N_{0}$.
There is a nice relationship between the Bruhat decompositions of G and K :
1.3. Proposition: For any $w \in W$
(a) $B w B \subseteq \cup P x P(x>w)$;
(b) $B w B \cap P w P=P_{0} w N_{0}$.

Proof: I first claim that $B w B=B w N_{0}$. To see this, observe that the Iwahori factorization of B gives

$$
B w B=B w N_{1}^{-} M_{0} N_{0}=B w N_{1}^{-} N_{0}
$$

but then $w N_{1}^{-}=w N_{1}^{-} w^{-1} \cdot w \subseteq B w$.
Next,

$$
B w N_{0}=P_{0} N_{1}^{-} w N_{0}
$$

and

$$
\begin{aligned}
N_{1}^{-} w & =w_{\ell} N_{1} w_{\ell}^{-1} \cdot w \\
& \subseteq P w_{\ell} P \cdot P w_{\ell} w P \\
& \subseteq \cup P w_{\ell} y P\left(y<w_{\ell} w\right)
\end{aligned}
$$

by Lemma 1, p. 23, of [5]. But according to the Appendix, $y<w_{e} w$ if and only if $w_{\ell} y>w$, and this proves 1.3(a).

For (b), it suffices to show that for $n^{-} \in N_{1}^{-}$, if $n^{-} w \in P w P$ then $n^{-} \in w P w^{-1}$. But if $n^{-} w \in P w P=P w N$, one has $n^{-} w=p w n$ with $p \in P, n \in N$ and then $n^{-}=p \cdot w n w^{-1}$. As is well known, elements of the group $w N w^{-1}$ factor uniquely according to $w N w^{-1}=$ $\left(w N w^{-1} \cap N\right)\left(w N w^{-1} \cap N^{-}\right)$. Hence $n^{-} \in w N w^{-1} \cap N^{-}$.

In the rest of this paper, the notation will be slightly different. The main point is that it is clumsy to have to refer to both the Bruhat-Tits system Σ_{0} and the system Σ arising from the structure of G as a reductive algebraic group. Therefore I shall often confound $\alpha \in{ }^{\text {nd }} \Sigma$
with $\lambda(\alpha) \in \Sigma_{0}$ - referring for example to q_{α} instead of $q_{\lambda(\alpha)}$, etc. Also I shall write $N_{\alpha, i}\left(\right.$ for $\alpha \in{ }^{\text {nd }} \Sigma$) instead of $N(\alpha+i)$, and refer to a_{α} as an element of G or a coset of M_{0}, when what I really mean is $\psi\left(a_{\alpha}\right)$.

2. Elementary properties of the principal series

If σ is a complex character of M-i.e. any continuous homomorphism from M to \mathbf{C}^{\times}- it is said to be unramified if it is trivial on M_{0}. Because the group M / M_{0} is a free group of rank r, the group $X_{n r}(M)$ of all unramified characters of M is isomorphic to $\left(\mathbf{C}^{\times}\right)^{r}$. This isomorphism is non-canonical, but the induced structure of a complex analytic group is canonical.
I assume all characters of M to be unramified from now on.
The character χ of M determines as well one of P, since $M \cong P / N$. The principal series representation of G induced by this (which is itself said to be unramified) is the right regular representation R of G on the space $I(\chi)=\operatorname{Ind}(\chi \mid P, G)$ of all locally constant functions $\phi: G \rightarrow C$ such that $\phi(p g)=\chi \delta^{1 / 2}(p) \phi(g)$ for all $p \in P, g \in G$. This representation is admissible ([7] §3).

Define the G-projection \mathscr{P}_{χ} from C_{c}^{∞} onto $I(\chi)$:

$$
\mathscr{P}_{\chi}(f)(g)=\int_{P} \chi^{-1} \delta^{1 / 2}(p) f(p g) \mathrm{d} p
$$

Here and elsewhere I assume P to have the left Haar measure according to which meas $P_{0}=1$.

For each $w \in W$, let $\phi_{w, \chi}=\mathscr{P}_{\chi}\left(c h_{B w B}\right)$, and let $\phi_{K, \chi}=\mathscr{P}_{\chi}\left(c h_{K}\right)$. (I shall often omit the reference to χ). Thus ϕ_{w} is identically 0 off $P w B$ and $\phi_{w}(p w b)=\chi \delta^{1 / 2}(p)$ for $p \in P, b \in B$.
2.1. Proposition: The functions $\phi_{w, \chi}(w \in W)$ form a basis of $I(\chi)^{B}$.

This is because G is the disjoint union of the open subsets $P w B$ (1.9)).
2.2. Corollary: The function $\phi_{K, \chi}$ is a basis of $I(\chi)^{K}$.

Of course this also follows directly from the Iwasawa decomposition.

Recall from [7] §3 that if (π, V) is any admissible representation of
G then $V(N)$ is the subspace of V spanned by $\{\pi(n) v-v \mid n \in N, v \in$ $V\}$, and that the Jacquet module V_{N} is the quotient $V / V(N)$. If V is finitely generated as a G-module then V_{N} is finite-dimensional ([7] Theorem 3.3.1). Since $V(N)$ is stable under M, there is a natural smooth representation π_{N} of M on V_{N}.

According to [7] Theorem 6.3.5, if $V=I(\chi)$ then V_{N} has dimension equal to the order of W. This suggests:
2.3. Proposition: The canonical projection from $I(\chi)^{B}$ to $I(\chi)_{N}$ is a linear isomorphism.

I shall give two proofs of this. The first describes the relationship between $I(\chi)^{B}$ and $I(\chi)_{N}$ in more detail, but the second shows this proposition to be a corollary of a much more general result.

The first: it is shown in $\S 6.3$ of [7] that one has a filtration of $I(\chi)$ by P-stable subspaces $I_{w}(w \in W)$, decreasing with respect to the partial order on W mentioned in the Appendix. The space I_{w} consists of the functions in $I(\chi)$ with support in $\cup P x P,(x>w)$ and clearly $I_{x} \subseteq I_{y}$ when $y<x$. According to Proposition 1.3(a), ϕ_{w} lies in I_{w}. Each space $\left(I_{w}\right)_{N} / \Sigma\left(I_{x}\right)_{N}(x>w, x \neq w)$ is one-dimensional ([7] 6.3.5), and the map on I_{w} which takes ϕ to

$$
\int_{w^{-1} N w \cap N \backslash N} \phi(w n) \mathrm{d} n
$$

induces a linear isomorphism of this space with C. It is easy to see, then, from Proposition 1.3(b) that the image of ϕ_{w} with respect to this map is non-trivial, and this proves 2.3.

For the second proof:
2.4. Proposition: If (π, V) is any admissible representation of G, then the canonical projection from V^{B} to $V_{N}^{M_{0}}$ is a linear isomorphism.

Proof: Because B has an Iwahori factorization with respect to P, Theorem 3.3.3 of [7] implies surjectivity.

For injectivity, suppose $v \in V^{B} \cap V(N)$. Then Lemma 4.1.3 of [7] implies the existence of $\epsilon>0$ such that $\pi\left(c h_{B a B}\right) v=0$ for $a \in A^{-}(\epsilon)$ (where $A^{-}(\epsilon)=\{a \in A| | \alpha(a) \mid<\epsilon$ for all $\alpha \in \Delta\}$). Apply Proposition 1.2.

This proof of injectivity is Borel's (see Lemma 4.7 of [1]).
Proposition 2.4 may be strengthened to give as well a relationship
between the structure of V^{B} as a module over the Hecke algebra $\mathscr{H}(G, B)$ and that of V_{N} as a smooth representation of M :
2.5. Proposition: Let (π, V) be an admissible representation of G, $v \in V$ with image $u \in V_{N}$. Then for any $m \in M^{-}$the image of $\pi\left(c h_{B m B}\right) v$ in V_{N} is equal to meas $(B m B) \pi_{N}(m) v$.

Proof: If $v \in V^{B}$, then because $m^{-1} N_{1}^{-} m \subseteq N_{1}^{-}$(1.6), $\pi(m) v \in$ $V^{M_{0} N_{\overline{1}}}$. Jacquet's First Lemma ([7] 3.3.4) implies that $v_{0}=$ meas $(B m B)^{-1} \pi\left(c h_{B m B}\right) v=\mathscr{P}_{B}(\pi(m) v)$ and $\pi(m) v$ have the same image in V_{N}.

There are two more results one can derive from Proposition 2.4.
2.6. Proposition: If (π, V) is any irreducible admissible representation of G with $V^{B} \neq 0$, then there exists a G-embedding of V into some unramified principal series. Conversely, if V is any nontrivial G-stable subspace of an unramified principal series, then $V^{B} \neq 0$.

Proof: Recall the version of Frobenius reciprocity given as 3.2.4 in [7]:

$$
\operatorname{Hom}_{G}(V, \operatorname{Ind}(\chi \mid P, G)) \cong \operatorname{Hom}_{M}\left(V_{N}, \chi \delta^{1 / 2}\right)
$$

If V is a subspace of $I(\chi)$ then the left-hand side is non-trivial, hence the right-hand side. This means that $V_{N}^{M_{0}} \neq 0$, and by 2.4 neither is V^{B} trivial. If $V^{B} \neq 0$ on the other hand, then 2.4 implies that $V_{N}^{M_{0}} \neq 0$. Since it is finite-dimensional, there exists some one-dimensional M quotient, hence by Frobenius reciprocity a G-morphism into an unramified principal series.

2.7. Proposition: The G-module $I(\chi)$ is generated by $I(\chi)^{B}$.

Proof: If U is the quotient of $I(\chi)$ by the G-space generated by $I(\chi)^{B}$, then $U^{B}=0$. The linear dual of U^{B} is canonically isomorphic to \tilde{U}^{B}, where \tilde{U} is the space of the admissible representation contragredient to U (see $\S 2$ of [7]), and hence $\tilde{U}^{B}=0$ as well. But since U is a quotient of $I(\chi), \tilde{U}$ is a subspace of $I\left(\chi^{-1}\right)$, which is the contragredient of $I(\chi)$ ([7] 3.1.2). Proposition 2.6 implies that \tilde{U} is trivial and therefore also U.

3. Intertwining operators

Assume in this section that all characters χ of M are regular-i.e. that whenever $w \in W$ is such that $w \chi=\chi$ then $w=1$.

With this condition satisfied, it is shown in §6.4 of [7] that for each $x \in K$ representing $w \in W$ there exists a unique G-morphism $T_{x}: I(\chi) \rightarrow I(w \chi)$ such that for all $\phi \in I(\chi)$ with support in $\cup P y P$ $\left(y \nless w^{-1}\right) \cup P w^{-1} P$

$$
\begin{equation*}
T_{x} \phi(1)=\int_{w N w^{-1} \cap N \backslash N} \phi\left(x^{-1} n\right) \mathrm{d} n . \tag{1}
\end{equation*}
$$

Here $w N w^{-1} \cap N \backslash N$ is assumed to have the Haar measure such that the orbit of $\{1\}$ under N_{0} has measure 1 . Since χ is unramified, one sees easily that T_{x} is independent of the choice of $x \in K$ representing w, and one may call it T_{w}. Furthermore, it is shown in §6.4 of [7] that T_{w} varies holomorphically with χ in the sense that for a fixed $f \in C_{c}^{\infty}(G)$ and $g \in G, T_{w}\left(\mathscr{P}_{\chi} f\right)(g)$ is a holomorphic function of χ. Finally, every G-morphism from $I(\chi)$ to $I(w \chi)$ is a scalar multiple of T_{w}.

The operator T_{w} is in particular a B-morphism and a K-morphism, so it takes $I(\chi)^{B}$ to $I(w \chi)^{B}$ and $I(\chi)^{K}$ to $I(w \chi)^{K}$. Therefore it takes $\phi_{K, \chi}$ to a scalar multiple of $\phi_{K, w \chi}$.

For each $\alpha \in \Sigma$, define

$$
c_{\alpha}(\chi)=\frac{\left(1-q_{\alpha / 2}^{-1 / 2} q_{\alpha}^{-1} \chi\left(a_{\alpha}\right)\right)\left(1+q_{\alpha / 2}^{-1 / 2} \chi\left(a_{\alpha}\right)\right)}{1-\chi\left(a_{\alpha}\right)^{2}} .
$$

3.1. Theorem: One has

$$
T_{w}\left(\phi_{K, \chi}\right)=c_{w}(\chi) \phi_{K, w \chi}
$$

where

$$
c_{w}(\chi)=\Pi c_{\alpha}(\chi) \quad(\alpha>0, w \alpha<0)
$$

Proof: Step (1). Assume G to be of semi-simple rank one, α the single non-multipliable positive root, and $w=w_{\alpha}$ the single non-trivial element of W. Since $\phi_{K}(1)=1$, and one knows $T_{w}\left(\phi_{K}\right)$ to be a multiple of ϕ_{K}, it suffices to calculate $T_{w}\left(\phi_{K}\right)(1)$. Since $K=B \cup B w B$, $\phi_{K}=\phi_{1}+\phi_{w}$, and one only need evaluate $T_{w}\left(\phi_{1}\right)(1)$ and $T_{w}\left(\phi_{w}\right)(1)$ separately.

Evaluating the second is simple, since ϕ_{w} has support in $P w P$, and in fact $\phi_{w}(w n)=1$ if $n \in N_{0}$ and 0 if $n \in N-N_{0}$:

$$
\begin{aligned}
T_{w}\left(\phi_{w}\right)(1) & =\int_{N} \phi(w n) \mathrm{d} n \\
& =\int_{N_{0}} \mathrm{~d} n=1
\end{aligned}
$$

As for the first, since T_{w} varies holomorphically with χ it suffices to calculate $T_{w}\left(\phi_{1}\right)(1)$ for all χ in some open set of $X_{n r}(M)$. Define $\Phi=\Phi_{\chi}$ on $P w P$:

$$
\Phi\left(n_{1} m w n_{2}\right)=\chi^{-1} \delta^{1 / 2}(m)
$$

For $f \in C_{c}^{\infty}(P w P) \subseteq C_{c}^{\infty}(G)$,

$$
T_{w}\left(\mathscr{P}_{\chi} f(1)=\int_{P_{w P}} \Phi(x) f(x) \mathrm{d} x .\right.
$$

Here the measure adopted on $P w P$ is the restriction of a Haar measure on G with the normalization condition that meas $P_{0} w N_{0}=1$ (note that $P w P$ is open in G). This formula actually makes sense for all $f \in C_{c}^{\infty}(G)$ under certain conditions on χ :
3.2. Lemma: If $|\chi(a)|<1$ for all regular elements of A^{-}, then for every $f \in C_{c}^{\infty}(G)$ the integral

$$
\int_{P_{w P}} \Phi_{\chi}(x) f(x) \mathrm{d} x
$$

converges absolutely and is equal to $T_{w}\left(\mathscr{P}_{\chi}(f)\right)(1)$. If $f=c h_{B}$, then it is equal to $c_{\alpha}(\chi)-1$.

Proof: It suffices to let f be the characteristic function of a set of the form $N_{n}^{-} X$, where X is an open subgroup of P_{0} and $N_{n}^{-}(n \geq 1)$ is the subgroup of $\S 1$. This is because every function in $C_{c}^{\infty}(G)$ is a linear combination of (1) a function in $C_{c}^{\infty}(P w P)$ and (2) right P-translates of such characteristic functions. For $f=\operatorname{ch}\left(N_{n}^{-} x\right)$, the above integral is equal to

$$
\int_{N_{n}^{-} X} \Phi_{\chi}(x) \mathrm{d} x=\left[P_{0}: X\right]^{-1} \int_{N_{n}^{-}} \phi_{\chi}(x) \mathrm{d} x
$$

where the measure on N_{n}^{-}is such that meas $N_{1}^{-}=[B w B: B]^{-1}=$ $\left(q_{\alpha} q_{\alpha / 2}\right)^{-1}$. This may be not quite obvious - it is because the Haar
measure adopted on G is $\left(q_{\alpha} q_{\alpha / 2}\right)^{-1}$ times the one in which meas $B=1$, $B=N_{1}^{-} P_{0}$, and $\Phi(x p)=\Phi(x)$ for $p \in P_{0}$.

Recall from 1.(1), 1.(3), and 1.(4) that

$$
N_{n}^{-}=\left(N_{n}^{-}-N_{n+1}^{-}\right) \cup\left(N_{n+1}^{-}-N_{n+2}^{-}\right) \cup \cdots
$$

and

$$
N_{m}^{-}-N_{m+1}^{-} \subseteq N a_{\alpha}^{-m} w_{\alpha} N
$$

Therefore the integral above is equal to

$$
\sum_{n}^{\infty}\left[\operatorname{meas}\left(N_{m}^{-}-N_{m+1}^{-}\right)\right] \chi\left(a_{\alpha}\right)^{m} \delta^{1 / 2}\left(a_{\alpha}\right)^{-m}
$$

From (1.(13) one sees that

$$
\text { meas } N_{m}^{-}=q_{\alpha}^{-[m+1 / 2]} \boldsymbol{q}_{\alpha}^{-m} \quad(m \geq 1)
$$

and from (1.(15) that

$$
\delta\left(a_{\alpha}\right)=q_{\alpha / 2}^{-1} q_{\alpha}^{-2} .
$$

When $\left|\chi\left(a_{\alpha}\right)\right|<1$, therefore, it is easy to deduce that the above sum is dominated by an absolutely convergent geometric series.

When $f=c h_{B}, m=1$. The sum may be calculated explicitly by breaking it up into even and odd terms, thus concluding the proof.

For χ such that $\left|\chi\left(a_{\alpha}\right)\right|<1$, the functional Λ induces a functional λ on $I(\chi)$ such that

$$
\lambda(R(p) f)=\chi^{-1} \delta^{1 / 2}(p) \lambda(f)
$$

By Frobenius reciprocity, it corresponds to a G-morphism from $I(\chi)$ to $I(w \chi)$. This must be a scalar multiple of T_{w}, and since for $f \in C_{c}^{\infty}(P w P)$

$$
\Lambda(f)=T_{w}(f)(1)
$$

it corresponds exactly to T_{w}. Therefore when $\left|\chi\left(a_{\alpha}\right)\right|<1$, and by analytic continuation for all regular χ,

$$
T_{w}\left(\phi_{1}\right)(1)=c_{\alpha}(\chi)-1 \quad \text { and } \quad T_{w}\left(\phi_{K}\right)(1)=c_{\alpha}(\chi)
$$

Step (2). Let G be arbitrary, but $w=w_{\alpha}, \alpha \in \Delta$, again. In this case, each ϕ_{w} with $w \neq 1, w_{\alpha}$ lies in the complement of $P \cup P w_{\alpha} P$

$$
T_{w_{\alpha}}\left(\phi_{w}\right)(1)=\int_{w_{\alpha} N w_{\alpha}^{-1} \cap N=N} \phi_{w}\left(w_{\alpha} n\right) \mathrm{d} n=0
$$

and $T_{w_{\alpha}}\left(\phi_{1}\right)(1)$ and $T_{w_{\alpha}}\left(\phi_{w_{\alpha}}\right)(1)$ may be calculated exactly as in Step (1). Since $\phi_{K}=\Sigma \phi_{w}$, the theorem is proven in this case.

Step (3). Proceed by induction on the length of w. Let $\Psi_{w}=$ $\{\alpha>0 \mid w \alpha<0\}$. Then if $\quad \ell\left(w_{1} w_{2}\right)=\ell\left(w_{1}\right)+\ell\left(w_{2}\right) \quad$ (a) $\quad \Psi_{w_{1} w_{2}}=$ $w_{2}^{-1} \Psi_{w_{1}} \cup \Psi_{w_{2}}$ and (b) $T_{w_{1} w_{2}}=T_{w_{1}} T_{w_{2}}$, and applying these will conclude the proof.
3.3. Remark: When G is split, each $q_{\alpha}=q$ and each $q_{\alpha / 2}=1$. In this case,

$$
c_{\alpha}(\chi)=\frac{1-q^{-1} \chi\left(a_{\alpha}\right)}{1-\chi\left(a_{\alpha}\right)}
$$

I won't use it in this paper, but it will be useful elsewhere to have this partial generalization:
3.4. THEOREM: If $\alpha \in \Delta$ and $\ell\left(w_{\alpha} w\right)>\ell(w)$, then

$$
\begin{aligned}
T_{w_{\alpha}}\left(\phi_{w}\right) & =\left(c_{\alpha}(\chi)-1\right) \phi_{w}+q_{\alpha}^{-1} q_{\alpha / 2}^{-1} \phi_{w_{\alpha} w} \\
T_{w_{\alpha}}\left(\phi_{w_{\alpha} w}\right) & =\phi_{w}+\left(c_{\alpha}(\chi)-q_{\alpha}^{-1} q_{\alpha / 2}^{-1}\right) \phi_{w_{\alpha} w .}
\end{aligned}
$$

Proof: One has

$$
\begin{aligned}
T_{w_{\alpha}}\left(\phi_{1}\right)\left(w_{\alpha}\right) & \left.=\left[B w_{\alpha} B: B\right]^{-1} R\left(\operatorname{ch}\left(B w_{\alpha} B\right)\right) T_{w_{\alpha}}\left(\phi_{1}\right)\right)(1) \\
& =q_{\alpha}^{-1} q_{\alpha / 2}^{-1} T_{w_{\alpha}}\left(\phi_{w_{\alpha}}\right)(1) \\
& =q_{\alpha}^{-1} q_{\alpha / 2}^{-1}
\end{aligned}
$$

Since in the rank one case $T_{w_{\alpha}}\left(\phi_{K}\right)=c_{\alpha}(\chi) \phi_{K}$, one also has

$$
\begin{aligned}
& T_{w_{\alpha}}\left(\phi_{w_{\alpha}}\right)\left(w_{\alpha}\right)=c_{\alpha}(\chi)-q_{\alpha}^{-1} q_{\alpha / 2}^{-1} \\
& T_{w_{\alpha}}\left(\phi_{w_{\alpha}}\right)(1)=0 \text { for } w \neq 1, w_{\alpha}
\end{aligned}
$$

Therefore, since $T_{w_{\alpha}}$ takes any ϕ_{w} into a linear combination of ϕ_{w} 's:

$$
\begin{aligned}
& T_{w_{\alpha}}\left(\phi_{1}\right)=\left(c_{\alpha}(\chi)-1\right) \phi_{1}+q_{\alpha}^{-1} q_{\alpha / 2}^{-1} \phi_{w_{\alpha}} \\
& T_{w_{\alpha}}\left(\phi_{w_{\alpha}}\right)=\phi_{1}+\left(c_{\alpha}(\chi)-q_{\alpha}^{-1} q_{\alpha / 2}^{-1}\right) \phi_{w_{\alpha}} .
\end{aligned}
$$

The theorem follows from this because $R(\operatorname{ch}(B w B)) \phi_{1}=\phi_{w}$ and $R(\operatorname{ch}(B w B)) \phi_{w_{\alpha}}=\phi_{w_{\alpha} w}$.

This result tells the effect of $T_{w_{\alpha}}$ on $I(\chi)^{B}$, but to find a reasonable way to describe the effect of every T_{w} on $I(\chi)^{B}$ seems rather difficult.

As a consequence of Theorem 3.1 one has:
3.5. Proposition: (a) The operator T_{w} is an isomorphism if and only if $c_{w^{-1}}(w \chi) c_{w}(\chi) \neq 0$.
(b) $\operatorname{Ind}(\chi)$ is irreducible if and only if $c_{w_{f}}\left(w_{\ell} \chi\right) c_{w_{\ell}}(\chi) \neq 0$.

Proof: The operator $T_{w^{-1}} \circ T_{w}$ is a scalar multiple of the identity on $I(\chi)$. This scalar must be $c_{w^{-1}}(w \chi) c_{w}(\chi)$ by Theorem 3.1. If it is not 0 , then T_{w} has an inverse. If it is 0 , then either $T_{w}\left(\phi_{K}\right)$ or $T_{w^{-1}}\left(\phi_{K}\right)=0$. If the first, T_{w} clearly has no inverse. If the second, then the image of T_{w} cannot be all of $\operatorname{Ind}(w \chi)$, and again has no inverse.

For (b), apply (a) and [7] 6.4.2.
3.6. Proposition: Assume that $q_{\alpha / 2} \geq 1$ for all $\alpha>0$. If $\left|\chi\left(a_{\alpha}\right)\right|<1$ for all $\alpha>0$, then ϕ_{K} generates $I(\chi)$.

As I have mentioned earlier, the assumption $q_{\alpha / 2} \geq 1$ amounts to restricting the initial choice of the special point x_{0}-or, in other words, the subgroup K. When G is simply connected and of rank one, for example, and $q_{\alpha / 2} \neq 1$ then the Proposition is true for one choice of K but not the other.

Proof: Let U be the quotient of $I(\chi)$ by the G-space generated by ϕ_{K}. If $U \neq 0$, it will have an irreducible G-quotient (since it is finitely generated by Proposition 2.7). According to [7] 6.3.9 there will exist a G-embedding of this irreducible quotient into some $I(w \chi)$, and the composite map from $I(\chi)$ to $I(w \chi)$ must be a non-zero multiple of T_{w}. Since $U^{K}=0, T_{w}\left(\phi_{K}\right)=0$. Therefore $c_{w}(\chi)=0$, and for some $\alpha>0$ either $\chi\left(a_{\alpha}\right)=q_{\alpha} q_{1 / 2}$ or $\chi\left(a_{\alpha}\right)=-q_{1 / 2}$, contradicting the assumption.

This is the \mathfrak{p}-adic analogue of a well known result of Helgason on real groups.

I want now to introduce a new basis of $I(\chi)^{B}$ (still under the assumption that χ is regular). Recall from Proposition 2.3 that $I(\chi)^{B} \cong I(\chi)_{N}$, and again from $\S 6.4$ of [7] that $I(\chi)$ is isomorphic to the direct sum $\bigoplus(w \chi) \delta^{1 / 2}$. Explicitly, the maps

$$
\Lambda_{w}: \phi \rightarrow T_{w}(\phi)(1)
$$

form a basis of eigenfunctions of the dual of $I(\chi)_{N}$ with respect to the action of U. Let $\left\{f_{w}\right\}=\left\{f_{w, \chi}\right\}$ be the basis of $I(\chi)^{B}$ dual to this - thus

$$
\Lambda_{w}\left(f_{x}\right)= \begin{cases}0 & (x \neq w) \\ 1 & (x=w)\end{cases}
$$

It is an unsolved problem and, as far as I can see, a difficult one to express the bases $\left\{\phi_{w}\right\}$ and $\left\{f_{w}\right\}$ in terms of one another. This is directly related to the problem I mentioned at the end of the proof of Theorem 3.4. The only fact which is simple is:
3.7. Proposition: One has $f_{w_{\ell}}=\phi_{w_{e}}$

Proof: For $w \neq w_{\ell}$,

$$
T_{w}\left(\phi_{w_{f}}\right)(1)=\int_{w N w^{-1} \cap N \backslash N} \phi_{w_{f}}\left(w^{-1} n\right) \mathrm{d} n=0
$$

because $\operatorname{supp}\left(\phi_{w_{\ell}}\right) \subseteq P w_{\ell} P$, while

$$
\begin{aligned}
T_{w_{\ell}}\left(\phi_{w_{\ell}}\right)(1) & =\int_{N} \phi_{w_{\ell}}\left(w_{\ell} n\right) \mathrm{d} n \\
& =\int_{N_{0}} \mathrm{~d} n=1 .
\end{aligned}
$$

Also, by the definition of the $\left\{f_{w}\right\}$ and Theorem 3.1:

3.8. Lemma: One has

$$
\phi_{K}=\Sigma c_{w}(\chi) f_{w}
$$

It follows immediately from the definition of the $\left\{f_{w}\right\}$ and Proposition 2.5 that:
3.9. Lemma: One has $\pi\left(c h_{B m B}\right) f_{w}=\operatorname{meas}(B m B)(w \chi) \delta^{1 / 2}(m) f_{w}$ for all $m \in M^{-}$.

4. The spherical function

As I have mentioned earlier, the contragredient of $I(\chi)$ is $I\left(\chi^{-1}\right)$. Consider the matrix coefficient

$$
\Gamma_{\chi}(g)=\left\langle R(g) \phi_{K, \chi}, \phi_{K, \chi^{-1}}\right\rangle .
$$

According to [7] 3.1.3 this is also equal to

$$
\int_{K} \phi_{K, \chi}(g k) \phi_{K, \chi^{-1}}(k) \mathrm{d} k=\int_{K} \phi_{K, \chi}(g k) \mathrm{d} k
$$

where meas $K=1$. The function Γ_{χ} is called the zonal spherical function corresponding to χ. It satisfies

$$
\begin{equation*}
\Gamma_{\chi}(1)=1 ; \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\Gamma_{\chi}\left(k_{1} g k_{2}\right)=\Gamma_{\chi}(g) \text { for all } k_{1}, k_{2} \in K \quad \text { and } \quad g \in G . \tag{2}
\end{equation*}
$$

4.1. Proposition: For any $w \in W, \Gamma_{w \chi}=\Gamma_{\chi}$.

Proof: The matrix coefficient Γ_{χ} is the only matrix coefficient of $I(\chi)$ satisfying (1) and (2). As such, it is determined by the isomorphism class of $I(\chi)$. But since by Proposition 3.5 the representations $I(\chi)$ and $I(w \chi)$ are generically isomorphic, $\Gamma_{\chi}=\Gamma_{w \chi}$ generically as well; since Γ_{χ} clearly depends holomorphically on $\chi, \Gamma_{\chi}=\Gamma_{w \chi}$ for all χ.

Define

$$
\begin{aligned}
\gamma(\chi) & =c_{w_{\ell}}\left(w_{\ell} \chi\right) \\
& =\prod_{\alpha>0} \frac{\left(1-q_{\alpha / 2}^{-1 / 2} q_{\alpha}^{-1} \chi\left(a_{\alpha}\right)^{-1}\right)\left(1+q_{\alpha / 2}^{-1 / 2} \chi\left(a_{\alpha}\right)^{-1}\right)}{1-\chi\left(a_{\alpha}\right)^{-2}}
\end{aligned}
$$

Note that because of the Cartan decomposition, Γ_{χ} is determined by its restriction to M^{-}.
4.2. Theorem (Macdonald): If χ is regular then for all $m \in M^{-}$

$$
\Gamma_{\chi}(m)=Q^{-1} \Sigma \gamma(w \chi)\left(\left(w_{\chi}\right) \delta^{1 / 2}\right)(m) \quad(w \in W)
$$

where

$$
Q=\Sigma q(w)^{-1} \quad(w \in W)
$$

Proof: One has

$$
\phi_{K}=\Sigma c_{w}(\chi) f_{w}
$$

therefore

$$
\begin{aligned}
\Gamma_{\chi}(m) & =\mathscr{P}_{K}\left(R(m) \phi_{K}\right)(1) \\
& =\Sigma c_{w}(\chi) \mathscr{P}_{K}\left(R(m) f_{w}\right)(1) \\
& =\Sigma c_{w}(\chi) \mathscr{P}_{K}\left(\mathscr{P}_{B} R(m) f_{w}\right)(1)
\end{aligned}
$$

(since $B \subseteq K$)

$$
=\Sigma c_{w}(\chi)(w \chi) \delta^{1 / 2}(m) \mathscr{P}_{K} f_{w}(1)
$$

(by Proposition 3.9).
By Proposition 3.7,

$$
\begin{aligned}
\mathscr{P}_{K} f_{w_{\ell}} & =\mathscr{P}_{K} \phi_{w_{\ell}}=\operatorname{meas}\left(B w_{\ell} B\right) \phi_{K} \\
& =Q^{-1} \phi_{K}
\end{aligned}
$$

(by (1.9) and the remarks preceding it). Therefore the term in the sum above corresponding to w_{ℓ} is $Q^{-1} c_{w_{\ell}}\left(w_{\ell} \chi\right)$. By the W-invariance of Γ_{χ} (Proposition 4.1) and the linear independence of the χ 's ([10] 4.5.7) this implies the theorem.
4.3. Remark: The general theory of the asymptotic behavior of matrix coefficients (§4 in [7]) asserts the existence of $\epsilon>0$ such that ϕ_{K} is a linear combination of the characters $(w \chi) \delta^{1 / 2}$ on $A^{-}(\epsilon)$. Macdonald's formula makes this explicit.

Appendix

Let Σ be a root system, Σ^{+}a choice of positive roots, and (W, S) the corresponding Coxeter group. For $x, y \in W$, define $x<y$ to mean that y has a reduced decomposition $y=s_{1} \cdots s_{n}$, where s_{i} is the elementary reflection associated to the simple root α_{i}, and $x=$ $s_{i_{1}} \cdots s_{i_{m}}$ with $1 \leq i_{1}<\cdots<i_{m} \leq n$. According to Lemma 3.7 of [3] (an easy application of the exchange condition of [5] Chapter IV, §1.5) one may take m to be the length of x in W. If $x<y$, then $\ell(x) \leq \ell(y)$, and $\ell(x)=\ell(y)$ if and only if $x=y$.

Let w_{ℓ} be the longest element in W. The following is, I believe, essentially due to Steinberg ([11] Exercise (a) on p. 128).
A.1. Proposition: Let $x, y \in W$ be given. The following are equivalent:
(a) $x<y$;
(b) $x^{-1}<y^{-1}$;
(c) One has $y=x w_{1} \cdots w_{r}$, where w_{i} is the re fection associated to the root $\theta_{i}>0$, and $x w_{1} \cdots w_{i-1}\left(\theta_{i}\right)>0$;
(d) $w_{\ell} x>w_{\ell} y$.

Proof: $(\mathrm{a}) \Leftrightarrow(\mathrm{b})$ is immediate.

For $(\mathrm{c}) \Rightarrow$ (a): Suppose that y has the reduced decomposition $y=$ $s_{1} \cdots s_{n}$, and assume at first that $y=x w$, where w is the reflection corresponding to the root $\theta>0$, and $x(\theta)>0$. Then $y(\theta)=x(-\theta)<0$, so that according to [5] Cor. 2, p. 158, there exists i such that $\theta=s_{n} \cdots s_{i+1}\left(\alpha_{i}\right)$. Then $\quad w=\left(s_{n} \cdots s_{i+1}\right) s_{i}\left(s_{n} \cdots s_{i+1}\right)^{-1} \quad$ and $\quad x=$ $s_{1} \cdots s_{i-1} s_{i+1} \cdots s_{n}$, so that indeed $x<y$.

In the general case, let $y=x w_{1} \cdots w_{v}$ as in (c), and let $y_{i}=$ $x w_{1} \cdots w_{i-1}$ for each i. By what I have just shown, $y=y_{r}>y_{r-1}>$ $\cdots>x$, and since $<$ is clearly transitive, $x<y$.
(a) \Rightarrow (c): Proceed by induction on the length of x. If $\ell(x)=0$, then $x=1$ and $y=s_{1} \cdots s_{n}$, where by [5] Cor. 2, p. 158, one has $s_{1} \cdots s_{i-1}\left(\alpha_{i}\right)>0$.

In general, say $x=s_{i_{1}} \cdots s_{i_{m}}$ is a reduced decomposition of x. Let $x^{\prime}=s_{i_{2}} \cdots s_{i_{m}}, y^{\prime}=s_{i_{1}+1} \cdots s_{n}$. Then $\ell\left(x^{\prime}\right)<\ell(x)$ and $x^{\prime}<y^{\prime}$, so that by the induction hypothesis $y^{\prime}=x^{\prime} w_{1}^{\prime} \cdots w_{r}^{\prime}$ as in (c), say w_{i}^{\prime} corresponding to $\boldsymbol{\theta}_{i}^{\prime}$. One now has

$$
\begin{aligned}
y & =s_{1} \cdots s_{i_{1}} y^{\prime} \\
& =s_{1} \cdots s_{i_{1}} x^{\prime} w_{1}^{\prime} \cdots w_{r}^{\prime} \\
& =s_{1} \cdots s_{i_{1}-1} x w_{1}^{\prime} \cdots w_{r}^{\prime}
\end{aligned}
$$

Let $k=i_{1}-1$ for convenience. Then

$$
\begin{aligned}
y & =s_{1} \cdots s_{k} x \\
& =x \cdot\left(x^{-1} s_{k} x\right)\left(\left(s_{k} x\right)^{-1} s_{k-1}\left(s_{k} x\right)\right) \cdots\left(\left(s_{2} \cdots s_{k} x\right)^{-1} s_{1}\left(s_{2} \cdots s_{k} x\right)\right) .
\end{aligned}
$$

Let θ_{j} be the root $\left(s_{j+1} \cdots s_{k} x\right)^{-1}\left(\alpha_{j}\right)$, w_{j} correspond to θ_{j}. One has

$$
y=x w_{k} w_{k-1} \cdots w_{1}
$$

and further (1) $\theta_{j}=\left(x^{-1} s_{k} \cdots s_{j+1}\right)\left(\alpha_{j}\right)>0$ according to [5] Cor. 2, p. 158, since by assumption on the original y one has $\ell\left(s_{j} \cdots s_{k} x\right)>$ $\ell\left(s_{j+1} \cdots s_{k} x\right)$; (2) $x w_{k} \cdots w_{j+1}\left(\theta_{j}\right)=s_{j+1} \cdots s_{k} x\left(\theta_{j}\right)=\alpha_{j}>0$.
(c) \Leftrightarrow (d): One has $y=x w_{1} \cdots w_{r}$ as in (c) $\Leftrightarrow x<y \Leftrightarrow x^{-1}<y^{-1} \Leftrightarrow$ $y^{-1}=x^{-1} w_{1}^{\prime} \cdots w_{s}^{\prime}$ as in (c) $\Leftrightarrow y=w_{s}^{\prime} \cdots w_{1}^{\prime} x \Leftrightarrow w_{e} y=$ $w_{\ell} w_{s}^{\prime} w_{\ell}^{-1} \cdots w_{\ell} x \Leftrightarrow\left(w_{\ell} y\right)^{-1}=\left(w_{\ell} x\right)^{-1}\left(w_{\ell} w_{1}^{\prime} w_{\ell}^{-1}\right) \cdots\left(w_{\ell} w_{s}^{\prime} w_{\ell}^{-1}\right)$. Note that $w_{\ell} w_{i}^{\prime} w_{\ell}^{-1}$ is the reflection associated to $\overline{\theta_{i}^{\prime}}=w_{\ell}\left(-\theta_{i}^{\prime}\right)$.

REFERENCES

[1] A. BoreL: Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup. Inventiones Math. 35 (1976) 233-259.
[2] A. Borel and J. Tits: Groupes réductifs, Publ. Math. I.H.E.S. 27 (1965) 55-151.
[3] A. Borel and J. Tits: Compléments à l'article "Groupes.réductifs", Publ. Math. I.H.E.S. 41 (1972) 253-276.
[4] A. Borel and J. Tits: Homomorphismes "abstraits" de groupes algebriques simples. Annals of Math. 97 (1973) 499-571.
[5] N. Bourbaki: Groupes et algèbres de Lie. Chapitres IV, V, et VI. Hermann, Paris, 1968.
[6] F. Bruhat and J. Tits: Groupes réductifs sur un corps local, Publ. Math. I.H.E.S. 41 (1972) 1-251.
[7] W. Casselman: Introduction to the theory of admissible representations of p-adic reductive groups (to appear).
[8] N. Iwahori: Generalized Tits systems on p-adic semi-simple groups, in Algebraic Groups and Discontinuous Subgroups. Proc. Symp. Pure Math. IX. A.M.S., Providence, 1966.
[9] I.G. Macdonald: Spherical functions on a \mathfrak{p}-adic Chevalley group. Bull. Amer. Math. Soc. 74 (1968) 520-525.
[10] I.G. Macdonald: Spherical functions on a group of \mathfrak{p}-adic type. University of Madras, 1971.
[11] R. Steinberg: Lectures on Chevalley groups. Yale University Lecture Notes, 1967.
[12] H. Matsumoto: Analyse Harmonique dans les Système de Tits Bornologiques de Type Affine. Springer Lecture Notes \#590, Berlin, 1977.
[13] J. Tits: Reductive groups over local fields. Proc. Symp. Pure Math. XXXIII, Amer. Math. Soc., Providence, 1978.
(Oblatum 13-XI-1978) Department of Mathematics The University of British Columbia 2075 Westbrook Place Vancouver, B.C. V6T 1W5 Canada

