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THE UNRAMIFIED PRINCIPAL SERIES OF

p-ADIC GROUPS I.
THE SPHERICAL FUNCTION
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@ 1980 Sijthoff &#x26; Noordhoff International Publishers - Alphen aan den Rijn
Printed in the Netherlands

It will be shown in this paper how results from the general theory
of admissible representations of p-adic reductive groups (see mainly
[7]) may be applied to give a new proof of Macdonald’s explicit
formula for zonal spherical functions ([9] and [10]). Along the way I
include many results which will be useful in subsequent work.

Throughout, let k be a non-archimedean locally compact field, c its
ring of integers, p its prime ideal, and q the order of the residue field.

If H is any algebraic group defined over k, H will be the group of
its k-rational points.
For any k-analytic group H, let Cc(H) be the space of locally

constant functions of compact support: H--*C. For any subset X of

H, let chx or ch(X) be its characteristic function (which lies in Cc~(H)
if X is compact and open).

Fix a connected reductive group G defined over k. Let G be the
simply connected covering of its derived group Gder, Gad; the quotient
of G by its centre, and fjJ: G -+ G the canonical homomorphism. If H is
any subgroup of G, let H be its inverse image in G.

Fix also a minimal parabolic subgroup P of G. Let A be a maximal
split torus contained in P, M the centralizer of A, N the unipotent
radical of P, and N- the unipotent radical of the parabolic opposite to
P. Let ~ be the roots of G with respect to A, , nd! the subset of
nondivisible roots, 1+ the positive roots determined by P, L1 the

simple roots in 1+, W the Weyl group. For any a E X, let Na be the
subgroup of G constructed in §3 of [2] (its Lie algebra is G03B1 + G203B1).
Let 03B4 be the modulus character of P : mn ~ Idet Adn(m )|. Let w~, be

the longest element of W.
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If H is a compact group, eH is the projection operator onto
H-invariants.

In § 1 1 shall give an outline of the results from Bruhat-Tits that 1
shall need. Complete proofs have not yet appeared, but the necessary
facts are not difficult to prove when G is split (see [8]) or even
unramified - i.e. split over an unramified extension of k. There is no
serious loss if one restricts oneself to unramified G, since any
reductive group over a global field is unramified at almost all primes,
and important applications will be global. As far as understanding the
main ideas is concerned, one may assume G split. This will

simplify both arguments and formulae considerably.
Since the first version of this paper was written, Matsumoto’s book

[12] has appeared with another proof of Macdonald’s formula, in a more
general form valid not just for the spherical functions on p-adic groups
but for those related to more general Hecke algebras.

1. The structure of G

Let éR be the Bruhat-Tits building of G. (Refer to [6], Chapter II of
[10], and [13].)
There exists in ô,4 a unique apartment d stabilized by A. The

stabilizer N of d in à is equal to the normalizer NG(A); let v : N~ 
Aut(A) be the corresponding homomorphism. The dimension of A
over R is equal to that of A over k, say r, and the image of Ã with
respect to v is a free group of rank r. Therefore the translations are

precisely those elements of Aut(A) commuting with v(A), so that the
inverse image of the translations is M. The kernel of v is the maximal

,r nr wm.. r

compact open subgroup Mo of M. Let Ao be A f1 Mo, which is

maximal compact and open in A.
There exists on A a canonical affine root system iaff. Let Waff be

the associated affine Weyl group. Choose once and for all in this

paper a special point xo E d, let io be the roots of iaff vanishing at xo,
and let Wo be the isotropy subgroup of Waff at xo. Then Io is a finite
reduced root system and Wo its Weyl group. The homomorphism v is
a surjection from À to Waff, and therefore induces isomorphisms of
KI Mo with Waff and of with Wo. It also induces an injection of
A/Ao into d : a ~ v(a)xo, and one may therefore identify ~0 with a
root system in the vector space Hom(Â/Âo, R). The map taking the
rational character a to the function a~-ordp(03B1(a)) allows one also
to identify ~ with a root system in Hom(Â/Âo, R). The two root
systems one thus obtains are not necessarily the same or even
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homothetic, but what is true is that each a ~~ is a positive multiple
of a unique root À (a) in 10. The map À is a bijection between nd 1 and
10. Let l’, ào correspond to ~+, à. Let 16 be the vectorial chamber
{03B1(x) &#x3E; 0 for all 03B1~~0+, and let C be the affine chamber ouf d

contained in W which has xo as vertex.

Let B be the Iwahori subgroup fixing the chamber C. It also fixes
every element of C.

For each a ~~aff, let N(a) be the group {n E N nx = x for all

x E d with 03B1 (x) ~ 01. Then:

For any a E nd~, the group Na is the union of the

then one has the Iwahori factorization

As a consequence of (2):

is an affine Tits system.
Recall that the Hecke algebra H(G, B) is the space of all compactly

supported functions f : Ù - C which are right- and lef t-B-invariant,
endowed with the product given by convolution. (Here B is assumed
to have measure 1, so that ch(Ê) is the identity of this algebra.) As a
linear space it has the basis {ch (BwB) (w E Waff)}.

If w E Waff has the reduced expression 1

For any define
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It is a translation of d whose inverse image in M is a coset of Mo,
and 1 shall often treat it as if it were an element of this coset. Because

of (6),

or, in other words,

1.1. REMARK: There is another way to consider aa which may be
more enlightening. If G is of rank one, then M/Mo is a free group of
rank one over Z, and aa is the coset of Mo which generates this group
and takes into itself. If G is not necessarily of rank one and
a E do, then the standard parabolic subgroup associated to à -

{03BB-1(03B1)} has the property that its derived group is of rank one and
again simply connected ([3] 4.3) and aa for G is the coset of Mo
containing the aa for this group. If a is not necessarily in do, there
will exist w E Wo such that 13 = w-’« ~~0; let aa = wagw-’. If G is
split, the construction is even simpler; let aa be the image of a
generator of p with respect to the co-root 03B1 * : Gm ~ G.

It is always true that:

For each

Because of (10), qa+2 is always the same as qa, but it is not necessarily
the same as q03B1+1. Macdonald ([10] III) defines the subset XI with

He proves that Il is a root system, and for each a E ~0 defines q03B1/2 to

be q,,,Ilq,,. Then:

It may happen that qa/2  1. For example, if Ô has rank one then there
are two possible inequivalent choices of the special point, and if qa is
not always equal to qa+l then for one of these choices qa/2 will be 1,
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for the other &#x3E; 1. The second choice is better in some sense; the

corresponding maximal compact subgroup is what Tits [13] calls

hyperspecial. In general, a simple argument on root hyperplanes will
show that there is always some choice of xo which assures qa/2~ 1 for
all a &#x3E; 0.

This completes my summary of the simply connected case.
The algebraic group of automorphisms of G contains Gadj, and

therefore there is a canonical homomorphism from G to Aut(G). Thus
G acts on G : x ~ gx. If X is a compact subset of G, so is 9X, so that
this action of G preserves what [6] calls the bomology of G. By [6],
3.5.1. the morphism 03C8 : G ~ G is B-adapted. This means ([6] 1.2.13)
that for each g E G the subgroup gB is conjugate in G to B, or that
there exists h E G such that hBh-1= li- 1(gîp(É)g = gR. The action
of G on G therefore induces one of G ’on 3S.
The stabilizer of A in G is N = NG(A). Let here, too, v be the

canonical homomorphism: .N ~ Aut(A). The inverse image of the
translations is M

Theorem 3.19 of [4] and its proof assert that the inclusion of M into
G induces an isomorphism of M/03C8(M)ZG with GI.p(G)Za, hence that
every g E G may be expressed as m03C8(G) with m E M, g E G. Since
mA =A, this implies that one may choose the h above so that

simultaneously hRh-1 = gÉ and hNh-1= gN. Therefore ip is É - N-
adapted ([6] 1.2.13).

Since N/M ~ N/M ~ W, 03C8 is of connected type ([6] 4.1.3). Let
G1= f g E G ) ’x(g)1 = 1 for all rational characters x: G ~ Gm}. If Gder
is the derived group of G, then fjJ( G) C Gder C Gl; [4] 3.19 implies that
ay(à) is closed in G and Gder 1 fjJ( G) compact, while it is clear that

G1/Gder is compact. Therefore Gdt/1(G) is compact.
Let

Since B is compact, so is 03C8(B) and furthermore B rl fjJ( G) = 03C8(B).
Therefore since G1/03C8(G) is compact, so is B. Since B C K and KI B is
finite, K is also compact. The subgroup K is what [6] calls a special,
good, maximal bounded subgroup of G.

Let NK= N ~ K and Mo = M f1 K = M-B. The injection of

.NK/Mo into W is an isomorphism ([6] 4.4.2). From now on I assume
every representative of an element of W to lie in K. Such a represen-
tative is determined up to multiplication by an element of Mo.
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The triple (K, B, NK) form a Tits system with Weyl group W, and
therefore

K is the disjoint union of the BwB (w E W);

The group G has the Iwasawa decomposition ([6] 4.4.3)

and a refinement:

G is the disjoint union of the PwB (

The group . so that this

terminology agrees with that of [7].
The group G has the Cartan decomposition ([6] 4.4.3):

Let e be the canonical homomorphism ([6] 1.2.16) from G to the

group of automorphisms of d taking C to itself, and let Go =

Gl fl ker(e). The triple (Go, B, N f1 Go) form a Tits system with affine
Weyl group isomorphic to Waff, and ay induces an isomorphism
between the Hecke algebras H(G, B) and H(Go, B) ([6] 1.2.17). Define
f2 to be the subgroup of XIMO of elements taking C to itself. Then
elements of f2 normalize B, and hence for any w E 03A9, w E Waff

in H( G, B). Furthermore the group N/Mo is a semi-direct product of
il and Waff, and

(22) G is the disjoint union of the BxB (x E N/Mo).

(In fact, (G, B, K) form a generalized Tits system - see [8].) As a
corollary of (7), (8), (21), and the isomorphism between H(G, B) and
H(Go, B):
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1.2. PROPOSITION: In any finite-dimensional module over 7le(G, B)
each ch(BxB) (x e M) is invertible.
For a E ~aff, define N(03B1) to be 03C8 (N(03B1 )). Since 41 1 Ñ is an isomor-

phism with N, all the properties stated earlier for the N(a) hold also
for the N(03B1). In particular, for example:

(23) B has the Iwahori f actorization B = Ni MoNo.

From now on let Po = MoNo.
There is a nice relationship between the Bruhat decompositions of

G and K:

PROOF: 1 first claim that BwB = BwNo. To see this, observe that
the Iwahori factorization of B gives

but then

Next,

and

by Lemma 1, p. 23, of [5]. But according to the Appendix, y  WfW if
and only if way &#x3E; w, and this proves 1.3(a).

For (b), it suffices to show that for n - ~ N 1 , if n - w E PwP then

n - E wPw-1. But if n - w E PwP = PwN, one has n - w = p wn with

p E P, n EN and then n- = p. wnw-’. As is well known, elements of
the group wNw-1 factor uniquely according to wNw-’=

In the rest of this paper, the notation will be slightly different. The
main point is that it is clumsy to have to refer to both the Bruhat-Tits
system ~0 and the system ~ arising from the structure of G as a
reductive algebraic group. Therefore 1 shall often confound « E nd~
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with 03BB(03B1) E Io - referring for example to q,,, instead of q03BB(03B1). etc. Also 1

shall write Na,; (for a E nd I) instead of N(a + i ), and refer to aa as an
element of G or a coset of Mo, when what 1 really mean is 11(a,,,).

2. Elementary properties of the principal series

If a is a complex character of M - i.e. any continuous homomor-
phism from M to C" - it is said to be unramified if it is trivial on Mo.
Because the group M/Mo is a free group of rank r, the group Xnr(M)
of all unramified characters of M is isomorphic to (Cx)r. This

isomorphism is non-canonical, but the induced structure of a complex
analytic group is canonical.

I assume all characters of M to be unramified from now on.
The character X of M determines as well one of P, since M ~ P/N.

The principal series representation of G induced by this (which is

itself said to be unramified) is the right regular representation R of G
on the space I(X) = Ind(x , P, G) of all locally constant functions
~ : G ~ C such that 0(pg) = X03B41/2(p)~(g) for all p E P, g E G. This

representation is admissible ([7] §3).
Define the G-projection Px, from Cc~ onto I(X):

Here and elsewhere I assume P to have the left Haar measure

according to which meas Po = 1.
For each w E W, let cPw,x = Px,(chBwB), and let ~K,x = Px,(chK). (1

shall often omit the reference to X). Thus ow is identically 0 off PwB
and cPw(pwb) = X03B41/2(p) for p E P, b E B.

2.1. PROPOSITION: The functions cPw,x(w E W) form a basis of
l(x)B.

This is because G is the disjoint union of the open subsets PwB
(1.9)).

2.2. COROLLARY: The function ~K,X is a basis of I (X)k.

Of course this also follows directly from the Iwasawa decom-
position.

Recall from [7] §3 that if (ir, V) is any admissible representation of
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G then V(N) is the subspace of V spanned by {03C0(n)03C5 - v ) n E N, v E
V}, and that the Jacquet module VN is the quotient V/ V(N). If V is
finitely generated as a G-module then VN is finite-dimensional ([7]
Theorem 3.3.1). Since V(N) is stable under M, there is a natural

smooth representation 1TN of M on VN.
According to [7] Theorem 6.3.5, if V = I (X) then VN has dimension

equal to the order of W. This suggests:

2.3. PROPOSITION: The canonical projection from I (X)B to I (X)N is
a linear isomorphism.

1 shall give two proofs of this. The first describes the relationship
between I (X)B and I (X)N in more detail, but the second shows this

proposition to be a corollary of a much more general result.
The first: it is shown in §6.3 of [7] that one has a filtration of I (X)

by P-stable subspaces Iw (w E W), decreasing with respect to the
partial order on W mentioned in the Appendix. The space Iw consists
of the functions in I(X) with support in U PxP, (x &#x3E; w) and clearly
Ix C Iy when y  x. According to Proposition 1.3(a), Ow lies in Iw. Each
space (Iw)Nl~ (Ix)N (x &#x3E; w, x ~ w) is one-dimensional ([7] 6.3.5), and
the map on Iw which takes 0 to

induces a linear isomorphism of this space with C. It is easy to see,
then, from Proposition 1.3(b) that the image of cPw with respect to this
map is non-trivial, and this proves 2.3.

For the second proof:

2.4. PROPOSITION: If (7r, V) is any admissible representation of G,
then the canonical projection from VB to VMN0 is a linear isomorphism.

PROOF: Because B has an Iwahori factorization with respect to P,
Theorem 3.3.3 of [7] implies surjectivity.

For injectivity, suppose v E VB f1 V(N). Then Lemma 4.1.3 of [7]
implies the existence of E &#x3E; 0 such that 7T(chBaB)v = 0 for a E A-(E)
(where A-(~) = fa E A 1 la(a)’  E for all a E ~}). Apply Proposition
1.2.

This proof of injectivity is Borel’s (see Lemma 4.7 of [1]).
Proposition 2.4 may be strengthened to give as well a relationship
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between the structure of VB as a module over the Hecke algebra
H(G, B) and that of VN as a smooth representation of M:

2.5. PROPOSITION: Let (ir, V) be an admissible representation of G,
v E V with image u E VN. Then for any m E M- the image of
ir(chbmjg)v in VN is equal to meas(BmB)03C0N(m)03C5.

PROOF: If v E VB, then because m -1 N 1 m C N 1 (1.6), 03C0 (m ) 03C5 E
VM0N1. Jacquet’s First Lemma ([7] 3.3.4) implies that vo =

meas(BmB)-l’TT’(chBmB)V = PB(03C0(m)03BD) and 03C0(m)03C5 have the same im-

age in VN.

There are two more results one can derive from Proposition 2.4.

2.6. PROPOSITION: If (03C0, V) is any irreducible admissible

representation of G with VB 0 0, then there exists a G-embedding of V
into some unramified principal series. Conversely, if V is any non-
trivial G-stable subspace of an unramified principal series, then

VB~ 0.

PROOF: Recall the version of Frobenius reciprocity given as 3.2.4
in [7]:

If V is a subspace of I(X) then the left-hand side is non-trivial, hence
the right-hand side. This means that VMN0~ 0, and by 2.4 neither is VB
trivial. If VB~ 0 on the other hand, then 2.4 implies that VNo 0 0.
Since it is finite-dimensional, there exists some one-dimensional M-

quotient, hence by Frobenius reciprocity a G-morphism into an

unramified principal series.

PROOF: If U is the quotient of I(X) by the G-space generated by
I (X)B, then UB = 0. The linear dual of UB is canonically isomorphic
to Ù’, where Û is the space of the admissible representation con-
tragredient to U (see §2 of [7]), and hence ÛB = 0 as well. But since
U is a quotient of I (X), U is a subspace of I (X-1), which is the

contragredient of I(X) ([7] 3.1.2). Proposition 2.6 implies that Û is
trivial and therefore also U.
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3. Intertwining operators

Assume in this section that all characters X of M are regular - i.e.
that whenever w E W is such that wx = X then w = 1.
With this condition satisfied, it is shown in §6.4 of [7] that for each

x E K representing w E W there exists a unique G-morphism
Tx : I (X) ~ I ( wX) such that for all ~ ~ I(X) with support in U PyP

Here wNw-, f1 NBN is assumed to have the Haar measure such that
the orbit of {1} under No has measure 1. Since X is unramified, one
sees easily that Tx is independent of the choice of x E K representing
w, and one may call it Tw. Furthermore, it is shown in §6.4 of [7] that
Tw varies holomorphically with X in the sense that for a fixed

f ~ Cc~(G) and g E G, Tw(Pxf )(g) is a holomorphic function of X.
Finally, every G-morphism from I (X) to I(wX) is a scalar multiple of
Tw.
The operator Tw is in particular a B-morphism and a K-morphism,

so it takes I (X)B to I ( wX)B and I (X)K to I ( wX)K. Therefore it takes

~K,x to a scalar multiple of cPK,wx.
For each a E £, define

3.1. THEOREM: One has

where

PROOF: Step (1). Assume G to be of semi-simple rank one, a the
single non-multipliable positive root, and w = wa the single non-trivial
element of W Since ~K(1) = 1, and one knows Tw(~K) to be a

multiple of OK, it suffices to calculate Tw(~k)(1). Since K = B U BwB,
~K = ~1 + ~w, and one only need evaluate Tw(~1)(1) and Tw(~w)(1)
separately.

Evaluating the second is simple, since cPw has support in PwP, and
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As for the first, since Tw varies holomorphically with X it suffices to
calculate Tw(~1)(1) for all X in some open set of Xnr(M). Define

Here the measure adopted on PwP is the restriction of a Haar

measure on G with the normalization condition that meas Po wNo = 1

(note that PwP is open in G). This formula actually makes sense for
all f E Cc~(G) under certain conditions on X:

3.2. LEMMA: If Ix(a)I  1 for all regular elements of A-, then for
every f E Cc~(G) the integral

converges absolutely and is equal to Tw(Px(f))(1). If f = chB, then it is
equal to ca (X) - 1.

PROOF: It suffices to let f be the characteristic function of a set of
the form N n X, where X is an open subgroup of Po and N n (n a 1) is
the subgroup of § 1. This is because every function in Cc~(G) is a linear
combination of (1) a function in Cc~(PwP) and (2) right P-translates of
such characteristic functions. For f = ch(Nn x), the above integral is
equal to

where the measure on N n is such that measNi = [BwB : B ]-1 =
(qaqaI2)-1. This may be not quite obvious - it is because the Haar
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measure adopted on G is (qaqaI2)-1 times the one in which meas B = 1,

Recall from 1.(1), 1.(3), and 1.(4) that

and

Therefore the integral above is equal to

From (1.(13) one sees that

and from (1.(15) that

When |X(aa)|  1, therefore, it is easy to deduce that the above sum is
dominated by an absolutely convergent geometric series.
When f = chB, m = 1. The sum may be calculated explicitly by

breaking it up into even and odd terms, thus concluding the proof.
For y such that Ix(aa)’  1, the f unctional ll induces a functional À

on I (X) such that

By Frobenius reciprocity, it corresponds to a G-morphism from I(X)
to I(wX). This must be a scalar multiple of Tw, and since for

it corresponds exactly to Tw. Therefore when ’x(aa)1  1, and by
analytic continuation for all regular X,
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Step (2). Let G be arbitrary, but w = w03B1, 03B1 E d, again. In this case,
each ow with w ~ 1, wa lies in the complement of P U Pw,,,P

and Tw03B1 (~1)(1) and Tw03B1 (~W03B1 )( 1) may be calculated exactly as in Step
(1). Since cPK = ~~w, the theorem is proven in this case.

Step (3). Proceed by induction on the length of w. Let 1JI’w =

and applying these will conclude
the proof.

3.3. REMARK: When G is split, each qa = q and each qal2 = 1. In

this case,

1 won’t use it in this paper, but it will be useful elsewhere to have
this partial generalization:

3.4. THEOREM:

PROOF: One has

Since in the rank one case one also has

Therefore, since Twa takes any cPw into a linear combination of 0,’s:
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The theorem follows from this because R(ch(BwB))~1 = cPw and

R(ch(BwB)) ~w03B1 = Ow03B1w.
This result tells the effect of Twa on I (X)B, but to find a reasonable

way to describe the effect of every Tw on I(X)B seems rather diflicult.
As a consequence of Theorem 3.1 one has:

3.5. PROPOSITION: (a) The operator Tw is an isomorphism if and

(b) Ind(X) is irreducible if and only if 1

PROOF: The operator Tw-1 o Tw is a scalar multiple of the identity on
I(X). This scalar must be Cw-1(wX)Cw(X) by Theorem 3.1. If it is not 0,
then Tw has an inverse. If it is 0, then either Tw(~K) or Tw-1(~K) = 0. If
the first, Tw clearly has no inverse. If the second, then the image of Tw
cannot be all of Ind(wX), and again has no inverse.
For (b), apply (a) and [7] 6.4.2.

3.6. PROPOSITION: Assume that qal2 ~ 1 for all a &#x3E; 0. If Ix(aa)I  1

for all a &#x3E; 0, then cPK generates I(X).

As 1 have mentioned earlier, the assumption q03B1/2~ 1 amounts to

restricting the initial choice of the special point xo - or, in other words,
the subgroup K. When G is simply connected and of rank one, for
example, and qal2 ¥- 1 then the Proposition is true for one choice of K
but not the other.

PROOF: Let U be the quotient of I (X) by the G-space generated by
OK- If U~ 0, it will have an irreducible G-quotient (since it is finitely
generated by Proposition 2.7). According to [7] 6.3.9 there will exist a
G-embedding of this irreducible quotient into some I(wX), and the
composite map from I (X) to I(wX) must be a non-zero multiple of Tw.
Since UK = 0, Tw(~K) = 0. Therefore cw(X) = 0, and for some a &#x3E; 0

either X(a.) = q03B1q1/2 or X(a03B1) = 2013q1/2. contradicting the assumption.
This is the p-adic analogue of a well known result of Helgason on

real groups.
1 want now to introduce a new basis of I (X)B (still under the

assumption that X is regular). Recall from Proposition 2.3 that

I (X)B = I(X)N, and again from §6.4 of [7] that I(X) is isomorphic to the
direct sum EB (WX) 03B41/2 . Explicitly, the maps
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form a basis of eigenfunctions of the dual of I(X)N with respect to the
action of U. Let {fw} = {fw,x} be the basis of 1 (X)B dual to this - thus

It is an unsolved problem and, as far as 1 can see, a difficult one to
express the bases {~w} and {fw} in terms of one another. This is

directly related to the problem 1 mentioned at the end of the proof of
Theorem 3.4. The only fact which is simple is:

3.7. PROPOSITION: One has

PROOF: For w ~ w,,

because supp(

Also, by the definition of the lfw) and Theorem 3.1:

3.8. LEMMA: One has

It follows immediately from the definition of the lfw) and Pro-
position 2.5 that:

3.9. LEMMA: One has 1T(chBmB)fw = meas(BmB)(wX)Sli2(m) fw for

all m e M-.

4. The spherical function

As 1 have mentioned earlier, the contragredient of I(x) is I (X-1).
Consider the matrix coefficient
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According to [7] 3.1.3 this is also equal to

where meas K = 1. The function rx is called the zonal spherical
function corresponding to X. It satisfies

4.1. PROPOSITION: For any

PROOF: The matrix coefficient rx is the only matrix coefficient of
I (X) satisfying (1) and (2). As such, it is determined by the isomor-
phism class of I(X). But since by Proposition 3.5 the representations
I(X) and I(wX) are generically isomorphic, rx = Twx generically as
well; since rx clearly depends holomorphically on X, rx = Twx for all
X.

Define

Note that because of the Cartan decomposition, 4 is determined by
its restriction to M-.

4.2. THEOREM (Macdonald) : If X is regular then for all m E M-

where

PROOF: One has
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therefore

(by Proposition 3.9).
By Proposition 3.7,

(by (1.9) and the remarks preceding it). Therefore the term in the sum
above corresponding to We is Q-lCWt(weX). By the W-invariance of F,
(Proposition 4.1) and the linear independence of the X’s ([10] 4.5.7)
this implies the theorem.

4.3. REMARK: The general theory of the asymptotic behavior of
matrix coefficients (§4 in [7]) asserts the existence of E &#x3E; 0 such that

cPK is a linear combination of the characters (WX)D 1/2 on A-(E).
Macdonald’s formula makes this explicit.

Appendix

Let ~ be a root system, 1+ a choice of positive roots, and (W, S)
the corresponding Coxeter group. For x, y E W, define x  y to mean

that y has a reduced decomposition y = SI ... sn, where si is the

elementary reflection associated to the simple root ai, and x =

Si1...Sim with 1 --5 il  ...  im ~ n. According to Lemma 3.7 of [3] (an
easy application of the exchange condition of [5] Chapter IV, § 1.5)
one may take m to be the length of x in W. If x  y, then ~(x) ~ é(y),
and t(x) = ~(y) if and only if x = y.
Let We be the longest element in W. The following is, 1 believe,

essentially due to Steinberg ([11] Exercise (a) on p. 128).

A.1. PROPOSITION: Let x, y E W be given. The following are

equivalent:
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where Wi is the re fection associated to

PROOF: (a) ~ (b) is immediate.

For (c) ~ (a): Suppose that y has the reduced decomposition y =

si ... sn, and assume at first that y = xw, where w is the reflection

corresponding to the root 0 &#x3E; 0, and x( 8) &#x3E; 0. Then y(0) = x(- 0)  0,
so that according to [5] Cor. 2, p. 158, there exists i such that

In the general case, let y = xw1... wv as in (c), and let yi =

xwi ... * wi-, for each i. By what 1 have just shown, y = yr &#x3E; yr-1 &#x3E;
... &#x3E; x, and since  is clearly transitive, x  y.

(a) ~ (c): Proceed by induction on the length of x. If t(x) = 0, then
x = 1 and y y=S1 S1··· sn, where by [5] Cor. 2, p. 158, one has

... Si_1(03B1i) &#x3E; 0.

In general, say x = Si1 Sim is a reduced decomposition of x. Let
x’ = Si2* si., y’ = Si1+1... sn. Then e(x’)  «x) and x’  y’, so that by
the induction hypothesis y’ = x’ w’ 1... w’r. as in (c), say wi correspond-
ing to 03B8’i One now has

Let k = il - 1 for convenience. Then

Let 03B8j be the root (Sj+1··· Skx)-1(03B1j), wj correspond to 03B8j. One has

and further (1) 03B8j; = (X-’Sk ... Sj+l)(aj) &#x3E; 0 according to [5] Cor. 2, p.
158, since by assumption on the original y one has t(Sj... skx) &#x3E;
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that w~wi’w~ -1 is the reflection associated to #
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