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Introduction

In the series of papers [5], Kubert and Lang have described the
groups of units in the fields of modular functions of all levels, and
have determined the ranks of these groups in general. Various

authors, including Ramachandra [8] and Robert [9], have considered
the specializations of these units at elliptic curves with complex
multiplication; by application of Kronecker’s Second Limit Formula,
they have proved deep results about the multiplicative independence
of these specializations. More recently, Kubert and Lang have proved
that specialization to an elliptic curve with non-integral j-invariant
introduces no additional relations, under some mild additional hypo-
theses ; their proof in this case, as in the generic case, depends on the
q-expansions of the modular units at the various cusps.

In this note 1 obtain asymptotic lower bounds for the ranks of the
groups of specialized Kubert-Lang units of level p ", when the elliptic
curve involved is defined over a number field K, and is such that its

p"-division points generate a GL(2, Z/p"Z)- extension of K, for all n.
These bounds are derived from the p -adic representation theory of
GL(2,z,), and use no other inf ormation than the generic in-

dependence results of Kubert-Lang, and the distribution relations of
Robert and Kubert-Lang. Consequently, they are not nearly so deep,
nor so sharp, as the bounds obtained by the analytic methods of the
previous authors; however, they apply to every elliptic curve without
complex multiplication over a number field, for almost all primes p.

In the last section, 1 show how the p-adic L-functions studied by
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Katz can be used to improve the estimates derived from represen-
tation theory in the general case.

1 wish to thank D. Goss, S. Lang, B. Mazur, and A. Wiles for

helpful discussions.

1. Verma Modules

Let p be an odd prime number. If H is a p-adic group and X is a

topological space, we let C(H, X) be the space of continuous X-
valued functions on H, and let C°°(H, X) C C(H, X) be the space of

locally constant X-valued functions on H.
Let G = GL(2, Zp), B = upper triangular Borel subgroup of G,

B = the group of matrices of the form 1 b ) b ~ Zp, d ~ Z", Z = the
center of G, and C a "Cartan subgroup" as in Kubert-Lang [5, II]:
i.e., the intersection with G of the image of any embedding in the

algebra of two-by-two matrices over Qp of the multiplicative group of
the unramified quadratic extension of Qp. Let Gn =

Ker(G ~ GL(2, Z/pn+1Z)), for n = 0, 1, 2, ...; let Hn, where I-I = B, B’,
C, etc. be H n Gn. For each such H, let AH be the Iwasawa algebra of
H : 039BH = lim Zp[H/Hn].

n

Define the Verma module M = AG ~039BB1 Zp, where B’ acts trivially
on Zp. The Pontryagin dual of M is then M* =

if e C°°(G, Qp/Zp) | f(bg) = f(g), b e B1, g E G}; the contragredient of
M is Mt = {f ~ C(G, Zp) | f(bg) = f(g), b E BI, g ~ G}; we let M’ =
mt fl C°°(G, Zp). Each of these groups is naturally a left module for
AG.

Let X be a finitely generated 039BC0-module. The rank of X is the
dimension over the fraction field 3if of llco of 3if Q9AcoX. (That R exists
follows from the non-canonical isomorphism 039BC0 ~ Zp[T1, T2]] - cf.
[5, V].)
Let IHn C 039BH, for any subgroup H of G, be the kernel of the natural

map 039BH ~ Zp[H/Hn].

LEMMA 1: If X is a Aco-module of rank r, then

dimQp QP Q9zpXllcnX - rp2n = 0(pn) as a function of n.

PROOF: The analogous theorem may be proved for any p-analytic
group, in the sense of [1], by the techniques described there; the
proof is essentially contained in the proof of Lemma 3.4.1 of [1].
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Let X be a character of (Z/pZ)X, and, for any AG-module X, let X~
be the 039BG-submodule on which (Z/p Z)" C Z acts via the character X.
Since (Z/pZ)X is of order prime to p, the functor X ~ X~ is exact, and

X ~ ~ X~.
x

PROPOSITION 1: Let N be a non-zero AG-submodule of Mx, for any
X. Then N is of rank p + 1 over llco.

PROOF: We first assume that the image PN of N in PM," =
M~/039BGIZ0M~ is non-trivial; recall that Zo is the subgroup of the center
of G consisting of diagonal matrices congruent to the identity (mod
p). The argument of [2, Proposition 1.6] shows immediately that PN
is of rank p + 1 over PCo, where PCO = Co/Zo. In particular, PMX/PN,
which is isomorphic to (MXI N)I AolZo (Mx/ N), is a torsion llPCo-
module, which implies that MXIN is a torsion 039Bc0-module; i.e., that N
has rank p + 1 over llco-
Now assume N is contained in the kernel of the map Mx - PMX. If

y is a topological generator of Zo, this kernel is equal to (y - 1)Mx.
Let k be the smallest integer such that N is not contained in

(y _ 1)k+1M~. Since (03B3 - 1): M~ ~ MX is an injection and a AG-map, it
makes sense to define N’ = (03B3 - 1)-kN ~ M~; N’ is then AG-isomor-
phic to N. The argument above may now be applied to N’; it follows
that N’, hence N, is of rank p + 1 over llco.

Let Mn = M/IGnM. The decomposition of Kubert-Lang: G = CB’;
GnB = CnB ([5, II]) implies that the maps

are well-defined AG-morphisms; further, it implies that M is a free

rank-one Ac-module. Dénote by M the module lim Mn. Then
vn,m

PROPOSITION 2: As AG-modules, Mis isomorphic to M’.

PROOF: This is a special case of the proposition in the appendix to
[2].

PROPOSITION 3: Let X be a Zp-free AG-quotient of M Then, if
X~ ~ 0, for some character X of (Z/pZ) , we have



130

as a function of n.

PROOF: Let X = M/Y, for some submodule Y of M. Consider the
following diagram:

The columns are evidently exact; that the middle row is exact follows
directly from Proposition 2 and the definition of M’ as a function
space. Let * denote Pontryagin dual. Proposition 2 implies that

(M Q9z Q,/Z,)* is isomorphic to Mx. Assume Xx 0 0; by freeness,
X~ ~Zp Qp/Zp ~ 0. Thus (X~ ~Zp Qp/Zp)* def=. ~ is a non-zero AG-
submodule of M. It now follows from Proposition 1 that ~ is a rank

p + 1 039BC0-module, and that ~ def. ( Yx ~Zp QpIZp)* is a rank zero

03BBC0-module; i.e., a torsion 039BC0-module. From Lemma 1 and duality it
follows that dimQp(Yx~Zp Qp)Gn ~ dimqp (~~Zp Qp) c- = O(pn),
whereas dimQp(X~ Q9zc Qp)Gn ~ dimQp(X~ Q9zp Qp)cn = (p + I)p2n +
O(pn); moreover, dimQp(MX ~Zp Qp)Gn = (p + l)p2n. Combining these
observations with diagram (1) yields the proposition.

2. Kubert-Lang Units

Let E be an elliptic curve over the number field K, and let p be a
prime number. If E[p"] is the subgroup of p n -division points in E, let
Kn = K(E[pn+’]), n = 0, 1, 2,... ; let L = U Kn. We assume E has no

n

complex multiplication. Then Gal(L/K) is, by a theorem of Serre
([10]), isomorphic to an open subgroup of G = GL(2, Zp ); the imbed-
ding is given by the action of Gal(L/K) on the Tate module Tp(E) =
lim E[pn]. Henceforward we assume Gal(L/K) is isomorphic to
n

GL(2, Zp). Let S denote the set of places of L consisting of (a) all
archimedean places; (b) all places dividing p ; and (c) all places at
which the j-invariant of E is not an integer. For any subfield L’ C L,
we let S also denote the set of restrictions of places in S to L’.
Let W be the group of S-units of L; i.e., the direct limit of the
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groups 6n of S-units of the integer rings of Kn. Then E ~ 03BC, the group
of pnth roots of unity for all n. Let Z’ = E/03BC’, where p’ is the group of
of roots of unity in E.

LEMMA 2: The group E’ is a free abelian group.

PROOF: By Lemma 3.4.2.1 of [2], it is enough to show that (E’)Gn is
free and finitely generated over Z for all n. We have an exact

cohomology sequence

It is enough to show that H1(Gn, 03BC’) is finite for each n.
Now M is of finite index in 03BC, since the maximal abelian extension

of Q in L is finite over the field obtained by adjoining 03BC to Q. Thus
we may as well show that H’(Gn, 03BC) is finite for all n. But Gn acts on
03BC via the determinant character: g(C) = 03BEdetg, g ~ Gn, 03BE ~ 03BC. By the
Hochschild-Serre spectral sequence, it is enough to show that

HI(Zn, p) and HO(Zn, p) are finite; since Zn acts non-trivially on il,

this is clear.

We now introduce the Kubert-Lang units. Let gN,N be the modular
function denoted g,,s in [5, II], i.e., the one with q-expansion at

infinity

here £ = e203C0i/N. Then gN,N is a modular function of level N, for every
pair of integers (r, s), depending only on the residue classes of r and s
modulo N. In particular, when N = pn+1, a choice of basis for the Tate
module Tp(E) allows us to specialize gNr,s,N at E and obtain an S-unit in
the field Kn.
However, gNr,s,N is the Nth power of the function denoted l12r,s0394 in

[5, II]; we call this function g,,s,N, and remark that it is modular of
level N2, as shown in [5, II]. In particular, it too specializes at E to
give rise to an S-unit in L, when N = pn+1; furthermore, its image in
8" is evidently in (E’)Gn. Finally, when (r, s) = (1, 0), 9,,sN is invariant
under the group B’ (in the convention of [5 II], gr,s,N is invariant under

the group 1 0), which is conjugate to B’ by an outer automor-* * 
J g Y

phism).
Let Un be the subgroup of the multiplicative group of the modular

function field (of level p2n+2) generated by the Siegel functions g,,s,pn+1,
modulo its subgroup of roots of unity. Let Mn be as in § 1, and let M n
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be the submodule of Mn fixed by ± (1 0) E Z. Since Un is generated
over 039BG by gl’o,pn+l, by [5, II], it follows from the independence results
of Kubert and Lang (cf. [5, II] and also [5, V]) that, as a AG-
module,

Now the distribution relations of Robert and Kubert-Lang ([5, III],
Theorem 3.1) immediately imply

LEMMA 3: Under the isomorphism described above, the following
diagram is commutative:

Here the inclusion on the left is provided by the distribution relations,
and v’,n is the restriction of vn,m to M+n.

COROLLARY: If U = U n Un 0z Zp (the union being taken in the

modular function field), then U is isomorphic to M+ = lim Mn as a
Vn,.

AG-module.

THEOREM 1: Let (K - L) be the subgroup of E generated by speci-
alizations of gr,s,pn+1 at the elliptic curve E, for ail integers r, s, n. Let

(K-L)n = (K-L) ~ En; let dn be the rank of (K-L)n as a Z-module. Then

where À is the number of characters X of (ZlpZ)X C Z such that
((K - L)~ZQp)~ ~ 0.

PROOF: By Lemma 2, the image (K-L)’ of (K-L) in E’ is a free
abelian group. Thus, by the corollary to Lemma 3, (K-L)’(Dz7,p is a
free quotient of M+. It follows from Proposition 3 that

We will be done once we show that (K-L)’G,. and (K-L)II have the
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same Z-rank. But this follows immediately from the finiteness of
H’(Gn, p) proved in the course of the proof of Lemma 2.

REMARK: As noted on page 263 of [6], the Siegel functions

generate the modular function field. Thus the field generated over K
by the elements of (K-L) is of index two in L, and in particular is not
contained in any cyclotomic extension of K. It follows that (K-L)
contains elements of infinite order; i.e., that À &#x3E; 0.

3. An application of p-adic L-functions

We retain the notation of §2, and assume further that E has good
ordinary reduction at some place v of K dividing p ; we extend v to a
place of Koo, also denoted v. Without loss of generality, we may
assume that the decomposition group Dv of v is contained in B ; it has
finite index in B by [11], A.2.4. Let iv’l be the (finite) set of places
of K. dividing v and such that Dv- C B ; let F~ = Il K.,v,. Then B acts

{v’}

on F, and we may think of B as the "Galois group" of Foo/Kv. Let Fn
be the subalgebra of F fixed by Bn ; it is the product of completions of
Kn at the finite set of primes {vn}, which consists of the set of

restrictions of elements of {v’} to Kn. We write Fn = fl Kn,vn·
{vn}

Now we may consider the specializations of the Kubert-Lang units
gpn+10,spn+1, s E Z, as elements of the algebra Fn. Let fin C fn be the

product of the integer rings wn of Kn,vn ; let e,, be the product of the
maximal ideals ev, of Pvn. If 03BE = e p then gpn+10,s,pn+1 is the modular

function denoted H03BEs by Katz in [4], and specializes to an element
h(03BEs) of Fn. As remarked by Katz ([4], 10.1.5), (h(03BEs)/h(03BEs’)p-1 ~ 1
(mod Pn), if s and s’ are two integers relatively prime to p ; we may
thus define the p -adic logarithm

the logp on the right-hand side is defined by the usual convergent
power series.

Now Z C B acts on the set of h(Cs): if we write z(a) for the

diagonal matrix a 0 then(0 a

Let (K-L) be the subgroup of (K-L) consisting of elements which
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have absolute value one at the places v’; we note that (K-L)/(K-L) is
a free Z-module of finite rank. By the above remarks, we see that
h(03BEs)/h(03BEs’) ~ (K-L) ~ (K-L)n for any integers s, s’ relatively prime
to p. Now the map from (K-L) to Fm extends to a homomorphism
~ : (K-L)~zZp ~ F ~, whose image is contained in the subgroup of
elements of absolute value one. Our object in this paragraph is to

determine conditions under which the image of ((K-L) Q9z Zp)~ in F ~
def.

is non-trivial, for a given character y of à = (Z/pZ)  C Z. When this
image is non-trivial, «K-L) Q9z Zp)X is a fortiori non-trivial, and the
conclusion of Theorem 1 can be strengthened.

Let X be a character of Z of exact conductor p n+l; i.e., a homomor-
phism X : Z - Qp (ppn)X whose kernel is Zn. Let X = X |0394; we call X the
tame part of X. 1 claim that, if, for some non-trivial X with tame part X, we
have

for some pair of integers s, s’ relatively prime to p, then cp«K-
L) ~z Zp)~ ~ 0. (Here we have written x-1(z(a») by abuse of notation
when a E (Z/pn+1Z) ; evidently this is a well defined function.) In fact,
since X is non-trivial, h() is just the image in Fn of the element

(multiplication is here written additively), under the natural extension
of the p-adic logarithm. But

is the orthogonal idempotent in Qp(ppn) [Z/Zn] corresponding to the
character x. Our claim follows immediately, since e() is a non-zero
multiple of the orthogonal idempotent corresponding to the character
~ in Qp[0394] ~ Qp(03BEpn)[Z/Zn]·

Let a ~ 1 be a p-adic unit; we may regard it as an element of Z.
Katz has proved:

THEOREM (Katz, [4], 10.2.12 and [3]): There is a Kv -valued measure
03BC(a)E on the p -adic group Z with the property that its associated p -adic
L-function
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satisfies, for any character X of exact conductor pn",

here G(X) is the Gauss sum IaE(Z/pn+lz)x x(a)(-as, where s is as in the
definition of h(x).

For notions associated with p-adic measures and p-adic L-func-
tions, see [3], §3, and [7], §7. We need only to make use of the

f ollowing lemma:

LEMMA ([7], §7): The function L (a)(f) is determined by the set of
functions L(a)~(f0) = L(a)(x, fo), where X is a character of à and where
fo E C(Z0, Kv); here X - fo(z) = X(d) fo(zo) if z = d - Zo for d ~0394 and
zo E Zo. Furthermore, if L(a)~(f0) is not zero for all fo, for some fixed X, then
L(a)~(~’) is zero for at most finitely many continuous characters X’ : Zo -
K v.

The p-adic L-function LE(X) is defined by Katz by the formula

Katz has shown ([3], 3.7) that this expression is independent of the
choice of a. As a consequence of the preceding remarks, we have

THEOREM 2: Let X be a character of 0394, and let L,(X’) be the
function associated to LE(X’) as in the lemma. If Lx(X’) :¡i; 0 for some
non-trivial continuous character X’, then «K-L) ~z Zp))~ ~ 0.

PROOF: We have only to choose an a such that XX’(a) 0 1, and
apply the preceding argument.

REMARKS: 1. Katz’s construction of p-adic measures depends
upon a choice of trivialization of the formal group of E/Kv; whether
or not the p-adic L-function vanishes is, however, independent of the
trivialization.

2. The Lemma illustrates the principle, already exploited in §2, that
the non-triviality of ((K-L) ~Z Zp))~ implies that ((K-L) ~Z Zp))x has
infinité Zp-rank. (Actually we need to know that its image in F ~ is
non-trivial in order to draw this conclusion.)

3. Fix an even character y of 0394; i.e., x(-1) = 1. The function
LE(X), as a function of ordinary elliptic curves E over p-adic rings, is
a p-adic generalized modular function of weight zero and nebentypus
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X which, moreover, is not identically zero (as can be verified by a
computation of its q-expansion and application of the q-expansion
principle; cf. [3]). It is not hard to see that, for any finite extension D
of Zp, it is a rigid analytic function on the (rigid analytic) subset of the
moduli space of ordinary elliptic curves over D with level p structure.
This presumably means that LE(X) = 0 for at most finitely many E
over D. In particular, for all but finitely many E over K which are
ordinary at some prime of K dividing p, the number À in Theorem 1

may be replaced by (p - 1)/2.
4. The conclusion of Theorem 2 may be strengthened to assert

p-adic multiplicative independence of Kubert-Lang units, as opposed
to mere multiplicative independence.
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