COMPOSITIO MATHEMATICA

W. CASSELMAN

The unramified principal series of *p*-adic groups. I. The spherical function

Compositio Mathematica, tome 40, nº 3 (1980), p. 387-406 <http://www.numdam.org/item?id=CM_1980_40_3_387_0>

© Foundation Compositio Mathematica, 1980, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 40, Fasc. 3, 1980, pag. 387-406 © 1980 Sijthoff & Noordhoff International Publishers – Alphen aan den Rijn Printed in the Netherlands

THE UNRAMIFIED PRINCIPAL SERIES OF p-ADIC GROUPS I. THE SPHERICAL FUNCTION

W. Casselman

It will be shown in this paper how results from the general theory of admissible representations of p-adic reductive groups (see mainly [7]) may be applied to give a new proof of Macdonald's explicit formula for zonal spherical functions ([9] and [10]). Along the way I include many results which will be useful in subsequent work.

Throughout, let k be a non-archimedean locally compact field, \mathfrak{e} its ring of integers, \mathfrak{p} its prime ideal, and q the order of the residue field.

If H is any algebraic group defined over k, H will be the group of its k-rational points.

For any k-analytic group H, let $C_c^{\infty}(H)$ be the space of locally constant functions of compact support: $H \rightarrow C$. For any subset X of H, let ch_X or ch(X) be its characteristic function (which lies in $C_c^{\infty}(H)$ if X is compact and open).

Fix a connected reductive group G defined over k. Let \tilde{G} be the simply connected covering of its derived group G^{der} , G^{adj} the quotient of G by its centre, and $\psi: \tilde{G} \to G$ the canonical homomorphism. If H is any subgroup of G, let \tilde{H} be its inverse image in \tilde{G} .

Fix also a minimal parabolic subgroup P of G. Let A be a maximal split torus contained in P, M the centralizer of A, N the unipotent radical of P, and N⁻ the unipotent radical of the parabolic opposite to P. Let Σ be the roots of G with respect to A, nd Σ the subset of nondivisible roots, Σ^+ the positive roots determined by P, Δ the simple roots in Σ^+ , W the Weyl group. For any $\alpha \in \Sigma$, let N_{α} be the subgroup of G constructed in §3 of [2] (its Lie algebra is $g_{\alpha} + g_{2\alpha}$).

Let δ be the modulus character of $P:mn \rightarrow |\det Ad_n(m)|$. Let w_ℓ be the longest element of W.

0010-437X/80/03/0387-20\$00.20/0

If H is a compact group, \mathcal{P}_H is the projection operator onto H-invariants.

In §1 I shall give an outline of the results from Bruhat-Tits that I shall need. Complete proofs have not yet appeared, but the necessary facts are not difficult to prove when G is split (see [8]) or even unramified – i.e. split over an unramified extension of k. There is no serious loss if one restricts oneself to unramified G, since any reductive group over a global field is unramified at almost all primes, and important applications will be global. As far as understanding the main ideas is concerned, one may assume G split. This will simplify both arguments and formulae considerably.

Since the first version of this paper was written, Matsumoto's book [12] has appeared with another proof of Macdonald's formula, in a more general form valid not just for the spherical functions on p-adic groups but for those related to more general Hecke algebras.

1. The structure of G

Let \mathscr{B} be the Bruhat-Tits building of \tilde{G} . (Refer to [6], Chapter II of [10], and [13].)

There exists in \mathscr{B} a unique apartment \mathscr{A} stabilized by \tilde{A} . The stabilizer $\tilde{\mathcal{N}}$ of \mathscr{A} in \tilde{G} is equal to the normalizer $N_{\tilde{G}}(\tilde{A})$; let $\nu: \tilde{\mathcal{N}} \to \operatorname{Aut}(\mathscr{A})$ be the corresponding homomorphism. The dimension of \mathscr{A} over \mathbf{R} is equal to that of \tilde{A} over k, say r, and the image of \tilde{A} with respect to ν is a free group of rank r. Therefore the translations are precisely those elements of $\operatorname{Aut}(\mathscr{A})$ commuting with $\nu(\tilde{A})$, so that the inverse image of the translations is \tilde{M} . The kernel of ν is the maximal compact open subgroup \tilde{M}_0 of \tilde{M} . Let \tilde{A}_0 be $\tilde{A} \cap \tilde{M}_0$, which is maximal compact and open in \tilde{A} .

There exists on \mathscr{A} a canonical affine root system Σ_{aff} . Let W_{aff} be the associated affine Weyl group. Choose once and for all in this paper a special point $x_0 \in \mathscr{A}$, let Σ_0 be the roots of Σ_{aff} vanishing at x_0 , and let W_0 be the isotropy subgroup of W_{aff} at x_0 . Then Σ_0 is a finite reduced root system and W_0 its Weyl group. The homomorphism ν is a surjection from $\tilde{\mathcal{N}}$ to W_{aff} , and therefore induces isomorphisms of $\tilde{\mathcal{N}}/\tilde{M}_0$ with W_{aff} and of $\tilde{\mathcal{N}}/\tilde{\mathcal{M}}$ with W_0 . It also induces an injection of \tilde{A}/\tilde{A}_0 into $\mathscr{A} : a \to \nu(a)x_0$, and one may therefore identify Σ_0 with a root system in the vector space $\operatorname{Hom}(\tilde{A}/\tilde{A}_0, \mathbf{R})$. The map taking the rational character α to the function $a \mapsto - \operatorname{ord}_p(\alpha(a))$ allows one also to identify Σ with a root system in $\operatorname{Hom}(\tilde{A}/\tilde{A}_0, \mathbf{R})$. The two root systems one thus obtains are not necessarily the same or even p-adic groups I

homothetic, but what is true is that each $\alpha \in \Sigma$ is a positive multiple of a unique root $\lambda(\alpha)$ in Σ_0 . The map λ is a bijection between ${}^{nd}\Sigma$ and Σ_0 . Let Σ_0^+ , Δ_0 correspond to Σ^+ , Δ . Let \mathscr{C} be the vectorial chamber $\{\alpha(x) > 0 \text{ for all } \alpha \in \Sigma_0^+\}$, and let C be the affine chamber of \mathscr{A} contained in \mathscr{C} which has x_0 as vertex.

Let \tilde{B} be the Iwahori subgroup fixing the chamber C. It also fixes every element of C.

For each $\alpha \in \Sigma_{\text{aff}}$, let $\tilde{N}(\alpha)$ be the group $\{n \in \tilde{N} \mid nx = x \text{ for all } x \in \mathcal{A} \text{ with } \alpha(x) \ge 0\}$. Then:

(1)
$$\tilde{N}(\alpha + 1) \subseteq \tilde{N}(\alpha);$$

(2) For any
$$g \in \tilde{\mathcal{N}}, g\tilde{N}(\alpha)g^{-1} = \tilde{N}(\nu(g)\alpha);$$

(3) For any
$$\alpha \in {}^{nd}\Sigma$$
, the group \tilde{N}_{α} is the union of the $\tilde{N}(\lambda(\alpha) + i)$ $(i \in Z)$;

(4)
$$\tilde{N}(-\alpha) - \tilde{N}(-\alpha+1) \subseteq \tilde{N}_{\alpha} \nu^{-1}(w_{\alpha}) \tilde{N}_{\alpha};$$

(5) If
$$\tilde{N}_0 = \Pi \tilde{N}(\alpha) (\alpha \in \Sigma_0^+)$$
 and $\tilde{N}_1^- = \Pi \tilde{N}(-\alpha + 1) (\alpha \in \Sigma_0^+)$
then one has the *Iwahori factorization* $\tilde{B} = \tilde{N}_1^- \tilde{M}_0 \tilde{N}_0$.

As a consequence of (2):

(6) For $m \in \tilde{M}$ and $\alpha \in \Sigma_0$, $m\tilde{N}(\alpha + i)m^{-1} = \tilde{N}(\alpha + i - \alpha(\nu(m)x_0))$.

Let $\tilde{\alpha}$ be the dominant root in Σ_0 , and let S_{aff} be $\{w_{\alpha} \mid \alpha \in \Delta_0 \text{ or } \alpha = \tilde{\alpha} - 1\}$. Then $(W_{\text{aff}}, S_{\text{aff}})$ is a Coxeter group, and in fact $(\tilde{G}, \tilde{B}, \tilde{N}, S_{\text{aff}})$ is an affine Tits system.

Recall that the Hecke algebra $\mathscr{H}(\tilde{G}, \tilde{B})$ is the space of all compactly supported functions $f: \tilde{G} \to \mathbb{C}$ which are right- and left- \tilde{B} -invariant, endowed with the product given by convolution. (Here \tilde{B} is assumed to have measure 1, so that $ch(\tilde{B})$ is the identity of this algebra.) As a linear space it has the basis $\{ch(\tilde{B}w\tilde{B}) | w \in W_{aff}\}$.

(7) If
$$w \in W_{aff}$$
 has the reduced expression $w = w_1 \cdots w_p$
 $(w_i \in S_{aff})$ then $ch(\tilde{B}w\tilde{B}) = \Pi ch(\tilde{B}w_i\tilde{B})$.

For any $w \in W_{aff}$, define q(w) to be $[\tilde{B}w\tilde{B}:\tilde{B}]$. Then

(8)
$$ch(\tilde{B}w_{\alpha}\tilde{B})^{2} = (q(w_{\alpha}) - 1)ch(\tilde{B}w_{\alpha}\tilde{B}) + q(w_{\alpha})ch(\tilde{B}) \ (\alpha \in S_{aff})$$

For any $\alpha \in \Sigma_0$, define

$$a_{\alpha} = w_{\alpha} \circ w_{\alpha-1}.$$

It is a translation of \mathscr{A} whose inverse image in \tilde{M} is a coset of \tilde{M}_0 , and I shall often treat it as if it were an element of this coset. Because of (6),

(10)
$$a_{\alpha}\tilde{N}(\alpha+i)a_{\alpha}^{-1} = \tilde{N}(\alpha+i+2)$$

or, in other words, $a_{\alpha}(\alpha) = \alpha - 2$.

1.1. REMARK: There is another way to consider a_{α} which may be more enlightening. If \tilde{G} is of rank one, then \tilde{M}/\tilde{M}_0 is a free group of rank one over Z, and a_{α} is the coset of \tilde{M}_0 which generates this group and takes $-\mathscr{C}$ into itself. If \tilde{G} is not necessarily of rank one and $\alpha \in \Delta_0$, then the standard parabolic subgroup associated to $\Delta - \{\lambda^{-1}(\alpha)\}$ has the property that its derived group is of rank one and again simply connected ([3] 4.3) and a_{α} for \tilde{G} is the coset of \tilde{M}_0 containing the a_{α} for this group. If α is not necessarily in Δ_0 , there will exist $w \in W_0$ such that $\beta = w^{-1}\alpha \in \Delta_0$; let $a_{\alpha} = wa_{\beta}w^{-1}$. If G is split, the construction is even simpler; let a_{α} be the image of a generator of \mathfrak{p} with respect to the *co-root* $\alpha_*: \mathbf{G}_m \to \mathbf{G}$.

It is always true that:

(11) For any
$$w \in W_0$$
, $wa_{\alpha}w^{-1} = a_{w\alpha}$

For each $\alpha \in \Sigma_{aff}$, let

(12)
$$q_{\alpha} = [\hat{N}(\alpha - 1): \hat{N}(\alpha)]$$

Because of (10), $q_{\alpha+2}$ is always the same as q_{α} , but it is not necessarily the same as $q_{\alpha+1}$. Macdonald ([10] III) defines the subset Σ_1 with $\Sigma_0 \subseteq \Sigma_1 \subseteq \Sigma_0 \cup \frac{1}{2} \Sigma_0$; $\alpha/2$ (for $\alpha \in \Sigma_0$) lies in Σ_1 if and only if $q_{\alpha+1} \neq q_{\alpha}$. He proves that Σ_1 is a root system, and for each $\alpha \in \Sigma_0$ defines $q_{\alpha/2}$ to be $q_{\alpha+1}/q_{\alpha}$. Then:

(13) For
$$\alpha \in \Sigma_0$$
, $[\tilde{N}(\alpha + 1): \tilde{N}(\alpha + m + 1)] = q_{\alpha/2}^{[m/2]} q_{\alpha}^m$;

(14) For
$$\alpha \in \Delta_0$$
, $q(w_\alpha) = q_{\alpha/2}q_\alpha$;

When \tilde{G} has rank one and $\alpha > 0$,

(15)
$$\delta(a_{\alpha}) = 1/[\tilde{N}(\alpha): a_{\alpha}\tilde{N}(\alpha)a_{\alpha}^{-1}] = q_{\alpha/2}^{-1}q_{\alpha}^{-2}.$$

It may happen that $q_{\alpha/2} < 1$. For example, if \tilde{G} has rank one then there are two possible inequivalent choices of the special point, and if q_{α} is not always equal to $q_{\alpha+1}$ then for one of these choices $q_{\alpha/2}$ will be <1,

for the other >1. The second choice is better in some sense; the corresponding maximal compact subgroup is what Tits [13] calls hyperspecial. In general, a simple argument on root hyperplanes will show that there is always some choice of x_0 which assures $q_{\alpha/2} \ge 1$ for all $\alpha > 0$.

This completes my summary of the simply connected case.

The algebraic group of automorphisms of G contains G^{adj} , and therefore there is a canonical homomorphism from G to Aut(\tilde{G}). Thus G acts on $\tilde{G}: x \mapsto {}^{g}x$. If X is a compact subset of \tilde{G} , so is ${}^{g}X$, so that this action of G preserves what [6] calls the *bornology* of G. By [6], 3.5.1. the morphism $\psi: \tilde{G} \to G$ is \tilde{B} -adapted. This means ([6] 1.2.13) that for each $g \in G$ the subgroup ${}^{g}\tilde{B}$ is conjugate in \tilde{G} to \tilde{B} , or that there exists $h \in \tilde{G}$ such that $hBh^{-1} = \psi^{-1}(g\psi(\tilde{B})g^{-1}) = {}^{g}\tilde{B}$. The action of G on \tilde{G} therefore induces one of G on \mathcal{B} .

The stabilizer of \mathscr{A} in G is $\mathscr{N} = N_G(A)$. Let here, too, ν be the canonical homomorphism: $\mathscr{N} \to \operatorname{Aut}(\mathscr{A})$. The inverse image of the translations is M.

Theorem 3.19 of [4] and its proof assert that the inclusion of M into G induces an isomorphism of $M/\psi(\tilde{M})Z_G$ with $G/\psi(\tilde{G})Z_G$, hence that every $g \in G$ may be expressed as $m\psi(\tilde{g})$ with $m \in M$, $\tilde{g} \in \tilde{G}$. Since $m\mathcal{A} = \mathcal{A}$, this implies that one may choose the h above so that simultaneously $h\tilde{B}h^{-1} = {}^{g}\tilde{B}$ and $h\tilde{N}h^{-1} = {}^{g}\tilde{N}$. Therefore ψ is $\tilde{B} - \tilde{N}$ -adapted ([6] 1.2.13).

Since $\tilde{\mathcal{N}}/\tilde{M} \cong \mathcal{N}/M \cong W$, ψ is of connected type ([6] 4.1.3). Let $G_1 = \{g \in G \mid |\chi(g)| = 1 \text{ for all rational characters } \chi : G \to G_m\}$. If G^{der} is the derived group of G, then $\psi(\tilde{G}) \subseteq G^{der} \subseteq G_1$; [4] 3.19 implies that $\psi(\tilde{G})$ is closed in G and $G^{der}/\psi(\tilde{G})$ compact, while it is clear that G_1/G^{der} is compact. Therefore $G_1/\psi(\tilde{G})$ is compact.

Let

$$B = \{g \in G_1 \mid gx = x \text{ for all } x \in C\}$$
$$K = \{g \in G_1 \mid gx_0 = x_0\}.$$

Since \tilde{B} is compact, so is $\psi(\tilde{B})$ and furthermore $B \cap \psi(\tilde{G}) = \psi(\tilde{B})$. Therefore since $G_1/\psi(\tilde{G})$ is compact, so is B. Since $B \subseteq K$ and K/B is finite, K is also compact. The subgroup K is what [6] calls a *special*, good, maximal bounded subgroup of G.

Let $\mathcal{N}_K = \mathcal{N} \cap K$ and $M_0 = M \cap K = M \rightarrow B$. The injection of \mathcal{N}_K/M_0 into W is an isomorphism ([6] 4.4.2). From now on I assume every representative of an element of W to lie in K. Such a representative is determined up to multiplication by an element of M_0 .

The triple (K, B, \mathcal{N}_K) form a Tits system with Weyl group W, and therefore

(16) K is the disjoint union of the $BwB \ (w \in W)$;

(17)
$$[K:B] = \Sigma [BwB:B] = \Sigma q(w) (w \in W).$$

The group G has the Iwasawa decomposition ([6] 4.4.3)

$$(18) G = PK$$

and a refinement:

(19) G is the disjoint union of the PwB ($w \in W$).

Let

$$M^{-} = \{ m \in M \mid m^{-1} \mathscr{C} \subseteq \mathscr{C} \};$$

$$A^{-} = A \cap M^{-}.$$

The group A^- is also $\{a \in A \mid |\alpha(a)| \le 1\}$ for $\alpha \in \Delta\}$, so that this terminology agrees with that of [7].

The group G has the Cartan decomposition ([6] 4.4.3):

$$G = KM^{-}K.$$

Let ξ be the canonical homomorphism ([6] 1.2.16) from G to the group of automorphisms of \mathscr{A} taking C to itself, and let $G_0 = G_1 \cap \ker(\xi)$. The triple $(G_0, B, \mathcal{N} \cap G_0)$ form a Tits system with affine Weyl group isomorphic to W_{aff} , and ψ induces an isomorphism between the Hecke algebras $\mathscr{H}(\tilde{G}, \tilde{B})$ and $\mathscr{H}(G_0, B)$ ([6] 1.2.17). Define Ω to be the subgroup of \mathcal{N}/M_0 of elements taking C to itself. Then elements of Ω normalize B, and hence for any $\omega \in \Omega$, $w \in W_{aff}$

(21)
$$ch(B\omega B)ch(BwB) = ch(B\omega wB)$$

in $\mathcal{H}(G, B)$. Furthermore the group \mathcal{N}/M_0 is a semi-direct product of Ω and $W_{\rm aff}$, and

(22) G is the disjoint union of the BxB ($x \in \mathcal{N}/M_0$).

(In fact, (G, B, \mathcal{N}) form a generalized Tits system – see [8].) As a corollary of (7), (8), (21), and the isomorphism between $\mathcal{H}(\tilde{G}, \tilde{B})$ and $\mathcal{H}(G_0, B)$:

392

1.2. PROPOSITION: In any finite-dimensional module over $\mathcal{H}(G, B)$ each ch(BxB) ($x \in \mathcal{N}$) is invertible.

For $\alpha \in \Sigma_{\text{aff}}$, define $N(\alpha)$ to be $\psi(\tilde{N}(\alpha))$. Since $\psi \mid \tilde{N}$ is an isomorphism with N, all the properties stated earlier for the $\tilde{N}(\alpha)$ hold also for the $N(\alpha)$. In particular, for example:

(23) B has the Iwahori factorization $B = N_1^- M_0 N_0$.

From now on let $P_0 = M_0 N_0$.

There is a nice relationship between the Bruhat decompositions of G and K:

1.3. PROPOSITION: For any $w \in W$

- (a) $BwB \subseteq \cup PxP \ (x > w);$
- (b) $BwB \cap PwP = P_0wN_0$.

PROOF: I first claim that $BwB = BwN_0$. To see this, observe that the Iwahori factorization of B gives

$$BwB = BwN_{1}^{-}M_{0}N_{0} = BwN_{1}^{-}N_{0}$$

but then $wN_1^- = wN_1^- w^{-1} \cdot w \subseteq Bw$. Next,

 $BwN_0 = P_0N_1^- wN_0$

and

$$N_1^- w = w_{\ell} N_1 w_{\ell}^{-1} \cdot w$$
$$\subseteq P w_{\ell} P \cdot P w_{\ell} w P$$
$$\subseteq \bigcup P w_{\ell} y P (y < w_{\ell} w)$$

by Lemma 1, p. 23, of [5]. But according to the Appendix, $y < w_{\ell}w$ if and only if $w_{\ell}y > w$, and this proves 1.3(a).

For (b), it suffices to show that for $n^- \in N_1^-$, if $n^- w \in PwP$ then $n^- \in wPw^{-1}$. But if $n^- w \in PwP = PwN$, one has $n^- w \in pwn$ with $p \in P$, $n \in N$ and then $n^- = p \cdot wnw^{-1}$. As is well known, elements of the group wNw^{-1} factor uniquely according to $wNw^{-1} = (wNw^{-1} \cap N)(wNw^{-1} \cap N^-)$. Hence $n^- \in wNw^{-1} \cap N^-$.

In the rest of this paper, the notation will be slightly different. The main point is that it is clumsy to have to refer to both the Bruhat-Tits system Σ_0 and the system Σ arising from the structure of G as a reductive algebraic group. Therefore I shall often confound $\alpha \in {}^{nd}\Sigma$

W. Casselman

with $\lambda(\alpha) \in \Sigma_0$ – referring for example to q_{α} instead of $q_{\lambda(\alpha)}$, etc. Also I shall write $N_{\alpha,i}$ (for $\alpha \in {}^{nd}\Sigma$) instead of $N(\alpha + i)$, and refer to a_{α} as an element of G or a coset of M_0 , when what I really mean is $\psi(a_{\alpha})$.

2. Elementary properties of the principal series

If σ is a complex character of M-i.e. any continuous homomorphism from M to \mathbb{C}^{\times} -it is said to be *unramified* if it is trivial on M_0 . Because the group M/M_0 is a free group of rank r, the group $X_{nr}(M)$ of all unramified characters of M is isomorphic to $(\mathbb{C}^{\times})^r$. This isomorphism is non-canonical, but the induced structure of a complex analytic group is canonical.

I assume all characters of M to be unramified from now on.

The character χ of M determines as well one of P, since $M \cong P/N$. The *principal series* representation of G induced by this (which is itself said to be unramified) is the right regular representation R of Gon the space $I(\chi) = \text{Ind}(\chi \mid P, G)$ of all locally constant functions $\phi: G \to C$ such that $\phi(pg) = \chi \delta^{1/2}(p)\phi(g)$ for all $p \in P$, $g \in G$. This representation is admissible ([7] §3).

Define the G-projection \mathscr{P}_{χ} from C_c^{∞} onto $I(\chi)$:

$$\mathcal{P}_{\chi}(f)(g) = \int_{P} \chi^{-1} \delta^{1/2}(p) f(pg) \, \mathrm{d}p$$

Here and elsewhere I assume P to have the left Haar measure according to which meas $P_0 = 1$.

For each $w \in W$, let $\phi_{w,\chi} = \mathscr{P}_{\chi}(ch_{BwB})$, and let $\phi_{K,\chi} = \mathscr{P}_{\chi}(ch_K)$. (I shall often omit the reference to χ). Thus ϕ_w is identically 0 off PwB and $\phi_w(pwb) = \chi \delta^{1/2}(p)$ for $p \in P$, $b \in B$.

2.1. PROPOSITION: The functions $\phi_{w,\chi}(w \in W)$ form a basis of $I(\chi)^{B}$.

This is because G is the disjoint union of the open subsets PwB (1.9)).

2.2. COROLLARY: The function $\phi_{K,\chi}$ is a basis of $I(\chi)^{K}$.

Of course this also follows directly from the Iwasawa decomposition.

Recall from [7] §3 that if (π, V) is any admissible representation of

p-adic groups I

G then V(N) is the subspace of V spanned by $\{\pi(n)v - v \mid n \in N, v \in V\}$, and that the Jacquet module V_N is the quotient V/V(N). If V is finitely generated as a G-module then V_N is finite-dimensional ([7] Theorem 3.3.1). Since V(N) is stable under M, there is a natural smooth representation π_N of M on V_N .

According to [7] Theorem 6.3.5, if $V = I(\chi)$ then V_N has dimension equal to the order of W. This suggests:

2.3. PROPOSITION: The canonical projection from $I(\chi)^B$ to $I(\chi)_N$ is a linear isomorphism.

I shall give two proofs of this. The first describes the relationship between $I(\chi)^{B}$ and $I(\chi)_{N}$ in more detail, but the second shows this proposition to be a corollary of a much more general result.

The first: it is shown in §6.3 of [7] that one has a filtration of $I(\chi)$ by *P*-stable subspaces I_w ($w \in W$), decreasing with respect to the partial order on *W* mentioned in the Appendix. The space I_w consists of the functions in $I(\chi)$ with support in $\cup PxP$, (x > w) and clearly $I_x \subseteq I_y$ when y < x. According to Proposition 1.3(a), ϕ_w lies in I_w . Each space $(I_w)_N / \Sigma$ (I_x)_N (x > w, $x \neq w$) is one-dimensional ([7] 6.3.5), and the map on I_w which takes ϕ to

$$\int_{w^{-1}Nw\cap N\searrow N}\phi(wn)\,\mathrm{d}n$$

induces a linear isomorphism of this space with C. It is easy to see, then, from Proposition 1.3(b) that the image of ϕ_w with respect to this map is non-trivial, and this proves 2.3.

For the second proof:

2.4. PROPOSITION: If (π, V) is any admissible representation of G, then the canonical projection from V^B to $V_N^{M_0}$ is a linear isomorphism.

PROOF: Because B has an Iwahori factorization with respect to P, Theorem 3.3.3 of [7] implies surjectivity.

For injectivity, suppose $v \in V^B \cap V(N)$. Then Lemma 4.1.3 of [7] implies the existence of $\epsilon > 0$ such that $\pi(ch_{BaB})v = 0$ for $a \in A^-(\epsilon)$ (where $A^-(\epsilon) = \{a \in A \mid |\alpha(a)| < \epsilon \text{ for all } \alpha \in \Delta\}$). Apply Proposition 1.2.

This proof of injectivity is Borel's (see Lemma 4.7 of [1]).

Proposition 2.4 may be strengthened to give as well a relationship

between the structure of V^B as a module over the Hecke algebra $\mathscr{H}(G, B)$ and that of V_N as a smooth representation of M:

2.5. PROPOSITION: Let (π, V) be an admissible representation of G, $v \in V$ with image $u \in V_N$. Then for any $m \in M^-$ the image of $\pi(ch_{BmB})v$ in V_N is equal to meas $(BmB)\pi_N(m)v$.

PROOF: If $v \in V^B$, then because $m^{-1}N_1 m \subseteq N_1$ (1.6), $\pi(m)v \in V^{M_0N_1}$. Jacquet's First Lemma ([7] 3.3.4) implies that $v_0 = \max(BmB)^{-1}\pi(ch_{BmB})v = \mathcal{P}_B(\pi(m)v)$ and $\pi(m)v$ have the same image in V_N .

There are two more results one can derive from Proposition 2.4.

2.6. PROPOSITION: If (π, V) is any irreducible admissible representation of G with $V^B \neq 0$, then there exists a G-embedding of V into some unramified principal series. Conversely, if V is any nontrivial G-stable subspace of an unramified principal series, then $V^B \neq 0$.

PROOF: Recall the version of Frobenius reciprocity given as 3.2.4 in [7]:

$$\operatorname{Hom}_{G}(V, \operatorname{Ind}(\chi \mid P, G)) \cong \operatorname{Hom}_{M}(V_{N}, \chi \delta^{1/2}).$$

If V is a subspace of $I(\chi)$ then the left-hand side is non-trivial, hence the right-hand side. This means that $V_{N^0}^{M_0} \neq 0$, and by 2.4 neither is V^B trivial. If $V^B \neq 0$ on the other hand, then 2.4 implies that $V_{N^0}^M \neq 0$. Since it is finite-dimensional, there exists some one-dimensional *M*quotient, hence by Frobenius reciprocity a *G*-morphism into an unramified principal series.

2.7. PROPOSITION: The G-module $I(\chi)$ is generated by $I(\chi)^{B}$.

PROOF: If U is the quotient of $I(\chi)$ by the G-space generated by $I(\chi)^B$, then $U^B = 0$. The linear dual of U^B is canonically isomorphic to \tilde{U}^B , where \tilde{U} is the space of the admissible representation contragredient to U (see §2 of [7]), and hence $\tilde{U}^B = 0$ as well. But since U is a quotient of $I(\chi)$, \tilde{U} is a subspace of $I(\chi^{-1})$, which is the contragredient of $I(\chi)$ ([7] 3.1.2). Proposition 2.6 implies that \tilde{U} is trivial and therefore also U.

3. Intertwining operators

Assume in this section that all characters χ of M are regular – i.e. that whenever $w \in W$ is such that $w\chi = \chi$ then w = 1.

With this condition satisfied, it is shown in §6.4 of [7] that for each $x \in K$ representing $w \in W$ there exists a unique *G*-morphism $T_x: I(\chi) \to I(w\chi)$ such that for all $\phi \in I(\chi)$ with support in $\cup PyP(y \neq w^{-1}) \cup Pw^{-1}P$

(1)
$$T_x\phi(1) = \int_{wNw^{-1}\cap N \setminus N} \phi(x^{-1}n) \,\mathrm{d}n.$$

Here $wNw^{-1} \cap N \setminus N$ is assumed to have the Haar measure such that the orbit of {1} under N_0 has measure 1. Since χ is unramified, one sees easily that T_x is independent of the choice of $x \in K$ representing w, and one may call it T_w . Furthermore, it is shown in §6.4 of [7] that T_w varies holomorphically with χ in the sense that for a fixed $f \in C_c^{\infty}(G)$ and $g \in G$, $T_w(\mathscr{P}_{\chi}f)(g)$ is a holomorphic function of χ . Finally, every G-morphism from $I(\chi)$ to $I(w\chi)$ is a scalar multiple of T_w .

The operator T_w is in particular a *B*-morphism and a *K*-morphism, so it takes $I(\chi)^B$ to $I(w\chi)^B$ and $I(\chi)^K$ to $I(w\chi)^K$. Therefore it takes $\phi_{K,\chi}$ to a scalar multiple of $\phi_{K,w\chi}$.

For each $\alpha \in \Sigma$, define

$$c_{\alpha}(\chi) = \frac{(1 - q_{\alpha/2}^{-1/2} q_{\alpha}^{-1} \chi(a_{\alpha}))(1 + q_{\alpha/2}^{-1/2} \chi(a_{\alpha}))}{1 - \chi(a_{\alpha})^{2}}.$$

3.1. THEOREM: One has

$$T_w(\phi_{K,\chi}) = c_w(\chi)\phi_{K,w\chi}$$

where

$$c_w(\chi) = \prod c_\alpha(\chi) \quad (\alpha > 0, w\alpha < 0).$$

PROOF: Step (1). Assume G to be of semi-simple rank one, α the single non-multipliable positive root, and $w = w_{\alpha}$ the single non-trivial element of W. Since $\phi_K(1) = 1$, and one knows $T_w(\phi_K)$ to be a multiple of ϕ_K , it suffices to calculate $T_w(\phi_K)(1)$. Since $K = B \cup BwB$, $\phi_K = \phi_1 + \phi_w$, and one only need evaluate $T_w(\phi_1)(1)$ and $T_w(\phi_w)(1)$ separately.

Evaluating the second is simple, since ϕ_w has support in *PwP*, and in fact $\phi_w(wn) = 1$ if $n \in N_0$ and 0 if $n \in N - N_0$:

W. Casselman

$$T_w(\phi_w)(1) = \int_N \phi(wn) \, \mathrm{d}n$$
$$= \int_{N_0} \mathrm{d}n = 1.$$

As for the first, since T_w varies holomorphically with χ it suffices to calculate $T_w(\phi_1)(1)$ for all χ in some open set of $X_{nr}(M)$. Define $\Phi = \Phi_{\chi}$ on PwP:

$$\Phi(n_1 m w n_2) = \chi^{-1} \delta^{1/2}(m).$$

For $f \in C_c^{\infty}(PwP) \subseteq C_c^{\infty}(G)$,

$$T_w(\mathscr{P}_{\chi}f(1) = \int_{PwP} \Phi(x)f(x) \,\mathrm{d}x.$$

Here the measure adopted on PwP is the restriction of a Haar measure on G with the normalization condition that meas $P_0wN_0 = 1$ (note that PwP is open in G). This formula actually makes sense for all $f \in C_c^{\infty}(G)$ under certain conditions on χ :

3.2. LEMMA: If $|\chi(a)| < 1$ for all regular elements of A^- , then for every $f \in C_c^{\infty}(G)$ the integral

$$\int_{PwP} \Phi_{\chi}(x) f(x) \,\mathrm{d}x$$

converges absolutely and is equal to $T_w(\mathcal{P}_{\chi}(f))(1)$. If $f = ch_B$, then it is equal to $c_\alpha(\chi) - 1$.

PROOF: It suffices to let f be the characteristic function of a set of the form $N_n^- X$, where X is an open subgroup of P_0 and $N_n^- (n \ge 1)$ is the subgroup of §1. This is because every function in $C_c^{\infty}(G)$ is a linear combination of (1) a function in $C_c^{\infty}(PwP)$ and (2) right *P*-translates of such characteristic functions. For $f = ch(N_n^- x)$, the above integral is equal to

$$\int_{N_n^- X} \Phi_{\chi}(x) \, \mathrm{d}x = [P_0: X]^{-1} \int_{N_n^-} \phi_{\chi}(x) \, \mathrm{d}x$$

where the measure on N_n^- is such that meas $N_1^- = [BwB:B]^{-1} = (q_\alpha q_{\alpha/2})^{-1}$. This may be not quite obvious – it is because the Haar

398

measure adopted on G is $(q_{\alpha}q_{\alpha/2})^{-1}$ times the one in which meas B = 1, $B = N_1^- P_0$, and $\Phi(xp) = \Phi(x)$ for $p \in P_0$.

Recall from 1.(1), 1.(3), and 1.(4) that

$$N_n^- = (N_n^- - N_{n+1}^-) \cup (N_{n+1}^- - N_{n+2}^-) \cup \cdots$$

and

$$N_m^- - N_{m+1}^- \subseteq Na_\alpha^{-m} w_\alpha N.$$

Therefore the integral above is equal to

.

$$\sum_{n}^{\infty} [\text{meas}(N_{m}^{-} - N_{m+1}^{-})] \chi(a_{\alpha})^{m} \delta^{1/2}(a_{\alpha})^{-m}.$$

From (1.(13)) one sees that

meas
$$N_m^- = q_{\alpha/2}^{-[m+1/2]} q_{\alpha}^{-m} \quad (m \ge 1)$$

and from (1.(15)) that

$$\delta(a_{\alpha}) = q_{\alpha/2}^{-1} q_{\alpha}^{-2}.$$

When $|\chi(a_{\alpha})| < 1$, therefore, it is easy to deduce that the above sum is dominated by an absolutely convergent geometric series.

When $f = ch_B$, m = 1. The sum may be calculated explicitly by breaking it up into even and odd terms, thus concluding the proof.

For χ such that $|\chi(a_{\alpha})| < 1$, the functional Λ induces a functional λ on $I(\chi)$ such that

$$\lambda(R(p)f) = \chi^{-1}\delta^{1/2}(p)\lambda(f).$$

By Frobenius reciprocity, it corresponds to a G-morphism from $I(\chi)$ to $I(w\chi)$. This must be a scalar multiple of T_w , and since for $f \in C_c^{\infty}(PwP)$

$$\Lambda(f)=T_w(f)(1)$$

it corresponds exactly to T_{w} . Therefore when $|\chi(a_{\alpha})| < 1$, and by analytic continuation for all regular χ ,

$$T_w(\phi_1)(1) = c_\alpha(\chi) - 1$$
 and $T_w(\phi_K)(1) = c_\alpha(\chi)$.

W. Casselman

Step (2). Let G be arbitrary, but $w = w_{\alpha}$, $\alpha \in \Delta$, again. In this case, each ϕ_w with $w \neq 1$, w_{α} lies in the complement of $P \cup Pw_{\alpha}P$

$$T_{w_{\alpha}}(\phi_{w})(1) = \int_{w_{\alpha}Nw_{\alpha}^{-1}\cap N=N} \phi_{w}(w_{\alpha}n) \,\mathrm{d}n = 0$$

and $T_{w_{\alpha}}(\phi_1)(1)$ and $T_{w_{\alpha}}(\phi_{w_{\alpha}})(1)$ may be calculated exactly as in Step (1). Since $\phi_K = \Sigma \phi_w$, the theorem is proven in this case.

Step (3). Proceed by induction on the length of w. Let $\Psi_w = \{\alpha > 0 \mid w\alpha < 0\}$. Then if $\ell(w_1w_2) = \ell(w_1) + \ell(w_2)$ (a) $\Psi_{w_1w_2} = w_2^{-1}\Psi_{w_1} \cup \Psi_{w_2}$ and (b) $T_{w_1w_2} = T_{w_1}T_{w_2}$, and applying these will conclude the proof.

3.3. REMARK: When G is split, each $q_{\alpha} = q$ and each $q_{\alpha/2} = 1$. In this case,

$$c_{\alpha}(\chi) = \frac{1-q^{-1}\chi(a_{\alpha})}{1-\chi(a_{\alpha})}.$$

I won't use it in this paper, but it will be useful elsewhere to have this partial generalization:

3.4. THEOREM: If $\alpha \in \Delta$ and $\ell(w_{\alpha}w) > \ell(w)$, then

$$T_{w_{\alpha}}(\phi_{w}) = (c_{\alpha}(\chi) - 1)\phi_{w} + q_{\alpha}^{-1}q_{\alpha/2}^{-1}\phi_{w_{\alpha}w}$$
$$T_{w_{\alpha}}(\phi_{w_{\alpha}w}) = \phi_{w} + (c_{\alpha}(\chi) - q_{\alpha}^{-1}q_{\alpha/2}^{-1})\phi_{w_{\alpha}w}.$$

PROOF: One has

$$T_{w_{\alpha}}(\phi_{1})(w_{\alpha}) = [Bw_{\alpha}B:B]^{-1}R(ch(Bw_{\alpha}B))T_{w_{\alpha}}(\phi_{1}))(1)$$

= $q_{\alpha}^{-1}q_{\alpha/2}^{-1}T_{w_{\alpha}}(\phi_{w_{\alpha}})(1)$
= $q_{\alpha}^{-1}q_{\alpha/2}^{-1}$.

Since in the rank one case $T_{w_{\alpha}}(\phi_{K}) = c_{\alpha}(\chi)\phi_{K}$, one also has

$$T_{w_{\alpha}}(\phi_{w_{\alpha}})(w_{\alpha}) = c_{\alpha}(\chi) - q_{\alpha}^{-1}q_{\alpha/2}^{-1}$$
$$T_{w_{\alpha}}(\phi_{w_{\alpha}})(1) = 0 \quad \text{for } w \neq 1, w_{\alpha}.$$

Therefore, since $T_{w_{\alpha}}$ takes any ϕ_{w} into a linear combination of ϕ_{w} 's:

$$T_{w_{\alpha}}(\phi_{1}) = (c_{\alpha}(\chi) - 1)\phi_{1} + q_{\alpha}^{-1}q_{\alpha/2}^{-1}\phi_{w_{\alpha}}$$

$$T_{w_{\alpha}}(\phi_{w_{\alpha}}) = \phi_{1} + (c_{\alpha}(\chi) - q_{\alpha}^{-1}q_{\alpha/2}^{-1})\phi_{w_{\alpha}}.$$

400

The theorem follows from this because $R(ch(BwB))\phi_1 = \phi_w$ and $R(ch(BwB))\phi_{w_a} = \phi_{w_aw}$.

This result tells the effect of T_{w_a} on $I(\chi)^B$, but to find a reasonable way to describe the effect of every T_w on $I(\chi)^B$ seems rather difficult. As a consequence of Theorem 3.1 one has:

3.5. PROPOSITION: (a) The operator T_w is an isomorphism if and only if $c_{w^{-1}}(w\chi)c_w(\chi) \neq 0$.

(b) Ind(χ) is irreducible if and only if $c_{w_{\ell}}(w_{\ell}\chi)c_{w_{\ell}}(\chi) \neq 0$.

PROOF: The operator $T_{w^{-1}} \circ T_w$ is a scalar multiple of the identity on $I(\chi)$. This scalar must be $c_{w^{-1}}(w\chi)c_w(\chi)$ by Theorem 3.1. If it is not 0, then T_w has an inverse. If it is 0, then either $T_w(\phi_K)$ or $T_{w^{-1}}(\phi_K) = 0$. If the first, T_w clearly has no inverse. If the second, then the image of T_w cannot be all of $Ind(w\chi)$, and again has no inverse.

For (b), apply (a) and [7] 6.4.2.

3.6. PROPOSITION: Assume that $q_{\alpha/2} \ge 1$ for all $\alpha > 0$. If $|\chi(a_{\alpha})| < 1$ for all $\alpha > 0$, then ϕ_K generates $I(\chi)$.

As I have mentioned earlier, the assumption $q_{\alpha/2} \ge 1$ amounts to restricting the initial choice of the special point x_0 - or, in other words, the subgroup K. When G is simply connected and of rank one, for example, and $q_{\alpha/2} \ne 1$ then the Proposition is true for one choice of K but not the other.

PROOF: Let U be the quotient of $I(\chi)$ by the G-space generated by ϕ_K . If $U \neq 0$, it will have an irreducible G-quotient (since it is finitely generated by Proposition 2.7). According to [7] 6.3.9 there will exist a G-embedding of this irreducible quotient into some $I(w\chi)$, and the composite map from $I(\chi)$ to $I(w\chi)$ must be a non-zero multiple of T_w . Since $U^K = 0$, $T_w(\phi_K) = 0$. Therefore $c_w(\chi) = 0$, and for some $\alpha > 0$ either $\chi(a_\alpha) = q_\alpha q_{1/2}$ or $\chi(a_\alpha) = -q_{1/2}$, contradicting the assumption.

This is the p-adic analogue of a well known result of Helgason on real groups.

I want now to introduce a new basis of $I(\chi)^B$ (still under the assumption that χ is regular). Recall from Proposition 2.3 that $I(\chi)^B \cong I(\chi)_N$, and again from §6.4 of [7] that $I(\chi)$ is isomorphic to the direct sum $\bigoplus (w\chi) \delta^{1/2}$. Explicitly, the maps

$$\Lambda_w: \phi \to T_w(\phi)(1)$$

W. Casselman

form a basis of eigenfunctions of the dual of $I(\chi)_N$ with respect to the action of U. Let $\{f_w\} = \{f_{w,\chi}\}$ be the basis of $I(\chi)^B$ dual to this – thus

$$\Lambda_w(f_x) = \begin{cases} 0 & (x \neq w) \\ 1 & (x = w) \end{cases}$$

It is an unsolved problem and, as far as I can see, a difficult one to express the bases $\{\phi_w\}$ and $\{f_w\}$ in terms of one another. This is directly related to the problem I mentioned at the end of the proof of Theorem 3.4. The only fact which is simple is:

3.7. PROPOSITION: One has $f_{w_{\ell}} = \phi_{w_{\ell}}$.

PROOF: For $w \neq w_{\ell}$,

$$T_{w}(\phi_{w_{\ell}})(1) = \int_{wNw^{-1} \cap N \setminus N} \phi_{w_{\ell}}(w^{-1}n) \, \mathrm{d}n = 0$$

because supp $(\phi_{w_{\ell}}) \subseteq Pw_{\ell}P$, while

$$T_{w_{\ell}}(\phi_{w_{\ell}})(1) = \int_{N} \phi_{w_{\ell}}(w_{\ell}n) \, \mathrm{d}n$$
$$= \int_{N_{0}} \mathrm{d}n = 1.$$

Also, by the definition of the $\{f_w\}$ and Theorem 3.1:

3.8. LEMMA: One has

$$\phi_K = \sum c_w(\chi) f_w$$

It follows immediately from the definition of the $\{f_w\}$ and Proposition 2.5 that:

3.9. LEMMA: One has $\pi(ch_{BmB})f_w = meas(BmB)(w\chi)\delta^{1/2}(m)f_w$ for all $m \in M^-$.

4. The spherical function

As I have mentioned earlier, the contragredient of $I(\chi)$ is $I(\chi^{-1})$. Consider the matrix coefficient

$$\Gamma_{\chi}(g) = \langle R(g)\phi_{K,\chi}, \phi_{K,\chi^{-1}} \rangle.$$

According to [7] 3.1.3 this is also equal to

$$\int_{K} \phi_{K,\chi}(gk) \phi_{K,\chi^{-1}}(k) \, \mathrm{d}k = \int_{K} \phi_{K,\chi}(gk) \, \mathrm{d}k$$

where meas K = 1. The function Γ_{χ} is called the zonal spherical function corresponding to χ . It satisfies

(1)
$$\Gamma_{\chi}(1) = 1;$$

(2)
$$\Gamma_{\chi}(k_1gk_2) = \Gamma_{\chi}(g)$$
 for all $k_1, k_2 \in K$ and $g \in G$.

4.1. PROPOSITION: For any $w \in W$, $\Gamma_{w\chi} = \Gamma_{\chi}$.

PROOF: The matrix coefficient Γ_{χ} is the only matrix coefficient of $I(\chi)$ satisfying (1) and (2). As such, it is determined by the isomorphism class of $I(\chi)$. But since by Proposition 3.5 the representations $I(\chi)$ and $I(w\chi)$ are generically isomorphic, $\Gamma_{\chi} = \Gamma_{w\chi}$ generically as well; since Γ_{χ} clearly depends holomorphically on χ , $\Gamma_{\chi} = \Gamma_{w\chi}$ for all χ .

Define

$$y(\chi) = c_{w_{\ell}}(w_{\ell}\chi)$$

= $\prod_{\alpha>0} \frac{(1 - q_{\alpha/2}^{-1/2} q_{\alpha}^{-1} \chi(a_{\alpha})^{-1})(1 + q_{\alpha/2}^{-1/2} \chi(a_{\alpha})^{-1})}{1 - \chi(a_{\alpha})^{-2}}$

Note that because of the Cartan decomposition, Γ_{χ} is determined by its restriction to M^{-} .

4.2. THEOREM (Macdonald): If χ is regular then for all $m \in M^-$

$$\Gamma_{\chi}(m) = Q^{-1} \Sigma \gamma(w\chi)((w\chi)\delta^{1/2})(m) \quad (w \in W)$$

where

$$Q = \Sigma q(w)^{-1} \quad (w \in W).$$

PROOF: One has

$$\phi_K = \Sigma c_w(\chi) f_w,$$

[17]

therefore

$$\Gamma_{\chi}(m) = \mathcal{P}_{K}(R(m)\phi_{K})(1)$$

= $\Sigma c_{w}(\chi)\mathcal{P}_{K}(R(m)f_{w})(1)$
= $\Sigma c_{w}(\chi)\mathcal{P}_{K}(\mathcal{P}_{B}R(m)f_{w})(1)$

(since $B \subseteq K$)

$$= \Sigma c_w(\chi)(w\chi)\delta^{1/2}(m)\mathcal{P}_K f_w(1)$$

(by Proposition 3.9).

By Proposition 3.7,

$$\mathcal{P}_{K}f_{w_{\ell}} = \mathcal{P}_{K}\phi_{w_{\ell}} = \mathrm{meas}(Bw_{\ell}B)\phi_{K}$$
$$= Q^{-1}\phi_{K}$$

(by (1.9) and the remarks preceding it). Therefore the term in the sum above corresponding to w_{ℓ} is $Q^{-1}c_{w_{\ell}}(w_{\ell}\chi)$. By the W-invariance of Γ_{χ} (Proposition 4.1) and the linear independence of the χ 's ([10] 4.5.7) this implies the theorem.

4.3. REMARK: The general theory of the asymptotic behavior of matrix coefficients (§4 in [7]) asserts the existence of $\epsilon > 0$ such that ϕ_K is a linear combination of the characters $(w\chi)\delta^{1/2}$ on $A^-(\epsilon)$. Macdonald's formula makes this explicit.

Appendix

Let Σ be a root system, Σ^+ a choice of positive roots, and (W, S) the corresponding Coxeter group. For $x, y \in W$, define x < y to mean that y has a reduced decomposition $y = s_1 \cdots s_n$, where s_i is the elementary reflection associated to the simple root α_i , and $x = s_{i_1} \cdots s_{i_m}$ with $1 \le i_1 < \cdots < i_m \le n$. According to Lemma 3.7 of [3] (an easy application of the exchange condition of [5] Chapter IV, §1.5) one may take m to be the length of x in W. If x < y, then $\ell(x) \le \ell(y)$, and $\ell(x) = \ell(y)$ if and only if x = y.

Let w_{ℓ} be the longest element in W. The following is, I believe, essentially due to Steinberg ([11] Exercise (a) on p. 128).

A.1. PROPOSITION: Let $x, y \in W$ be given. The following are equivalent:

404

(a) x < y;

(b) $x^{-1} < y^{-1};$

(c) One has $y = xw_1 \cdots w_r$, where w_i is the reflection associated to the root $\theta_i > 0$, and $xw_1 \cdots w_{i-1}(\theta_i) > 0$;

(d) $w_\ell x > w_\ell y$.

PROOF: (a) \Leftrightarrow (b) is immediate.

For (c) \Rightarrow (a): Suppose that y has the reduced decomposition $y = s_1 \cdots s_n$, and assume at first that y = xw, where w is the reflection corresponding to the root $\theta > 0$, and $x(\theta) > 0$. Then $y(\theta) = x(-\theta) < 0$, so that according to [5] Cor. 2, p. 158, there exists i such that $\theta = s_n \cdots s_{i+1}(\alpha_i)$. Then $w = (s_n \cdots s_{i+1})s_i(s_n \cdots s_{i+1})^{-1}$ and $x = s_1 \cdots s_{i-1}s_{i+1} \cdots s_n$, so that indeed x < y.

In the general case, let $y = xw_1 \cdots w_v$ as in (c), and let $y_i = xw_1 \cdots w_{i-1}$ for each *i*. By what I have just shown, $y = y_r > y_{r-1} > \cdots > x$, and since < is clearly transitive, x < y.

(a) \Rightarrow (c): Proceed by induction on the length of x. If $\ell(x) = 0$, then x = 1 and $y = s_1 \cdots s_n$, where by [5] Cor. 2, p. 158, one has $s_1 \cdots s_{i-1}(\alpha_i) > 0$.

In general, say $x = s_{i_1} \cdots s_{i_m}$ is a reduced decomposition of x. Let $x' = s_{i_2} \cdots s_{i_m}$, $y' = s_{i_1+1} \cdots s_n$. Then $\ell(x') < \ell(x)$ and x' < y', so that by the induction hypothesis $y' = x'w'_1 \cdots w'_r$ as in (c), say w'_i corresponding to θ'_i . One now has

$$y = s_1 \cdots s_{i_1} y'$$

= $s_1 \cdots s_{i_1} x' w'_1 \cdots w'_r$
= $s_1 \cdots s_{i_1-1} x w'_1 \cdots w'_r$

Let $k = i_1 - 1$ for convenience. Then

$$y = s_1 \cdots s_k x$$

= $x \cdot (x^{-1} s_k x)((s_k x)^{-1} s_{k-1}(s_k x)) \cdots ((s_2 \cdots s_k x)^{-1} s_1(s_2 \cdots s_k x)).$

Let θ_i be the root $(s_{i+1} \cdots s_k x)^{-1}(\alpha_i)$, w_i correspond to θ_i . One has

$$y = x w_k w_{k-1} \cdots w_1$$

and further (1) $\theta_j = (x^{-1}s_k \cdots s_{j+1})(\alpha_j) > 0$ according to [5] Cor. 2, p. 158, since by assumption on the original y one has $\ell(s_j \cdots s_k x) > \ell(s_{j+1} \cdots s_k x)$; (2) $xw_k \cdots w_{j+1}(\theta_j) = s_{j+1} \cdots s_k x(\theta_j) = \alpha_j > 0$. (c) \Leftrightarrow (d): One has $y = xw_1 \cdots w_r$ as in (c) $\Leftrightarrow x < y \Leftrightarrow x^{-1} < y^{-1} \Leftrightarrow y^{-1} = x^{-1}w'_1 \cdots w'_s$ as in (c) $\Leftrightarrow y = w'_s \cdots w'_1 x \Leftrightarrow w_\ell y = w_\ell w'_s w_\ell^{-1} \cdots w_\ell x \Leftrightarrow (w_\ell y)^{-1} = (w_\ell x)^{-1} (w_\ell w'_1 w_\ell^{-1}) \cdots (w_\ell w'_s w_\ell^{-1})$. Note that $w_\ell w'_i w_\ell^{-1}$ is the reflection associated to $\overline{\theta}'_i = w_\ell (-\theta'_i)$.

REFERENCES

- A. BOREL: Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup. *Inventiones Math.* 35 (1976) 233-259.
- [2] A. BOREL and J. TITS: Groupes réductifs, Publ. Math. I.H.E.S. 27 (1965) 55-151.
- [3] A. BOREL and J. TITS: Compléments à l'article "Groupes, réductifs", Publ. Math. I.H.E.S. 41 (1972) 253–276.
- [4] A. BOREL and J. TITS: Homomorphismes "abstraits" de groupes algebriques simples. Annals of Math. 97 (1973) 499-571.
- [5] N. BOURBAKI: Groupes et algèbres de Lie. Chapitres IV, V, et VI. Hermann, Paris, 1968.
- [6] F. BRUHAT and J. TITS: Groupes réductifs sur un corps local, Publ. Math. I.H.E.S. 41 (1972) 1-251.
- [7] W. CASSELMAN: Introduction to the theory of admissible representations of p-adic reductive groups (to appear).
- [8] N. IWAHORI: Generalized Tits systems on p-adic semi-simple groups, in Algebraic Groups and Discontinuous Subgroups. Proc. Symp. Pure Math. IX. A.M.S., Providence, 1966.
- [9] I.G. MACDONALD: Spherical functions on a p-adic Chevalley group. Bull. Amer. Math. Soc. 74 (1968) 520-525.
- [10] I.G. MACDONALD: Spherical functions on a group of p-adic type. University of Madras, 1971.
- [11] R. STEINBERG: Lectures on Chevalley groups. Yale University Lecture Notes, 1967.
- [12] H. MATSUMOTO: Analyse Harmonique dans les Système de Tits Bornologiques de Type Affine. Springer Lecture Notes #590, Berlin, 1977.
- [13] J. TITS: Reductive groups over local fields. Proc. Symp. Pure Math. XXXIII, Amer. Math. Soc., Providence, 1978.

(Oblatum 13-XI-1978)

Department of Mathematics The University of British Columbia 2075 Westbrook Place Vancouver, B.C. V6T 1W5 Canada

[20]