Compositio Mathematica

Y. GORDON p-local unconditional structure of Banach spaces

Compositio Mathematica, tome 41, no 2 (1980), p. 189-205
http://www.numdam.org/item?id=CM_1980_41_2_189_0
© Foundation Compositio Mathematica, 1980, tous droits réservés.
L'accès aux archives de la revue «Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

p-LOCAL UNCONDITIONAL STRUCTURE OF BANACH SPACES*

Y. Gordon

Abstract

There are Banach spaces which fail to have p-local unconditional structure (p-l.u.st.) for any $p, \infty>p>0$. In particular, there exist n-dimensional Banach spaces $E_{n}, n=1,2, \ldots$, whose p-l.u.st. constants are "almost" the largest possible theoretical value $\min \left\{n^{1 / 2}, n^{p}\right\}$. The $p-1 . u . s t$. constant is smaller and not equivalent to the usual l.u.st. constant.

1. Introduction

Given any $\infty>p \geq 0$, let η_{p} be the ideal norm defined in the following manner: If $T \in L(E, F)$ is a bounded operator from a Banach space E to a Banach space F which can be written the form $T x=\sum_{i \geq 1} A_{i} x(x \in E)$, where $A_{i}(i=1,2, \ldots)$ are in the class $\mathscr{F}(E, F)$ of the finite-rank operators from E to F, then

$$
\eta_{p}(T)=\inf \sup \left\|\sum_{i \leq N} \pm\left(r\left(A_{i}\right)\right)^{p} A_{i}\right\|
$$

where $r(A)$ denotes the rank of an operator A, the supremum ranges over all choices of \pm signs and integers N, and the infimum is taken over all the possible representations of the operator T.
$\eta_{p}(T)$ is a non-decreasing function of p, and η_{p} is a Banach ideal norm, that is has the following properties:
(1) η_{p} is a norm and $\eta_{p}(E, F)=\left\{T \in L(E, F) ; \eta_{p}(T)<\infty\right\}$ is a Banach space under the norm η_{p}.

* Supported in part by NSF-MCS 77-04174.

0010-437X/80/05/0189-18\$00.20/0
(2) $\eta_{p}(T)=\|T\|$ whenever $r(T)=1$.
(3) If $u \in L(G, E), T \in \eta_{p}(E, F), v \in L(F, H)$, then $v T u \in \eta_{p}(G, H)$ and $\eta_{p}(v T u) \leq\|v\|\|u\| \eta_{p}(T)$.

We recall some well known facts about a general Banach ideal norm α which may be found in [9]. If $T \in L(E, F)$, the adjoint ideal norm $\alpha^{*}(T)$ is defined as the least C such that the inequality

$$
\operatorname{trace}(S v T u) \leq C\|v\|\|u\| \alpha(S)
$$

holds for any finite-dimensional normed spaces X and $Y, u \in$ $L(X, E), v \in L(F, Y)$ and $S \in L(Y, X)$. If X and Y are finite-dimensional normed spaces, the dual space $(\alpha(X, Y))^{\prime}$ can be naturally identified with $\alpha^{*}(Y, X)=\left(L(Y, X), \alpha^{*}\right)$ via the identity $\langle T, S\rangle=$ $\operatorname{trace}(S T)$ for $T \in \alpha(X, Y), S \in \alpha^{*}(Y, X)$. Hence, if $T \in L(E, F)$, $\alpha^{* *}(T)=\sup \alpha(v T u)$, where the supremum ranges over all finitedimensional normed spaces X and $Y, u \in L(X, E)$ and $v \in L(F, Y)$ with $\|u\|=\|v\|=1$. From this we get immediately that $\eta_{p}^{* *}(T)=\eta_{p}^{* *}\left(T^{\prime}\right)$ for every operator $T \in L(E, F)$.

If in the definition of $\eta_{p}(T), T$ is further restricted only to representations for which $r\left(A_{i}\right)=1$ for all i, then the corresponding resulting norm which is independent of p was called in [8] the weakly nuclear norm of T and denoted by $\eta(T)$. It follows that $\|\cdot\| \leq \eta_{p} \leq$ $\eta_{q} \leq \eta$ for $0 \leq p<q<\infty$, and since $\eta_{0}=\|\cdot\|$ on finite dimensional spaces, taking double adjoints we obtain $\eta_{0}^{* *}=\|\cdot\|^{* *}=\|\cdot\| \leq \eta_{p}^{* *} \leq$ $\eta_{q}^{* *} \leq \eta^{* *}$.

Using ultraproducts it can be shown (see for example [16]) that $T \in \eta^{* *}(E, F)$ if and only if $j_{F} T$ factors through some Banach lattice, more precisely, $\eta^{* *}(T)=\inf \|v\|\| \| u \|$, where the infimum ranges over all Banach lattices L and $u \in L(E, L), v \in L\left(L, F^{\prime \prime}\right)$, satisfying $j_{F} T=v u$, where $j_{F}: F \rightarrow F^{\prime \prime}$ is the canonical inclusion. Thus, if T is a map on, or, into, a norm one complemented subspace of a Banach lattice, then $\|T\|=\eta_{p}^{* *}(T)=\eta^{* *}(T)$. If $T=I_{E}$ the identity operator on a Banach space $E, \eta^{* *}\left(I_{E}\right)$ is generally better known as the local unconditional structure (l.u.st.) constant of E which is usually denoted by $x_{u}(E)$ [7]. If α is an ideal norm, $\alpha(E)$ denotes $\alpha\left(I_{E}\right)$. For $p>0, \eta_{p}^{* *}(E)$ will be called the p-l.u.st. constant of E. $x(E)$ will denote the unconditional basis constant of E.

If $\operatorname{dim}(E)=n$ and $0 \leq p<q<\infty$, then trivially we get from the definitions

$$
1 \leq \eta_{p}(E) \leq \eta_{q}(E) \leq \eta(E)=x_{u}(E) \leq x(E) \leq d\left(E, \ell_{2}^{n}\right) \leq \sqrt{n},
$$

and also, since $r\left(A_{i}\right) \leq n, \eta_{q}(E) \leq n^{q-p} \eta_{p}(E)$. Moreover, the represen-
tation $I_{E}=I_{E}$ shows that $\eta_{p}(E) \leq n^{p}$, thus $\eta_{p}(E) \leq \min \left\{n^{1 / 2}, n^{p}\right\}$ for all $p \geq 0$.

The main result here shows that the last inequality is asymptotically "almost" the best possible. There exists a sequence $E_{n}, n=1,2, \ldots$, of n-dimensional spaces for which $\eta_{p}\left(E_{n}\right) \geq$ $\min \left\{a n^{1 / 2}, a n^{p}\right\} \exp (-\sqrt{\log n})$ where a is an absolute positive constant. Since the exponential factor tends to zero more slowly than any negative power of n, this implies that if $p \neq q$ and $0<p<\frac{1}{2}$, then η_{p} and η_{q} are not equivalent ideal norms, and in particular η_{p} and η are not equivalent ideal norms. Since $\eta_{p}\left(E_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$, this also implies there exists a reflexive separable Banach space which fails to have p-l.u.st. for all $p>0$.

Regarding x_{u} it was proved in [3] that there is an absolute constant $c>0$ and a sequence of spaces $F_{n}, \operatorname{dim}\left(F_{n}\right)=n$, such that $x_{u}\left(F_{n}\right) \geq$ $c \sqrt{n}$. Our result therefore is of interest for the smaller p-l.u.st. constants η_{p}. We do not know if $\eta_{p}(E)$ can be asymptotically equivalent to $\min \left\{n^{1 / 2}, n^{p}\right\}$ for a sequence of spaces $E_{n}, \operatorname{dim}\left(E_{n}\right)=n$. It is also an open question whether for $q>p \geq \frac{1}{2} n_{p}(E)$ and $\eta_{q}(E)$ are always equivalent when $\operatorname{dim}(E)<\infty$; the same question is also open for the constants $x_{u}(E)$ and $x(E)$. It was proved recently by Johnson, Lindenstrauss and Schechtman, that there exists a Banach spaces E with $x_{u}(E)=\infty$, that is E does not have local unconditional structure, yet E has an unconditional Schauder decomposition into 2-dimensional spaces. This fact implies that $x_{u}(E)$ and $\eta_{p}(E)$ are not equivalent since $\eta_{p}(E)$ is finite for such spaces. Also unknown is whether many of the spaces which fail l.u.st. also fail p-l.u.st. for some $p>0$. Does $L_{q}(\infty>q \geq 1)$ have a subspace without p-l.u.st.? G. Pisier proved that if $p>2, L_{q}$ has a subspace without l.u.st. (See [15] for $q>4$; for $2<q$ we know of an unpublished proof).

To obtain the lower estimates for $\eta_{p}\left(E_{n}\right)$ we use the characterization of the adjoint norm η_{p}^{*} proved in the next section and an inequality due to S. Chevet which was communicated to us by G. Pisier who has used the inequality to prove that l.u.st. constant x_{u} of $\underbrace{\ell_{1}^{n} \hat{\otimes}_{\epsilon} \ell_{1}^{n} \hat{\otimes}_{\epsilon} \cdots \hat{\otimes}_{\epsilon} \ell_{1}^{n}}_{2^{k}}$ is bigger than $C_{\alpha} N^{\alpha}$, where $N=n^{2^{k}}$ and n, k are chosen in some appropriate relation to N, and where α is any scalar $<\frac{1}{2}$, and $c_{\alpha}>0$ is a constant depending only on α.

2. p-local unconditional structure

A characterization of η_{p}^{*} is given by the following proposition.

Proposition 1: If p, C are non-negative constants and $T \in$ $L(E, F)$, then the following statements are equivalent:
(1) $\eta_{p}^{*}(T) \leq C$.
(2) $\sum_{i=1}^{n} \operatorname{trace}\left(T A_{i}\right) \leq C \max _{ \pm}\left\|\sum_{i=1}^{n} \pm\left(r\left(A_{i}\right)\right)^{p} A_{i}\right\|$ for any choice of $\left\{A_{i}\right\}_{i=1}^{n} \subset \mathscr{F}(F, E)$.
(3) If $K_{E^{\prime}}$ denotes the w^{*}-closure of the extreme points of the unit ball of E^{\prime} equipped with the w^{*} topology, there exists a probability measure on the compact topological product space $K=K_{E^{\prime}} \times K_{F^{\prime \prime}}$ such that for every $A \in \mathscr{F}(F, E)$ holds the inequality

$$
\operatorname{trace}(T A) \leq C(r(A))^{p} \int_{K}\left|\left\langle A^{\prime}\left(x^{\prime}\right), y^{\prime \prime}\right\rangle\right| \mathrm{d} \mu\left(x^{\prime}, y^{\prime \prime}\right)
$$

Proof: Let $C_{i}(i=1,2,3)$ denote a constant C which appears in the inequality of statement (i). Let X, Y be finite-dimensional spaces and $\epsilon>0$, and let $S=\sum_{i=1}^{n} A_{i}$ where $A_{i} \in L(Y, X)$ are chosen to satisfy $(1+\epsilon) \eta_{p}(S) \geq \max _{ \pm}\left\|\Sigma \pm\left(r\left(A_{i}\right)\right)^{p} A_{i}\right\|$. Then, for any $u \in L(X, E), v \in$ $L(F, Y)$, we get

$$
\begin{aligned}
\operatorname{trace}(S v T u) & =\sum_{i=1}^{n} \operatorname{trace}\left(A_{i} v T u\right)=\sum_{i=1}^{n} \operatorname{trace}\left(u A_{i} v T\right) \\
& \leq C_{2} \max _{ \pm}\left\|\sum_{i=1}^{n} \pm\left(r\left(u A_{i} v\right)\right)^{p} u A_{i} v\right\| \\
& \leq C_{2}\|u\|\|v\| \max _{ \pm}\left\|\sum_{i=1}^{n} \pm\left(r\left(A_{i}\right)\right)^{p} A_{i}\right\| \\
& \leq C_{2}\|u\|\|v\|(1+\epsilon) \eta_{p}(S)
\end{aligned}
$$

this implies $\inf C_{1} \leq C_{2}(1+\epsilon)$, therefore $\inf C_{1} \leq \inf C_{2}$.
Given arbitrary $B_{i} \in \mathscr{F}(F, E), i=1,2, \ldots, n$,

$$
\begin{aligned}
\sum_{i=1}^{n} \operatorname{trace}\left(T B_{i}\right) & \leq C_{3} \int_{K} \sum_{i=1}^{n}\left(r\left(B_{i}\right)\right)^{p}\left|\left\langle B_{i}^{\prime}\left(x^{\prime}\right), y^{\prime \prime}\right\rangle\right| \mathrm{d} \mu \\
& \leq C_{3} \sup \left\{\sum_{i=1}^{n}\left(r\left(B_{i}\right)\right)^{p}\left|\left\langle B_{i}^{\prime}\left(x^{\prime}\right), y^{\prime \prime}\right\rangle\right| ;\left\|x^{\prime}\right\|=\left\|y^{\prime \prime}\right\|=1\right\} \\
& =C_{3} \max _{ \pm}\left\|\sum_{i=1}^{n} \pm\left(r\left(B_{i}\right)\right)^{p} B_{i}\right\|,
\end{aligned}
$$

hence $\inf C_{2} \leq C_{3}$.

If $A \in \mathscr{F}(F, E)$, let $\tilde{A} \in C(K)$ be the function defined by: $\tilde{A}\left(x^{\prime}, y^{\prime \prime}\right)=\left\langle A^{\prime}\left(x^{\prime}\right), y^{\prime \prime}\right\rangle(r(A))^{p}$, and denote by M the convex hull of the set $\left\{C_{2} \tilde{A} ; A \in \mathscr{F}(F, E)\right.$, trace $\left.(T A)=1\right\}$. Statement (2) implies that M is disjoint from the set $N=\{f \in C(K), f<1\}$ which is also convex and contains the open unit ball of $C(K)$, therefore there exists a probability measure $\mu \in M(K)=(C(K))^{\prime}$ such that $\mu(g) \geq 1$ for all $g \in M$, this shows that inf $C_{3} \leq C_{2}$.

Let now $\left\{A_{i}\right\}_{i=1}^{n} \subset \mathscr{F}(F, E)$, and consider the space $X=\operatorname{span}\left\{A_{i}(y)\right.$; $y \in F, i=1,2, \ldots, n\}$. Let $u: X \rightarrow E$ be the inclusion map, and $S=$ $\sum_{i=1}^{n} A_{i}$ be the map of F into X, S^{\prime} maps X^{\prime} to F^{\prime} and $\left(S^{\prime}\right)_{a}$ will denote the map S^{\prime} of X^{\prime} onto $S^{\prime}\left(X^{\prime}\right)$. Let j be the inclusion of $S^{\prime}\left(X^{\prime}\right)$ in F^{\prime}, then $v=j^{\prime} j_{F}$ maps F to $Y=\left(S^{\prime}\left(X^{\prime}\right)\right)^{\prime}$. Both X and Y are now finite-dimensional spaces, and

$$
\begin{aligned}
\sum_{i=1}^{n} \operatorname{trace}\left(T A_{i}\right) & =\operatorname{trace}\left(v T u\left(S^{\prime}\right)_{a}^{\prime}\right) \\
& \leq C_{1}\|u\|\|v\| \eta_{p}\left(\left(S^{\prime}\right)_{a}^{\prime}\right) \\
& \leq C_{1} \max _{ \pm}\left\|\sum_{i=1}^{n} \pm A_{i}\left(r\left(A_{i}\right)\right)^{p}\right\|
\end{aligned}
$$

the last inequality is because $\|u\|=\|v\|=1$ and the fact that if we denote by \tilde{A}_{i} the operator $A_{i}^{\prime \prime}$ considered as a map of Y to X, then
$\left(S^{\prime}\right)_{a}^{\prime}=\sum_{i=1}^{n} \tilde{A}_{i}$ and so

$$
\eta_{p}\left(\left(S^{\prime}\right)_{a}^{\prime}\right) \leq \max _{ \pm}\left\|\sum_{i=1}^{n} \pm\left(r\left(\tilde{A}_{i}\right)\right)^{p} \tilde{A}_{i}\right\|=\max _{ \pm}\left\|\sum_{i=1}^{n} \pm\left(r\left(A_{i}\right)\right)^{p} A_{i}\right\| .
$$

Therefore, $\inf C_{2} \leq C_{1}$, and the proof is complete.

We need a preliminary lemma which was used in [6].

Lemma 2: If $x_{i}, y_{i}, i=1,2, \ldots, m$, are arbitrary vectors in ℓ_{2}^{n}, then $n \sum_{i=1}^{m} \sum_{j=1}^{m}\left\langle x_{i}, y_{j}\right\rangle^{2} \geq\left(\sum_{i=1}^{m}\left\langle x_{i}, y_{i}\right\rangle\right)^{2}$.

Proof: Without loss of generality we can assume $\left\{y_{i}\right\}_{i=1}^{m}$ are fixed such that the operator $T=\sum_{i=1}^{m} y_{i} \otimes y_{i}$ has rank n. We shall maximize the function $f\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\sum_{i=1}^{m}\left\langle x_{i}, y_{i}\right\rangle$ subject to the constraint $\sum_{i=1}^{m} \sum_{j=1}^{m}\left\langle x_{i}, y_{j}\right\rangle^{2}=1$. At the maximum point, the function

$$
\varphi \equiv \sum_{i=1}^{m}\left\langle x_{i}, y_{i}\right\rangle-\lambda\left(\sum_{i=1}^{m} \sum_{j=1}^{m}\left\langle x_{i}, y_{j}\right\rangle^{2}-1\right)
$$

satisfies $\quad \partial \varphi / \partial x_{i k}=0, \quad$ where $\quad x_{i}=\left(x_{i k}\right)_{k=1}^{n}$. This yields $y_{i}=$ $2 \lambda \sum_{j=1}^{m}\left\langle x_{i}, y_{j}\right\rangle y_{j}=2 \lambda T\left(x_{i}\right)$, hence $f=\sum_{i=1}^{m}\left\langle x_{i}, y_{i}\right\rangle=2 \lambda \sum_{i=1}^{m} \sum_{j=1}^{m}\left\langle x_{i}, y_{j}\right\rangle^{2}=$ $2 \lambda . T=\sum_{i=1}^{m} y_{i} \otimes y_{i}=2 \lambda \sum_{i=1}^{m} y_{i} \otimes T x_{i}$, therefore $I_{\ell_{2}^{n}}=2 \lambda \sum_{i=1}^{m} x_{i} \otimes y_{i}$ and taking trace, $n=2 \lambda \sum_{i=1}^{m}\left\langle x_{i}, y_{i}\right\rangle=4 \lambda^{2}$, so that $2 \lambda=\sqrt{n}$.

Given Banach spaces E and F let $E \hat{\bigotimes}_{\epsilon} F$ denote the completion of the tensor product space $E \otimes F$ under the ϵ-norm, that is the ordinary norm induced on it as a subspace of $L\left(E^{\prime}, F\right) . E \otimes_{\pi} F$ denotes the completion of $E \otimes F$ under the π-norm, that is, on $E \otimes F$ the norm $|\cdot|_{\pi}$ is defined as

$$
\left|\sum_{i=1}^{n} x_{i} \otimes y_{i}\right|_{\pi}=\sup \left\{\sum\left\langle y_{i}, B x_{i}\right\rangle ;\|B\| \leq 1, B \in L\left(E, F^{\prime}\right)\right\} .
$$

If k is a positive integer, E_{ϵ}^{k} will denote the space $E \hat{\bigotimes}_{\epsilon} E \hat{\bigotimes}_{\epsilon} \cdots \hat{\bigotimes}_{\epsilon} E$, and for $\left\{x_{i}\right\}_{i=1}^{k} \subset E, \vec{x}=\bigotimes_{i=1}^{k} x_{i}=x_{1} \otimes x_{2} \otimes \cdots \otimes x_{k}$ will be a k tensor in E_{ϵ}^{k}. If $u_{i} \in L(E, E)$ are isometries on $E(i=1,2, \ldots, k)$, let $\vec{u}=$ $\otimes_{i=1}^{k} u_{i}=u_{1} \otimes u_{2} \otimes \cdots \otimes u_{k}$ be the isometry of E_{ϵ}^{k} defined by: $\vec{u}(\vec{x})=$ $\otimes_{i=1}^{k} u_{i}\left(x_{i}\right)$. This definition makes \vec{u} also an isometry on $E_{\pi}^{k}=$ $\underbrace{E \hat{\bigotimes}_{\pi} \otimes \cdots \hat{\otimes}_{\pi} E}$. We shall denote by $\pi_{p}(1 \leq p<\infty)$ the p-absolutely summing ideal norm [14].

Lemma 3: Let E have a normalized symmetric basis $\left\{e_{i}\right\}_{i=1}^{n}$, and let $T: E \rightarrow \ell_{2}^{n}$ be the basis to basis map, $T\left(e_{i}\right)=(\underbrace{0, \ldots, 0,1,0, \ldots, 0) \text {, }, ~, ~}$ $i=1,2, \ldots, n$. Let $A=\sum_{i_{1}=1}^{n} \ldots \sum_{i_{k}=1}^{n} a_{i_{1}, i_{2}, \ldots, i_{k}} e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{k}}$ be any norm-one element in E_{ϵ}^{k}, then

$$
\eta_{1 / 2}^{*}\left(E_{\epsilon}^{k}\right) \sum\left|a_{i_{1}, i_{2}, \ldots, i_{k}}\right| \leq\left(n \sqrt{2} \pi_{1}(T)\right)^{k} .
$$

Proof: By Pietsch [14] there exists a probability measure μ on $K_{E^{\prime}}$ such that for every $x=\sum_{i=1}^{n} \xi_{i} e_{i} \in E$

$$
\|T x\|_{2}=\left(\sum_{i=1}^{n} \xi_{i}^{2}\right)^{1 / 2} \leq\left(\pi_{1}(T) \int_{K_{E^{\prime}}}\left|\left\langle x, x^{\prime}\right\rangle\right| d \mu\left(x^{\prime}\right) .\right.
$$

Let $\vec{d} \mu=d \mu \times d \mu \times \cdots \times d \mu$ be the product measure on the set of extreme points of the unit ball of $\left(E_{\epsilon}^{k}\right)^{\prime}=\left(E^{\prime}\right)_{\pi}^{k}$,

$$
K_{\left(E^{\prime}\right)_{\pi}^{k}}=\left\{\vec{x}^{\prime}=\bigotimes_{i=1}^{k} x_{i}^{\prime} ; x_{i}^{\prime} \in K_{E^{\prime}}\right\} .
$$

Let $u=\sum_{i=1}^{m} A_{i} \otimes B_{i}$ be any rank-m operator in $L\left(E_{\epsilon}^{k}, E_{\epsilon}^{k}\right)$, where $A_{i} \in\left(E_{\epsilon}^{k}\right)^{\prime}$ and $B_{i} \in E_{\epsilon}^{k}$. Suppose A_{i} and B_{i} have the representations

$$
\begin{aligned}
& A_{i}=\sum_{i_{1}=1}^{n} \ldots \sum_{i_{k}=1}^{n} a_{i_{1}, \ldots, i_{k}}^{(i)} e_{i_{1}}^{\prime} \otimes \cdots \otimes e_{i_{k}}^{\prime}, \quad \text { and } \\
& B_{i}=\sum_{i_{1}=1}^{n} \ldots \sum_{i_{k}=1}^{n} b_{i_{1}}^{(i)}, \ldots, i_{k} e_{i_{1}} \otimes \cdots \otimes e_{i_{k} .}
\end{aligned}
$$

Let $\epsilon^{(i)}=\left(\epsilon_{j}^{(i)}\right)_{j=1}^{n}, \epsilon_{j}^{(i)}= \pm 1, i=1,2, \ldots, k, j=1,2, \ldots, n$, and $g_{\epsilon^{(i)}}$ be the isometry of E defined by $g_{\epsilon^{(i)}}\left(e_{j}\right)=\epsilon_{j}^{(i)} e_{j}$. Let $\pi^{(i)}$ be any permutation of the integers $\{1,2, \ldots, n\}$, and $g_{\pi^{(i)}}$ be the isometry of E defined by $g_{\pi^{(i)}}\left(e_{j}\right)=e_{\pi^{(i)}(j)}$. Set $g_{i}=g_{\epsilon^{(i)}} g_{\pi^{(i)}}$, and let $\vec{g}_{\epsilon, \pi}=\bigotimes_{i=1}^{k} g_{i}$ be the isometry of E_{ϵ}^{k}.

Denote by $A v_{\epsilon}$ and $A v_{\pi}$ the averages with respect to signs and permutations, that is, if $f\left(\epsilon^{(1)}, \ldots, \epsilon^{(k)}\right)$ is a real function then

$$
A v_{\epsilon}(f)=2^{-n k} \sum_{\epsilon} f\left(\epsilon^{(1)}, \ldots, \epsilon^{(k)}\right)
$$

where the sum is taken over all possible distinct elements $\left(\epsilon^{(1)}, \epsilon^{(2)}, \ldots, \epsilon^{(k)}\right)$; and similarly for a function $h\left(\pi^{(1)}, \ldots, \pi^{(k)}\right)$

$$
A v_{\pi}(h)=(n!)^{-k} \sum_{\pi} h\left(\pi^{(1)}, \ldots, \pi^{(k)}\right)
$$

where the sum ranges over all $(n!)^{k}$ possible choices of ($\pi^{(1)}, \pi^{(2)}, \ldots, \pi^{(k)}$.

We shall find a lower bound for the integral

$$
I=A v_{\epsilon} A v_{\pi} \int_{\left.K_{(E)}\right)_{\pi}^{\prime}}\left|\left\langle u^{\prime}\left(\vec{x}^{\prime}\right), \vec{g}_{\epsilon, \pi}(A)\right\rangle\right| d \vec{\mu}\left(\vec{x}^{\prime}\right)
$$

which will give the claim of the lemma. First observe that

$$
\begin{aligned}
& \left|\left\langle u^{\prime}\left(\vec{x}^{\prime}\right), \vec{g}_{\epsilon_{,}, n}(A)\right\rangle\right|= \\
& \quad=\mid \sum_{\ell_{1}, \ldots, e_{k}=1}^{n}\left\langle e_{\ell_{1}}, x_{1}^{\prime}\right\rangle \ldots\left\langle e_{e_{k}}, x_{k}^{\prime}\right\rangle \sum_{i_{1}, \ldots, i_{k}=1}^{n} \sum_{j_{1}, \ldots, j_{k}=1}^{n}\left\langle g_{1}\left(e_{i_{1}}\right), e_{j_{1}}^{\prime}\right\rangle \\
& \quad \ldots\left\langle g_{k}\left(e_{i_{k}}\right), e_{j_{k}}^{\prime}\right\rangle a_{i_{1}, \ldots, i_{k}} \sum_{i=1}^{m} a_{j_{1}}^{(i)}, \ldots,{ }_{j_{k}} b_{\ell_{1}}^{(i)}, \ldots, e_{k} \mid .
\end{aligned}
$$

Integrating with respect to $d \mu\left(x_{1}^{\prime}\right)$ first we get

$$
\int_{K_{E^{\prime}}}\left|\left\langle u^{\prime}\left(\vec{x}^{\prime}\right), \vec{g}_{\epsilon, \pi}(A)\right\rangle\right| d \mu\left(x_{1}^{\prime}\right) \geq\left(\pi_{1}(T)^{-1}\right)\left[\sum_{\ell_{1}=1}^{n}\left(\sum_{1}\right)^{2}\right]^{1 / 2}
$$

where

$$
\begin{aligned}
\sum_{1}= & \sum_{e_{2}, \ldots, \ell_{k}=1}^{n}\left\langle e_{e_{2}}, x_{2}^{\prime}\right\rangle \ldots\left\langle e_{e_{k}}, x_{k}^{\prime}\right\rangle \sum_{i_{1}, \ldots, i_{k}=1}^{n} \sum_{j_{1}, \ldots, j_{k}=1}^{n}\left\langle g_{1}\left(e_{i_{1}}\right), e_{j_{1}}^{\prime}\right\rangle \\
& \ldots\left\langle g_{k}\left(e_{i_{k}}\right), e_{j_{k}}^{\prime}\right\rangle a_{i_{1}}, \ldots, i_{k} \sum_{i=1}^{m} a_{j_{1}, \ldots, j_{k}}^{(i)} b_{\ell_{1}, \ldots, e_{k}}^{(i)} .
\end{aligned}
$$

Next, integrating with respect to $d \mu\left(x_{2}^{\prime}\right)$ and using the fact, which we shall also use throughout, that

$$
\int\left[\sum_{\ell_{1}=1}^{n}\left(\sum_{1}\right)^{2}\right]^{1 / 2} d \mu\left(x_{2}^{\prime}\right) \geq\left[\sum_{\ell_{1}=1}^{n}\left(\int\left|\sum_{1}\right| d \mu\left(x_{2}^{\prime}\right)\right)^{2}\right]^{1 / 2}
$$

we obtain

$$
\int_{K_{E^{\prime}}} \int_{K_{E^{\prime}}}\left|\left\langle u^{\prime}\left(\vec{x}^{\prime}\right), \vec{g}_{\epsilon, \pi}(A)\right\rangle\right| d \mu\left(x_{1}^{\prime}\right) d \mu\left(x_{2}^{\prime}\right) \geq\left(\pi_{1}(T)\right)^{-2}\left[\sum_{\ell_{1}, \ell_{2}=1}^{n}\left(\sum_{2}\right)^{2}\right]^{1 / 2}
$$

where $\Sigma_{2}=\Sigma_{\ell_{3}, \ldots, \ell_{k}=1}^{n}\left\langle e_{\ell_{3}}, x_{3}^{\prime}\right\rangle \ldots$ (the \ldots represent the same terms which appear in Σ_{1}).

If we continue to integrate with respect to $d \mu\left(x_{3}^{\prime}\right)$ and so on, finishing with $d \mu\left(x_{k}^{\prime}\right)$ we obtain

$$
\int_{\left.K_{\left(E^{\prime}\right)}\right)}\left|\left\langle u^{\prime}\left(\vec{x}^{\prime}\right), \vec{g}_{\epsilon, \pi}(A)\right\rangle\right| d \vec{\mu}\left(\vec{x}^{\prime}\right) \geq\left(\pi_{1}(T)\right)^{-k}\left[\sum_{\ell_{1}, \ldots, \ell_{k}=1}^{n}\left(\sum_{k}\right)^{2}\right]^{1 / 2}
$$

where

$$
\begin{aligned}
\sum_{k}= & \sum_{i_{1}, \ldots, i_{k}=1}^{n} \sum_{j_{1}, \ldots, j_{k}=1}^{n}\left\langle g_{1}\left(e_{i_{1}}\right), e_{j_{1}}^{\prime}\right\rangle \ldots\left\langle g_{k}\left(e_{i_{k}}\right), e_{j_{k}}^{\prime}\right\rangle a_{i_{1}, \ldots, i_{k}} \\
& \cdot \sum_{i=1}^{m} a_{j_{1}}^{(i)}, \ldots, j_{k} b_{\ell_{1}}^{(i)}, \ldots, e_{k} .
\end{aligned}
$$

Let $\sigma^{(i)}=\pi^{(i)^{-1}}$, i.e. $\sigma^{(i)}(r)=j$ iff $\pi^{(i)}(j)=r$, then

$$
\left\langle g_{1}\left(e_{i_{1}}\right), e_{j_{1}}^{\prime}\right\rangle=\left\langle\epsilon_{j_{1}}^{(1)} e_{\pi^{(1)}\left(i_{1}\right)}, e_{j_{1}}^{\prime}\right\rangle=\left\{\begin{array}{cl}
0 ; & i \neq \sigma^{(1)}\left(j_{1}\right) \\
\epsilon_{j_{1}}^{(1)} ; & i_{1}=\sigma^{(1)}\left(j_{1}\right)
\end{array}\right.
$$

Using Khintchine's inequality [17]

$$
A v_{\epsilon^{(1)}}\left|\sum_{i_{1} j_{1}} c_{i_{1},{ }_{j}{ }_{1}} \epsilon_{j_{1}}^{(1)}\right| \geq 2^{-1 / 2}\left(\sum_{j_{1}=1}^{n}\left(\sum_{i_{1}=1}^{n} c_{i_{1}, j_{1}}\right)^{2}\right)^{1 / 2}
$$

and averaging over all $\epsilon^{(1)}, \epsilon^{(2)}, \ldots, \epsilon^{(k)}$, we get

$$
2^{k / 2} A v_{\epsilon}\left|\sum_{k}\right| \geq\left[\sum_{j_{1}, \ldots, j_{k}=1}^{n}\left(a_{\sigma^{(1)}\left(j_{j}\right), \ldots, \sigma^{(k)}\left(j_{k}\right)}\right)^{2}\left(\sum_{i=1}^{m} a_{j_{1}, \ldots, j_{k}}^{(i)} b_{\ell_{1}, \ldots, \ell_{k}}^{(i)}\right)^{2}\right]^{1 / 2}
$$

Hence,

$$
\begin{aligned}
& A v_{\epsilon} \int_{K_{\left(E^{\prime}\right)} / \pi}\left|\left\langle u^{\prime}\left(\vec{x}^{\prime}\right), \vec{g}_{\epsilon, \pi}(A)\right\rangle\right| d \vec{\mu}\left(\bar{x}^{\prime}\right) \geq \\
& \geq\left(\sqrt{2} \pi_{1}(T)\right)^{-k}\left[\sum _ { \ell _ { 1 } , \ldots , e _ { k } = 1 } ^ { n } \sum _ { j _ { 1 } , \ldots , j _ { k } = 1 } ^ { n } \left(a_{\left.\left.\left.\sigma^{(1)}\left(j_{1}\right), \ldots, \sigma^{(k)}\right)_{\left(j_{k}\right)}\right)\right)^{2}}^{n}\right.\right. \\
& \left.\quad \times\left(\sum_{i=1}^{m} a_{j_{1}, \ldots, j_{k}}^{(i)} b_{\ell_{1}, \ldots, \ell_{k}}^{(i)}\right)^{2}\right]^{1 / 2} .
\end{aligned}
$$

Now we shall average over all permutations, and use the fact that

$$
A v_{\pi}\left|a_{\left.\sigma^{(1)}\left(i_{1}\right), \ldots, \sigma^{(k)}\right)}^{j_{k} k}\right|=n^{-k} \sum_{i_{1}, \ldots, i_{k}}^{n}\left|a_{i_{1}, \ldots, i_{k}}\right|
$$

this gives the following estimate for I

$$
\begin{aligned}
& \left(n \sqrt{2} \pi_{1}(T)\right)^{k} I \geq \\
& \quad \geq \sum_{i_{1}, \ldots, i_{k}=1}^{n}\left|a_{i_{1}, \ldots, i_{k}}\right|\left[\sum _ { \ell _ { 1 } , \ldots , \ell _ { k } = 1 } ^ { n } \sum _ { j _ { 1 } , \ldots , j _ { k } = 1 } ^ { n } \left(\sum_{i=1}^{m} a_{j_{1}, \ldots, j_{k}}^{(i)}\right.\right. \\
& \left.\quad \times b_{\left.\ell_{1}, \ldots, \ell_{k}\right)^{2}}^{(i)}\right]^{1 / 2} \geq \sum\left|a_{i_{1}, \ldots, i_{k}}\right| m^{-1 / 2}|\operatorname{trace}(u)|
\end{aligned}
$$

the last inequality follows from Lemma 2 . The proof is completed by applying Proposition 1 for $p=\frac{1}{2}$ while noting that $\vec{g}_{\epsilon, \pi}(A)$ are norm-one elements of E_{ϵ}^{k} and the \vec{x}^{\prime} which appear in I are norm-one elements of the dual space $\left(E^{\prime}\right)_{\pi}^{k}$.

Lemma 4: With the notation of Lemma 3,

$$
\left(\sqrt{2} \pi_{1}(T)\right)^{k} \eta_{1 / 2}\left(E_{\epsilon}^{k}\right) \geq \sum\left|a_{i_{1}, i_{2}, \ldots, i_{k}}\right| .
$$

Proof: This follows immediately from Lemma 3 and the obvious inequality $\alpha(F) \alpha^{*}(F) \geq \operatorname{dim}(F)$ for any ideal norm α and finitedimensional space F.

We shall next use the following inequality due to S. Chevet [1], for the sake of completeness we include the proof. If $\left\{x_{i}\right\}_{i=1}^{n} \subset E$, we shall denote by $\epsilon_{2}\left(\left\{x_{i}\right\}\right)=\sup \left\{\left(\sum_{i=1}^{n}\left|\left\langle x_{i}, x^{\prime}\right\rangle\right|^{2}\right)^{1 / 2} ; x^{\prime} \in E^{\prime},\left\|x^{\prime}\right\|=1\right\}$.

Lemma 5: If $\left\{x_{i}\right\}_{i=1}^{n}$ and $\left\{y_{j}\right\}_{j=1}^{n}$ are elements in Banach spaces E and F respectively, and $g_{i, j}(i, j=1,2, \ldots, n)$ is a sequence of equidistributed, independent, orthonormal random Gaussian variables, then

$$
\begin{equation*}
\frac{\Lambda}{2} \leq E\left(\left\|\sum_{i, j} g_{i, j} x_{i} \otimes y_{j}\right\|_{E \hat{\otimes}_{\epsilon} F}\right) \leq \sqrt{2} \Lambda \tag{}
\end{equation*}
$$

where $\Lambda=\epsilon_{2}\left(\left\{y_{i}\right\}\right) \mathrm{E}\left(\left\|\Sigma_{i} g_{i, 1} x_{i}\right\|\right)+\epsilon_{2}\left(\left\{x_{i}\right\}\right) \mathrm{E}\left(\left\|\Sigma_{j} g_{j, 1} y_{j}\right\|\right)$.
Proof: Let $T=\left\{(\xi, \eta) ; \xi \in E^{\prime}, \eta \in F^{\prime},\|\xi\|=\|\eta\|=1\right\}$. For each $t=$ $(\xi, \eta) \in T$, define the random variables

$$
\begin{gathered}
X_{t}=\sum_{i, j} g_{i, j}\left\langle x_{i}, \xi\right\rangle\left\langle y_{j}, \eta\right) \quad \text { and } \\
Y_{t}=\alpha \sum_{j} g_{j, 1}\left\langle y_{j}, \eta\right\rangle+\beta \sum_{i} g_{i, 2}\left\langle x_{i}, \xi\right\rangle
\end{gathered}
$$

where $\alpha=\epsilon_{2}\left(\left\{x_{i}\right\}\right), \beta=\epsilon_{2}\left(\left\{y_{j}\right\}\right)$. It is easy to see that if $s=\left(\xi_{1}, \eta_{1}\right) \in T$, then

$$
\begin{aligned}
\mathbf{E}\left(\left|X_{t}-X_{s}\right|^{2}\right) & =\sum_{i, j}\left(\left\langle x_{i}, \xi\right\rangle\left\langle y_{j}, \eta\right\rangle-\left\langle x_{i}, \xi_{1}\right\rangle\left\langle y_{j}, \eta_{1}\right\rangle\right)^{2} \\
& =\sum_{i, j}\left(\left\langle x_{i}, \xi-\xi_{1}\right\rangle\left\langle y_{j}, \eta\right\rangle+\left\langle x_{i}, \xi_{1}\right\rangle\left\langle y_{j}, \eta-\eta_{1}\right\rangle\right)^{2} \\
& \leq 2 \sum_{i, j}\left(\left\langle x_{i}, \xi-\xi_{1}\right\rangle\left\langle y_{j}, \eta\right\rangle\right)^{2}+\left(\left\langle x_{i}, \xi_{1}\right\rangle\left\langle y_{j}, \eta-\eta_{1}\right\rangle\right)^{2} \\
& =2 \mathrm{E}\left(\left|Y_{t}-Y_{s}\right|^{2}\right)
\end{aligned}
$$

hence $\mathrm{E}\left(\left|X_{t}-X_{s}\right|^{2}\right) \leq 2 \mathrm{E}\left(\left|Y_{t}-Y_{s}\right|^{2}\right)$. By a result due to Sudakov ([2], Corollaire 2.1.3) this implies $E\left(v_{T} X_{t}\right) \leq \sqrt{2} E\left(\vee_{T} Y_{t}\right)$, from which the right hand side of $\left(^{*}\right)$ follows.

For the other side, pick $\xi_{0} \in E^{\prime},\left\|\xi_{0}\right\|=1$, such that $\alpha=\epsilon_{2}\left(\left\{x_{i}\right\}\right)$, and define the random variables $Z_{\eta}=\Sigma_{i, j} g_{i, j}\left\langle x_{i}, \xi_{0}\right\rangle\left\langle y_{j}, \eta\right\rangle$ and $W_{\eta}=$ $\alpha \sum_{j=1}^{n} g_{j, 1}\left\langle y_{j}, \eta\right\rangle$. Then

$$
\mathbf{E}\left(\left|Z_{\eta}-Z_{\eta_{1}}\right|^{2}\right)=\alpha^{2} \sum_{j}\left\langle y_{j}, \eta-\eta_{1}\right\rangle^{2}=\mathbf{E}\left(\left|W_{\eta}-W_{\eta_{1}}\right|^{2}\right)
$$

so again $\mathrm{E}\left(\sup _{\|\eta\|=1} Z_{\eta}\right)=\mathrm{E}\left(\sup _{\|\eta\|=1} W_{\eta}\right)$, but

$$
\begin{aligned}
& \mathbf{E}\left(\left\|\sum_{i, j} g_{i, j} x_{i} \otimes y_{j}\right\|_{E \hat{\otimes}_{\epsilon} F}\right) \geq \mathbf{E}\left(\left\|\sum_{i, j} g_{i, j}\left\langle x_{i}, \xi_{0}\right\rangle y_{j}\right\|\right) \\
& \quad=\mathbf{E}\left(\sup _{\|\eta\|=1} Z_{\eta}\right)=\mathbf{E}\left(\sup _{\|\eta\|=1} W_{\eta}\right) \\
& \quad=\alpha \mathbf{E}\left(\left\|\sum_{i} g_{i, 1} y_{i}\right\|\right), \quad \text { and similarly }, \geqq \beta \mathbf{E}\left(\left\|\sum_{i} g_{i, 1} x_{i}\right\|\right),
\end{aligned}
$$

hence the left side of (*).
ThEOREM 6: Let $\left\{e_{i}\right\}_{i=1}^{n}$ be a symmetric basis for a Banach space E, and let $T: E \rightarrow \ell_{2}^{n}$ be the natural basis to basis map. Then, if $E_{\epsilon}^{2^{k}}=$ $\underbrace{E \hat{\bigotimes}_{\epsilon} \boldsymbol{E} \hat{\bigotimes}_{\epsilon} \cdots \hat{\otimes}_{\epsilon} E}_{2^{k}}$

$$
\eta_{1 / 2}\left(E_{\epsilon}^{2 k}\right)\left(\left\|T^{-1}\right\| \pi_{1}(T)\right)^{2^{k}} \geq \sqrt{\frac{2}{\pi n}} n^{2^{k}} 2^{-3 k / 2-2^{k-1}}
$$

Proof: For each integer $k=1,2, \ldots$, let I_{k} denote a set consisting of $n^{2^{k}}$ elements, and let $\left\{b_{\nu}\right\}_{\nu \in I_{k}}$ denote the natural basis of $E_{\epsilon}^{2^{k}}$ (each b_{ν} has the form $e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{k}}$, where $\left.1 \leq i_{j} \leq n\right)$. Consider the random vectors of $E_{\epsilon}^{2^{k}}=E_{\epsilon}^{2^{k-1}} \hat{\otimes}_{\epsilon} E_{\epsilon}^{2^{k-1}}$ of the form $A^{k}=$ $\Sigma_{\alpha, \beta \in I_{k-1}} g_{\alpha, \beta} b_{\alpha} \otimes b_{\beta}$. By Lemma 5

$$
\mathrm{E}\left(\left\|A^{k}\right\|_{E_{\epsilon}^{2 k}}\right) \leq 2 \sqrt{2} \epsilon_{2}\left(\left\{b_{\alpha}\right\}_{\alpha \in I_{k-1}}\right) \mathrm{E}\left(\left\|A^{k-1}\right\|_{E_{\epsilon}^{2 k-1}}\right)
$$

Since $\left\{\bigotimes_{i=1}^{2^{k-1}} x_{i}^{\prime} ; x_{i}^{\prime} \in K_{E}\right\}$ is the set of extreme points of the unit ball of $\left(E_{\epsilon}^{2^{k-1}}\right)^{\prime}=\left(E^{\prime}\right)_{\pi}^{2^{k-1}}$, we have

$$
\begin{aligned}
& \epsilon_{2}\left(\left\{b_{\alpha}\right\}_{\alpha \in I_{k-1}}\right)=\sup \left\{\left(\sum_{i_{1}, \ldots, i_{2^{k}-1=1}}^{n}\left(\left\langle e_{i_{1}}, x_{1}^{\prime}\right\rangle \ldots\left\langle e_{i_{2} k-1}, x_{2^{k-1}}^{\prime}\right\rangle\right)^{2} ;\right.\right. \\
& \left.x_{i}^{\prime} \in K_{E^{\prime}}\right\}=\left[\sup \left\{\left(\sum_{i=1}^{n}\left\langle e_{i}, x^{\prime}\right\rangle^{2}\right)^{1 / 2} ; x^{\prime} \in K_{E^{\prime}}\right\}\right]^{2^{k-1}}=\left\|T^{-1}\right\|^{k-1},
\end{aligned}
$$

hence we get the reduction formula

$$
\mathrm{E}\left(\left\|A^{k}\right\|_{E_{\epsilon}^{k}}\right) \leq 2 \sqrt{2}\left\|T^{-1}\right\| \|^{k-1} \mathrm{E}\left(\left\|A^{k-1}\right\|_{E_{e}^{2 k-1}}\right)
$$

and so

$$
\mathbf{E}\left(\left\|A^{k}\right\|_{E_{e}^{2 k}}\right) \leq(2 \sqrt{2})^{k}\left\|T^{-1}\right\|^{2 k-1+2^{k-2}+\cdots+2^{0}} E\left(\left\|\sum_{i=1}^{n} g_{i} e_{i}\right\|_{E}\right)
$$

$$
\begin{aligned}
& =(2 \sqrt{2})^{k}\left\|T^{-1}\right\|^{k^{k-1}} E\left(\left\|\sum_{i=1}^{n} g_{i} e_{i}\right\|\right) \\
& \leq(2 \sqrt{2})^{k}\left\|T^{-1}\right\|^{k} E\left(\left(\sum g_{i}^{2}\right)^{1 / 2}\right) \\
& \leq(2 \sqrt{2})^{k}\left\|T^{-1}\right\|^{k} \sqrt{n} .
\end{aligned}
$$

On the other hand, $E\left(\sum_{\alpha, \beta \in I_{k-1}}\left|g_{\alpha, \beta}\right|\right)=\sqrt{2 / \pi} n^{2^{k}}$, hence

$$
\begin{gathered}
\sup \left(\sum\left|a_{i_{1}, \ldots, i_{2} k}\right| /\left\|\sum a_{i_{1}, \ldots, i_{2} k} e_{i_{1}} \otimes \cdots \otimes e_{i_{2} k}\right\|_{E_{\epsilon}^{2^{k}}}\right) \\
\geq \mathrm{E}\left(\sum_{\alpha, \beta \in I_{k-1}}\left|g_{\alpha, \beta}\right|\right) / \mathrm{E}\left(\left\|A^{k}\right\|\right) \\
\geq \sqrt{\frac{2}{\pi}} n^{2^{k}} /(2 / \sqrt{2})^{k} \sqrt{n}\left\|T^{-1}\right\|^{2^{k}},
\end{gathered}
$$

and the inequality of Lemma 4 establishes the Theorem.

Remark: More generally, the same proof can show that if E_{i} ($i=1,2, \ldots, 2^{k}$) are n_{i}-dimensional spaces with symmetric bases, and if $T_{i}: E_{i} \rightarrow \ell_{2}^{n_{i}}$ are the natural basis to basis maps, then for $F=$ $E_{1} \hat{\otimes}_{\epsilon} E_{2} \hat{\otimes}_{\epsilon} \cdots \hat{\otimes}_{\epsilon} E_{2^{k}}$,

$$
\eta_{1 / 2}(F) \prod_{j=1}^{2^{k}}\left\|T_{j}^{-1}\right\| \pi_{1}\left(T_{j}\right) \geq \sqrt{2 / \pi} \prod_{j=1}^{2^{k}} n_{j} / 2^{k / 2+2^{k-1}}\left(\sum_{j=1}^{2^{k}} \sqrt{n_{j}}\right)
$$

It is not essential that 2^{k} spaces appear in F, however, if the number is not 2^{k} then the bottom line on the right hand side of the inequality will be different.

Example: If $E=\ell_{2}^{n}$, then $\left\|T^{-1}\right\|=1, \pi_{1}(T) \leq \sqrt{\pi n / 2}$ [5], hence if $E_{N}=\underbrace{\ell_{2}^{n} \hat{\otimes}_{\epsilon} \cdots \hat{\otimes}_{\epsilon} \ell_{2}^{n}}_{2^{k}}$ where $N=n^{2^{k}}$,

$$
\eta_{1 / 2}\left(E_{N}\right) \geq \sqrt{2 / \pi} \sqrt{n^{2 k}} /(\sqrt{\pi})^{2 k} 2^{3 k / 2} \sqrt{n} \geq a \sqrt{N} e^{-\sqrt{\log N}}
$$

where $a>0$ is constant, and k, n are chosen in an appropriate relation to N. If $0<p<\frac{1}{2}$, then $\eta_{p}\left(E_{N}\right) \geq N^{p-1 / 2} \eta_{1 / 2}\left(E_{N}\right) \geq a N^{p} e^{-V \log N} \rightarrow \infty$ as $N \rightarrow \infty$.

Corollary 7: If E is an n-dimensional normed space such that $d\left(E, \ell_{2}^{n}\right)<(n / \pi)^{1 / 2}$, then $\eta_{1 / 2}\left(E_{\epsilon}^{k}\right) \rightarrow \infty$ as $k \rightarrow \infty$.

Proof: First observe that if $k>\ell$ then E_{ϵ}^{ℓ} is isometric to a norm one-complemented subspace of E_{ϵ}^{k}, therefore the ideal property of the norm $\eta_{1 / 2}$ implies that $\eta_{1 / 2}\left(E_{\epsilon}^{k}\right), k=1,2, \ldots$, is a nondecreasing sequence. Clearly $d\left(E_{\epsilon}^{k},\left(\ell_{2}^{n}\right)_{\epsilon}^{k}\right) \leq\left(d\left(E, \ell_{2}^{n}\right)\right)^{k}$, hence using the estimates for $\eta_{1 / 2}\left(\left(\ell_{2}^{n}\right)_{\epsilon}^{2 k}\right)$ we obtain

$$
\eta_{1 / 2}\left(E_{\epsilon}^{2 k}\right) \geq \eta_{1 / 2}\left(\left(\ell_{2}^{n}\right)_{\epsilon}^{2^{k}}\right) /\left(d\left(E, \ell_{2}^{n}\right)\right)^{2^{k}} \geq \sqrt{2 / \pi}\left(\frac{\sqrt{n / \pi}}{d\left(E, \ell_{2}^{n}\right)}\right)^{2^{k}} / 2^{3 k / 2} \sqrt{n}
$$

which tends to ∞ with k.

Remarks: (1) It may be true that $\eta_{1 / 2}\left(E_{\epsilon}^{k}\right) \rightarrow \infty$ as $k \rightarrow \infty$ whenever $d\left(E, \ell_{2}^{n}\right)<\sqrt{n}$. It is obviously false if $d\left(E, \ell_{2}^{n}\right)=\sqrt{n}$, as in the case $E=\ell_{\infty}^{n}$.
(2) If $1<q<\infty$, and $c>\left|\frac{1}{2}-1 / q\right|$, there exists N such that if $n \geq N$ and E is any m-dimensional subspace of $L_{q}(\mu)$, then $\eta_{c}\left(E_{\epsilon}^{k}\right) \rightarrow \infty$ as $k \rightarrow \infty$. The reason for this is that $d\left(E, \ell_{2}^{n}\right) \leq n^{|1 / 2-1 / q|}$ by [13], so if $c \leq \frac{1}{2}$

$$
\eta_{c}\left(E_{\epsilon}^{2 k}\right) \geq{ }^{(c-1 / 2)^{2}} \eta_{1 / 2}\left(E_{\epsilon}^{2 k}\right)
$$

which tends to ∞ by applying the inequality in the proof of Corollary 7.

Theorem 8: There exists a reflexive separable Banach space E with both $\eta_{p}(E)$ and $\eta_{p}^{* *}(E)$ infinite for all values of $p>0$.

Proof: Let E_{N} be the space in the Example, and let $E=$ $\left(\Sigma_{i=1}^{\infty} \bigoplus E_{N_{i}}\right)_{\ell_{2}}$ where $N_{i} \rightarrow \infty, N_{i}=\left(n_{i}\right)^{2_{i}}$, which the proper relation maintained between n_{i} and k_{i} with N_{i}. Since $E_{N_{i}}$ is norm one complemented in E, it follows that

$$
\eta_{p}(E) \geq \eta_{p}^{* *}(E) \geq \eta_{p}^{* *}\left(E_{N_{i}}\right)=\eta_{p}\left(E_{N_{i}}\right) \geq a N_{i}^{p} \exp \left(-\sqrt{\log N_{i}}\right) \xrightarrow[i \rightarrow \infty]{ } \infty
$$

In order to estimate $\pi_{1}(T)$ for general spaces it may be useful to apply the following proposition.

Proposition 9: For any $0<p, q, r<\infty$ there exist constants $a_{r, q}$, $b_{p, q}>0$ such that for any Banach space E and any operator $T: E \rightarrow \ell_{2}^{n}$
(1) $b_{p, q}^{-1} \pi_{p}(T) \leq \sqrt{n}\left(\int_{S_{n}}\left\|T^{\prime} x\right\|^{q} d m(x)\right)^{1 / q} \leq a_{r, q}^{-1} \pi_{r}\left(T^{\prime}\right)$, where $S_{n}=$ $\left\{x \in \ell_{2}^{n} ;\|x\|_{2}=1\right\}$ and $d m(x)$ is the rotation invariant normalized measure on S_{n}.
(2) If E^{\prime} is a subspace of an L_{s}-space, $1 \leq s<\infty$, and if $0<p \leq s \leq$ $r<\infty$ and $0<q<\infty$, the inequalities of (1) becomes equivalence relations and the constants of equivalence are independent of n, T and E.
(3) If $\operatorname{dim}(E)=n$ and E has a symmetric basis and $T: E \rightarrow \ell_{2}^{n}$ is the basis to basis map, then all the values $I_{q}=\left(\int_{S_{n}}\left\|T^{\prime} x\right\|^{q} d m(x)\right)^{1 / q}(0<$ $q<\infty$) are equivalent and the constants of equivalence are independent of n and E.

Proof: (1) By [14] there exists a probability measure μ on S_{n} such that for all $x \in \ell_{2}^{n}$

$$
\left\|T^{\prime} x\right\| \leq \pi_{q}\left(T^{\prime}\right)\left(\int_{S_{n}}\left|\left\langle x, x^{\prime}\right\rangle\right|^{q} d \mu\left(x^{\prime}\right)\right)^{1 / q}
$$

hence by integrating with respect to $d m$

$$
I_{q} \leq \pi_{q}\left(T^{\prime}\right)\left(\int_{S_{n}} \int_{S_{n}}\left|\left\langle x, x^{\prime}\right\rangle\right|^{q} d \mu\left(x^{\prime}\right) d m(x)\right)^{1 / q}=\pi_{q}\left(T^{\prime}\right) / \pi_{q}\left(\ell_{2}^{n}\right)
$$

since $\left(\int_{S_{n}}\left|\left\langle x, x^{\prime}\right\rangle\right|^{q} d m(x)\right)^{1 / q}=\left\|x^{\prime}\right\|_{2}\left(\pi_{q}\left(\ell_{2}^{n}\right)\right)^{-1} \quad$ [5]. Since $\pi_{q}\left(\ell_{2}^{n}\right) \sim \sqrt{n}$, and $\pi_{q}\left(T^{\prime}\right)$ is a non-increasing function of q, and I_{q} is a nondecreasing function of q, the right hand side of (1) readily follows.

Without loss of generality we may assume that T^{\prime} is a $1-1$ map, and define the probability measure ν on the unit ball $B_{E^{\prime}}$ of E^{\prime} by

$$
\int_{B_{E^{\prime}}} f d \nu=\int_{S_{n}} f\left(T^{\prime} x\left\|T^{\prime} x\right\|\right)\left\|T^{\prime} x\right\|^{q} d m(x) / \int_{S_{n}}\left\|T^{\prime} x\right\|^{a} d m(x)
$$

for $f \in C\left(B_{E^{\prime}}\right)$. Taking $f=|\langle\xi, \cdot\rangle|^{q}$ where $\xi \in E$, we obtain

$$
\begin{aligned}
\int_{B_{E^{\prime}}}\left|\left\langle\xi, x^{\prime}\right\rangle\right|^{a} d \nu\left(x^{\prime}\right) & =\int_{S_{n}}|\langle T \xi, x\rangle|^{q} d m(x) / \int_{S_{n}}\left\|T^{\prime} x\right\|^{a} d m(x) \\
& =\|T \xi\|^{a} /\left(\pi_{q}\left(\ell_{2}^{n}\right)\right)^{q} \int_{S_{n}}\left\|T^{\prime} x\right\|^{q} d m(x),
\end{aligned}
$$

therefore, $\pi_{q}(T) \leq \pi_{q}\left(\ell_{2}^{n}\right)\left(\int_{S_{n}}\left\|T^{\prime} x\right\|^{q} d m(x)\right)^{1 / q}$, and as above this proves the left hand side of (1).
(2) Let $j: E^{\prime} \rightarrow L_{s}$ be an isometric embedding, then by [12] $\pi_{s}\left(j T^{\prime}\right) \leq$ $\pi_{s}\left(\left(j T^{\prime}\right)^{\prime}\right)$, that is

$$
\pi_{s}\left(T^{\prime}\right)=\pi_{s}\left(j T^{\prime}\right) \leq \pi_{s}\left(T^{\prime \prime} j^{\prime}\right) \leq \pi_{s}\left(T^{\prime \prime}\right)=\pi_{s}(T)
$$

and (2) follows from the inequalities

$$
\begin{aligned}
\pi_{s}\left(T^{\prime}\right) & \leq \pi_{s}(T) \leq \pi_{p}(T) \leq b_{p, q} \sqrt{n} I_{q} \leq b_{p, q} a_{r, q}^{-1} \pi_{r}\left(T^{\prime}\right) \\
& \leq b_{p, q} a_{r, q}^{-1} \pi_{s}\left(T^{\prime}\right)
\end{aligned}
$$

(3) Set $|x|_{E^{\prime}}=\left\|T^{\prime} x\right\|$ for vectors $x \in \ell_{2}^{n}=\left(R^{n},\|\cdot\|_{2}\right)$. Since E is symmetric, by [10] $\|T\|\left\|T^{-1}\right\|=d\left(E, \ell_{2}^{n}\right)$, and $d\left(E, \ell_{2}^{n}\right) \leq \sqrt{n}$, so $a\|x\|_{2} \leq$ $|x|_{E^{\prime}} \leq b\|x\|_{2}$ for all $x \in \ell_{2}^{n}$, where $b / a \leq \sqrt{n}$. From the remark following Lemma 2.7 in [4], the values $I_{q}=\left(\int_{S_{n}}|x|_{E^{\prime}}^{q} d m(x)\right)^{1 / q}(0<q<\infty)$ are all equivalent to the Levy mean M^{*}, which is by definition the unique number such that $m\left(\left\{x \in S_{n} ; \quad|x|_{E^{\prime}} \leq M^{*}\right\}\right) \leq \frac{1}{2}$ and $m\left(\left\{x \in S_{n}\right.\right.$; $\left.\left.|x|_{E^{\prime}} \geq M^{*}\right\}\right) \leq \frac{1}{2}$, that is, there exist absolute positive constants a_{q}, b_{q} such that $a_{q} M^{*} \leq I_{q} \leq b_{q} M^{*}$.

Corollary 10: If $\operatorname{dim}(E)=n$, there are absolute constants $a, b>0$ such that for any $T: E \rightarrow \ell_{2}^{n}$

$$
a \pi_{1}(T) \leq \sqrt{ } \bar{n} \int_{S_{n}}\left\|T^{\prime} x\right\| d m(x) \leq b \pi_{1}(T) \sqrt{\ln n} x_{u}(E)
$$

Proof: Let γ_{p} denote the best factorization through an L_{p}-space norm [9]. Interpolation technique as in Theorem 7 [11] shows that $\pi_{p}\left(T^{\prime}\right) \leq n^{1 / p} \gamma_{\infty}\left(T^{\prime}\right)$. Since $\quad \gamma_{\infty}\left(T^{\prime}\right)=\gamma_{1}(T) \leq x_{u}(E) \pi_{1}(T) \quad[7], \quad$ and $\pi_{p}\left(\ell_{2}^{n}\right) \geq c \sqrt{n / p}$ [5], we obtain

$$
\begin{aligned}
\int_{S_{n}}\left\|T^{\prime} x\right\| d m(x) & \leq\left(\int_{S_{n}}\left\|T^{\prime} x\right\|^{p} d m(x)\right)^{1 / p} \leq \pi_{p}\left(T^{\prime}\right) / \pi_{p}\left(\ell_{2}^{n}\right) \\
& \leq \sqrt{p / n} c^{-1} n^{1 / p} \pi_{l}(T) x_{u}(E)
\end{aligned}
$$

and the estimate follows by taking $p=\ln n$, and from Proposition 9 .

Corollary 11: Let $E_{N}=\underbrace{\ell_{p}^{n} \hat{\otimes}_{\epsilon} \cdots \hat{\otimes}_{\epsilon} \ell_{p}^{n}}_{2^{k}}, \quad N=n^{2^{k}}$, where $1 \leq$ $p \leq 2$. There exists $b>0$, such that $\eta_{1 / 2}\left(E_{N}\right) \geq b \sqrt{N} e^{-\sqrt{\log N}}$ for the proper relation between n, k with N.

Proof: Factor $T: \ell_{p}^{n} \xrightarrow{A} \ell_{1}^{n} \xrightarrow{B} \ell_{2}^{n}$, where A, B are the inclusions. Then $\left\|T^{-1}\right\|=n^{1 / p-1 / 2}$, and $\pi_{1}(T) \leq\|A\| \pi_{1}(B)=\sqrt{2} n^{1-1 / p}$, since $\pi_{1}(B)=$ $\sqrt{2}$ is the Khintchine constant. Therefore, $\left\|T^{-1}\right\| \pi_{1}(T) \leq \sqrt{2 n}$. The proof is concluded as in the Example following Theorem 6.

Remark: Since the distance between E_{ϵ}^{k} and $\left(\ell_{p}^{n}\right)_{\epsilon}^{k}$ is $\leq\left(d\left(E, \ell_{p}^{n}\right)\right)^{k}$, it follows from the estimates of Corollary 10, Theorem 6 and the inequality

$$
\eta_{1 / 2}\left(E_{\epsilon}^{k}\right) \geq \eta_{1 / 2}\left(\left(\ell_{p}^{n}\right)_{\epsilon}^{k}\right)\left(d\left(E, \ell_{p}^{n}\right)^{-k}\right.
$$

that if E is any n-dimensional Banach space such that $\inf _{1 \leq p \leqslant 2} d\left(E, \ell_{p}^{n}\right)<\sqrt{n} / 2$, then $\eta_{1 / 2}\left(E_{\epsilon}^{2^{k}}\right) \rightarrow \infty$ as $k \rightarrow \infty$.

Denote by $r_{i}(t)$, the i-th Rademacher function on $[0,1]$.
Corollary 12: Let $1<p \leq 2 \leq q<\infty, 1 / p<1 / q+\frac{1}{2}$. Assume F is a Banach space of type p and cotype q. Then, for any c satisfying $c>1 / p-1 / q$, there exists an integer N such that if $n>N$ and if E is any n-dimensional symmetric subspace of F, then $\eta_{c}\left(E_{\epsilon}^{k}\right) \rightarrow \infty$ as $k \rightarrow \infty$.

Proof: Let α be the type- p constant and β be the cotype- q constant of F respectively. Let $\left\{e_{i}\right\}_{i=1}^{n}$ denote the symmetric basis of a subspace $E \subset F$, and $\left\{e_{i}^{\prime}\right\}_{1}^{n}$ be the biorthogonal functionals. The inequality

$$
\left(\sum_{i}^{n} \mid \xi_{i} \dot{q}^{\dot{q}}\right)^{1 / q} \leq \beta \int_{0}^{1}\left\|\sum_{i=1}^{n} \xi_{i} r_{i}(t) e_{i}\right\| d t=\beta\left\|\sum_{i=1}^{n} \xi_{i} e_{i}\right\|
$$

implies that $\left\|\Sigma \xi_{i} e^{\prime}\right\| \leq \beta\|\xi\|_{q^{\prime}}$. By Proposition 9

$$
\begin{aligned}
b_{1, q^{\prime}}^{-1}, n^{-1 / 2} \pi_{1}(T) & \leq\left(\int_{S_{n}}\left\|T^{\prime} x\right\|^{q^{\prime}} d m(x)\right)^{1 / q^{\prime}} \leq \beta\left(\int_{S_{n}}\|\xi\|_{q^{\prime}}^{q^{\prime}} d m(\xi)\right)^{1 / q^{\prime}} \\
& =\beta n^{1 / q^{\prime}}\left(\pi_{q^{\prime}}\left(\ell_{2}^{n}\right)\right)^{-1}
\end{aligned}
$$

hence $\pi_{1}(T) \leq \beta c_{q} n^{1 / q^{\prime}}$, where $c_{q}>0$ is constant. Select scalars $\left\{x_{i}\right\}_{i=1}^{n}$ so that $\Sigma x_{i}^{2}=1$ and $\left\|T^{-1}\right\|=\left\|\Sigma x_{i} e_{i}\right\|$. Then,

$$
\left\|T^{-1}\right\|=\int_{0}^{1}\left\|\sum x_{i} r_{i}(t) e_{i}\right\| d t \leq \alpha\|x\|_{p} \leq \alpha n^{1 / p-1 / 2}
$$

therefore $\left\|T^{-1}\right\| \pi_{1}(T) \leq \alpha \beta c_{q} n^{1 / p-1 / q+1 / 2}$. Combining this with the inequality $\eta_{c}\left(E_{\epsilon}^{2 k}\right) \geq \eta_{1 / 2}\left(E_{\epsilon}^{2 k}\right)\left(n^{2 k}\right)^{c-1 / 2}$, and Theorem 6, establishes that for $c>1 / p-1 / q$ and n sufficiently large, $\eta_{1 / 2}\left(E_{\epsilon}^{2 k}\right)\left(n^{2^{k}}\right)^{c-1 / 2} \rightarrow \infty$ as $k \rightarrow \infty$.

REFERENCES

[1] S. Chevet: Series de variables aleatoires Gaussiens a valeurs dans $E \hat{\otimes}_{\epsilon} F$. Applications aux produits d'espaces de Wiener abstraits. Seminaire MaureySchwartz (1977-78) expose XIX.
[2] X.M. Fernique: Regularite des trajectoires des fonctions aleatoires Gaussiens, Lecture Notes in Math. 480 (1975), Springer Verlag, 1-96.
[3] T. Figiel, S. Kwapien and A. Pelcynski: Sharp estimates for the constant of local unconditional structure of Minkowsky spaces, Bull. Acad. Polon. Sci. 25 (1977) 1221-1226.
[4] T. Figiel, J. Lindenstrauss and V.D. Milman: The dimension of almost spherical sections of convex bodies. Acta. Math. 139 (1977) 53-94.
[5] Y. GORDON: On p-absolutely summing constants of Banach spaces, Israel J. Math. 7 (1969) 151-163.
[6] Y. Gordon: Unconditional Schauder decomposition of normed ideals of operators between some ℓ_{p} spaces, Pacific J. Math. 60 (1975), 71-82.
[7] Y. GORDON and D.R. LEWIS: Absolutely summing operators and local unconditional structures, Acta Math. 133 (1974) 27-48.
[8] Y. Gordon and D.R. Lewis: Banach ideals on Hilbert spaces, Studia Math. 54 (1975) 161-172.
[9] Y. Gordon, D.R. Lewis and J.R. Retherford,, Banach ideals of operators with applications, J. Funct. Anal. 14 (1973) 85-129.
[10] W.B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri: Symmetric structures in Banach spaces, Memoirs Amer. Math. Soc., 1979, Vol. 19, Number 217.
[11] J.L. Krivine: Theorems des factorisation dans les espaces reticules, Seminaire Maurey-Schwartz, Expose XXII et XXIII, 1974.
[12] S. Kwapien: On a theorem of L. Schwartz and its applications to analysis, Studia Math. 38 (1969) 193-201.
[13] D.R. LewIs: Finite-dimensional subspaces of L_{p}, Studia Math. 63 (1978) 207-212.
[14] A. Pietsch: Absolut p-summierende Abbildungen in normierten Räumen, Studia Math. 28 (1967) 333-353.
[15] G. Pisier: Some results on Banach spaces without local unconditional structure, Seminaire Maurey-Schwartz.
[16] S. RISNER: The G.L. property (Technion preprint, 1977).
[17] S.J. Szarek: On the best constants in the Khintchine inequality, Studia Math. 58 (1976) 197-208.
(Oblatum 27-VII-1978 \& 19-III-1979)
The Ohio State University
Columbus, Ohio 43210
and
The Technion-Israel Institute of Technology
Haifa, Israel

