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Abstract

There are Banach spaces which fail to have p-local unconditional
structure (p-l.u.st.) for any p, ~ &#x3E; p &#x3E; 0. In particular, there exist
n-dimensional Banach spaces En, n = 1, 2,..., whose p-l.u.st. con-
stants are "almost" the largest possible theoretical value min{n1/2, np}.
The p-l.u.st. constant is smaller and not equivalent to the usual l.u.st.
constant.

1. Introduction

Given any ~ &#x3E; p ~ 0, let 7yp be the ideal norm defined in the

following manner: If T E L(E, F) is a bounded operator from a
Banach space E to a Banach space F which can be written the form

Tx = 03A3i~1 Aix (x E E), where Ai (i = 1, 2,...) are in the class F(E, F)
of the finite-rank operators from E to F, then

where r(A) denotes the rank of an operator A, the supremum ranges
over all choices of ± signs and integers N, and the infimum is taken
over all the possible representations of the operator T.

T7p(T) is a non-decreasing function of p, and qp is a Banach ideal

norm, that is has the following properties:
(1) Tlp is a norm and ~p(E,F)={T~(E,F);~p(T)~} is a

Banach space under the norm l1p.

* Supported in part by NSF-MCS 77-04174.

0010-437X/80/05/0189-18$00.20/0



190

(2) ’TJp(T) = )) T)) whenever r(T) = 1.
(3) If u E L(G, E), T ~ np (E, F), v E L(F, H), then vTu E q, (G, H)

and ~p(vTu)~~v~~u~~p(T).
We recall some well known facts about a general Banach ideal

norm a which may be found in [9]. If T E L(E, F), the adjoint ideal
norm 03B1*(T) is defined as the least C such that the inequality

holds for any finite-dimensional normed spaces X and Y, u E

L(X, E), v E L(F, Y) and S E L( Y, X). If X and Y are finite-dimen-
sional normed spaces, the dual space (a(X, Y))’ can be naturally
identified with 03B1a*(Y,X)=(L(Y,X),03B1*) via the identity ~T, S) =
trace(ST) for T E a(X, Y), S E a*(Y, X). Hence, if T E L(E, F),
a**(T) = sup a(vTu), where the supremum ranges over all finite-

dimensional normed spaces X and Y, u E L(X, E) and v E L(F, Y)
with Ilull = livil = 1. From this we get immediately that ~**p(T) = ~**p(T’)
for every operator T E L(E, F).

If in the definition of 71p(T), T is f urther restricted only to

representations for which r(Ai) = 1 for all i, then the corresponding
resulting norm which is independent of p was called in [8] the weakly
nuclear norm of T and denoted by ~(T). It follows that ~·~~~p~
~q ~ ~ for 0 ~ p  q  ~, and since ~0 = ~·~ on finite dimensional

spaces, taking double adjoints we obtain ~**0 = ~·~** = ~·~ ~ ~**p ~
~**q ~ ~**.
Using ultraproducts it can be shown (see for example [16]) that

T ~ ~**(E, F) if and only if jFT factors through some Banach lattice,
more precisely, 71**(T) = inf~v~~u~, where the infimum ranges over all
Banach lattices L and u E L(E, L), v E L(L, F"), satisfying jFT = vu,
where jF : F ~ F" is the canonical inclusion. Thus, if T is a map on,
or, into, a norm one complemented subspace of a Banach lattice, then
~T~ = ~**p(T) = ~**(T). If T = IE the identity operator on a Banach
space E, 71**(lE) is generally better known as the local unconditional
structure (l.u.st.) constant of E which is usually denoted by xu (E) [7].
If a is an ideal norm, 03B1(E) denotes 03B1(IE). For p &#x3E; 0, ~**p(E) will be
called the p-l.u.st. constant of E. x(E) will denote the unconditional
basis constant of E.

If dim(E) = n and 0 s p  q  00, then trivially we get from the
definitions

1 :5 71p(E):5 71q(E):5 ~(E) = xu(E) s x(E) s d(E, fi) s n,

and also, since r(Ai) ~ n, 71q(E):5 nq-p~p(E). Moreover, the represen-
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tation IE = IE shows that ~p(E) ~ nP, thus ~p(E) ~ min{n1/2, nP} f or all
p ~ 0.
The main result hère shows that the last inequality is asymptotically

"almost" the best possible. There exists a séquence En, n = 1, 2, ...,
of n-dimensional spaces for which ~p(En) ~
min{an1/2, anp}exp(-log n) where a is an absolute positive con-
stant. Since the exponential f actor tends to zéro more slowly than any
négative power of n, this implies that if p ~ q and 0  p  t then np
and q, are not équivalent idéal norms, and in particular np and q are
not équivalent ideal norms. Since ~p(En)~~ as n ~ ~, this also

implies there exists a reflexive separable Banach space which fails to
have p-l.u. st. f or all p &#x3E; 0.

Regarding xu it was proved in [3] that there is an absolute constant

c &#x3E;0 and a séquence of spaces Fn, dim(Fn) = n, such that xu(Fn) ~
cn. Our re sult theref ore is of intere st f or the smaller p-l.u. st.
constants ~p. We do not know if ~p(E) can be asymptotically
équivalent to min{n1/2, np} for a séquence of spaces En, dim(En) = n. It
is also an open question whether for q &#x3E; p ~ 1 2 np(E) and nq(E) are
always équivalent when dim(E)  00; the same question is also open
for the constants xu(E) and x(E). It was proved recently by Johnson,
Lindenstrauss and Schechtman, that there exists a Banach spaces E
with x.(E) = 00, that is E does not have local unconditional structure,
yet E has an unconditional Schauder décomposition into 2-dimen-
sional spaces. This f act implies that xu (E) and ~p(E) are not

équivalent since ~p(E) is finite for such spaces. Also unknown is
whether many of the spaces which fail l.u.st. also fail p-l.u.st. for
some p &#x3E; 0. Does Lq(~ &#x3E; q ~ 1) have a subspace without p-l.u.st.? G.
Pisier proved that if p &#x3E; 2, Lq has a subspace without l.u.st. (See [15]
for q &#x3E; 4; f or 2  q we know of an unpublished proof).
To obtain the lower estimâtes f or ~p(Bn) we use the charac-

terization of the adjoint norm ~*p proved in the next section and an
inequality due to S. Chevet which was communicated to us by G.
Pisier who has used the inequality to prove that l.u.st. constant xu of

~n1~ ~n103B5 ··· ~~n1 is bigger than CaNa, where N = n2k and n, k are

chosen in some appropriate relation to N, and where a is any scalar
2 and Ca &#x3E; 0 is a constant depending only on a.
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2. p-local unconditional structure

A characterization of ~*p is given by the following proposition.

PROPOSITION 1: If p, C are non-negative constants and T ~

L(E, F), then the following statements are equivalent :
(1) ~*p(T)~C.

(2) 03A3ni=1 trace(TAi) ~ C max~03A3ni=1 ± (r(Ai))pAi~ for any choice of

{Ai}ni= 1 ~ F(F, E).
(3) If KE’ denotes the w*-closure of the extreme points of the unit

ball of E’ equipped with the w* topology, there exists a probability
measure on the compact topological product space K = KE’ X KF--
such that for every A E F(F, E) holds the inequality

PROOF: Let Ci (i = 1, 2, 3) denote a constant C which appears in
the inequality of statement (i). Let X, Y be finite-dimensional spaces
and e &#x3E; 0, and let S = 03A3ni=1 Ai where A; E L(Y, X) are chosen to satis-
fy (1 + ~)~p(S) ~ max±~03A3 ± (r(Ai))pAi~. Then, f or any u E L(X, E), v E
L(F, Y), we get

this implies inf CI :5 C2(1 + e), therefore inf C1 ~ inf C2.

Given arbitrary B; E F(F, E), i = 1, 2,..., n,

hence inf C2 ~ C3.



193

If A ~ F(F, E), let Ã E C(K) be the function defined by:
A(x’, y") = (A’(x’), y")(r(A»P, and denote by M the convex hull of the
set {C2Ã; A ~ F(F, E), trace( TA) = 1}. Statement (2) implies that M is
disjoint from the set N = if E C(K), f  1} which is also convex and
contains the open unit ball of C(K), therefore there exists a probability
measure JL E M(K) = (C(K))’ such that 1£(g) 1 for all g E M, this
shows that inf C3 ~ C2.

Let now {Ai}ni=1 ~ F(F, E), and consider the space X = span{Ai(y);
y E F, i = 1, 2,..., n}. Let u : X - E be the inclusion map, and S =

1 Ai be the map of F into X, S’ maps X’ to F’ and (S’)a will denote
the map S’ of X’ onto S’(X’). Let j be the inclusion of S’(X’) in F’,
then v = j’ jF maps F to Y = (S’(X’))’. Both X and Y are now
finite-dimensional spaces, and

the last inequality is because Ilull = Ilvll = 1 and the f act that if we

denote by Âi the operator A’i considered as a map of Y to X, then

(S’)â = 03A3ni=1 Ãi and so

Therefore, inf C2 ~ Ci, and the proof is complète. D

We need a preliminary lemma which was used in [6].

LEMMA 2: If xi, yi, i = 1, 2,...,m, are arbitrary vectors in
then n 03A3mi=1 03A3mj=1 (Xi, yj~2 ~ (03A3mi=1 ~xi, Yi»2.

PROOF: Without loss of generality we can assume {yi}mi=1 are fixed
such that the operator T = 03A3mi=1 yi ~ yi has rank n. We shaH maximize
the function f(x1, x2,...,xm) = 03A3mi=1 ~xi, yi~ subject to the constraint

03A3mi=1 03A3mj=1 (Xi, yj~2 = 1. At the maximum point, the function
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satisfies ~~/~xik = 0, where Xi = (xik)nk=1. This yields yi =

2A 03A3mj=1 1 (xi, yj~yj = 203BB T(xi), hence f = I7’=1 (Xi, yi~ = 203BB 03A3mi= 1 03A3mj=1 ~xi, yj~2 =
2À. T = 03A3mi=1 yi ~ Yi = 203BB 03A3mi=YiQ9 Txi, theref ore Ie. = 203BB 03A3mi=1 xi ~ Yi and
taking trace, n = 203BB 03A3mi=1 ~xi, yi~ = 4À 2, so that 2À = n. ~

Given Banach spaces E and Flet E~ F denote the completion of
the tensor product space EQ9 F under the E-norm, that is the ordinary
norm induced on it as a subspace of L(E’, F). E~03C0 F denotes the
completion of EQ9 F under the 1T-norm, that is, on EQ9 F the norm
’./7T is defined as

If k is a positive integer, Ek~ will dénote the space E 0E E 0E ... ~E,

and for {xi}ki=1 C E, je = ~ki=1 xi = xl Q9 x2~··· Q9 xk will be a k tensor
in Ek~. If M,eL(B,E) are isometries on E (i = 1, 2,..., k), let  =

~ki=1 Ui = Mi Q9 u2~··· Q9 uk be the isometry of EÉ defined by: () =
~ki=1 ui(xi). This définition makes ü also an isometry on Ek03C0 =
E03C0 ~··· 03C0E. We shall dénote by 7Tp (1 s p  00) the p-absolutely

summing ideal norm [14].

LEMMA 3: Let E have a normalized symmetric basis {ei}ni=1, and let

T : E ~ ~n2 be the basis to basis map, T(ei) = (0, 1, 0,..., 0),

i = 1, 2, ..., n. Let A = 03A3ni1=1...03A3nik be any
norm -one element in EÉ, then

PROOF: By Pietsch [14] there exists a probability measure JL on KE-
such that for every x = 03A3ni=1 1;e; E E

Let du = d03BC x di£ x... x du be the product measure on the set of

extrême points of the unit ball of (Ek~)’ = (E’)k03C0,
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Let u = 03A3mi=1 Ai ~ Bi be any rank-m operator in L(Ek~, Ek~), where
Ai E (E’)’ and Bi E EÉ. Suppose Ai and Bi have the representations

Let ~(i) = (~(i)j)nj=1, ~(i)j = ± 1, i = 1, 2, ..., k, j = 1, 2,..., n, and gE(i) be
the isometry of E defined by g~(i)(ej) = ~(i)jej. Let 7T(i) be any per-
mutation of the integers {1, 2,..., n}, and g03C0(i) be the isometry of E
defined by g03C0(i)(ej) = e03C0(i)(j). Set gi = gE(i)g1T(i), and let g~,03C0 = ~ki=1 gi be the
isometry of EÉ.
Denote by Av, and AV1T the averages with respect to signs and

permutations, that is, if f(~(1), ..., ~(k)) is a real function then

where the sum is taken over all possible distinct elements

(~(1), e(2), ..., ~(k)); and similarly for a function h (03C0(1), ..., 7T(k»

where the sum ranges over all (n!)’ possible choices of

(03C0(1), 03C0(2),..., 03C0(k)).
We shall find a lower bound for the integral

which will give the claim of the lemma. First observe that
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Integrating with respect to d03BC(x’1) first we get

where

Next, integrating with respect to d03BC(x’2) and using the fact, which we
shaH also use throughout, that

we obtain

where 03A32 = 03A3n~3,...., Ik=t(eI3, x’3~ ... (the... represent the same terms
which appear in 21).

If we continue to integrate with respect to d03BC(x’3) and so on,
finishing with d03BC(x’k) we obtain

where

Using Khintchine’s inequality [17]
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and averaging over all E(1), ~(2), ..., ~(k), we get

Hence,

Now we shall average over all permutations, and use the fact that

this gives the following estimate for 1

the last inequality follows from Lemma 2. The proof is completed by
applying Proposition 1 for p = 1 2 while noting that gE,7T(A) are norm-one
éléments of Ek~ and the je’ which appear in 1 are norm-one éléments of
the dual space (E’)k03C0. D

LEMMA 4: With the notation of Lemma 3,
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PROOF: This follows immediately from Lemma 3 and the obvious
inequality 03B1(F)03B1*(F) ~ dim(F) for any ideal norm a and finite-

dimensional space F. ~
We shall next use the following inequality due to S. Chevet [1], for

the sake of completeness we include the proof. If {xi}ni=1 C E, we shall
denote by ~2({xi}) = sup{(03A3ni=1|~xi, X’)I2)1/2; x’ E E’, ~x’~ = 1}.

LEMMA 5: If {xi}ni=1 and {yj}nj=1 are elements in Banach spaces E
and F respectively, and gi,j (i, j = 1, 2,..., n) is a sequence of equidis-
tributed, independent, orthonormal random Gaussian variables, then

where A = ~2({yi})E(~Ei gi,1xi~) + ~2({xi})E(~03A3j gj,1yj~).

PROOF: Let T = {(03BE, ~); 03BE E E’, 17 E F’, Ilell = ~~~ = 1}. For each t =

(ç, 17) E T, define the random variables

where a = ~2({xi}), 03B2 = ~2({yj}). It is easy to see that if s = (03BE1, ~1) ~ T,
then

hence E(|Xt - Xs|2) ~ 2E(|Yt - Ysl2). By a result due to Sudakov ([2],
Corollaire 2.1.3) this implies E(VTXt) ~ Y2E(VT Yt), from which the
right hand side of (*) follows.

For the other side, pick 03BE0 ~ E’, ~03BE0~ = 1, such that a = ~2({xi}), and
define the random variables Z~ = 03A3i,j gi,j~xi, 03BE0~~yj, ~~ and W~ =
a si 1 gj,1~yj, ~~. Then
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so again E(sup~~~=1 i Z, ) = E(sup~~~=1 W1J)’ but

hence the left side of (*). 0

THEOREM 6: Let {ei}ni=1 be a symmetric basis for a Banach space E,
and let T : E ~ ~n2 be the natural basis to basis map. Then, if E;k =

E~ E~ ··· ~E

PROOF: For each integer k = 1, 2,..., let Ik dénote a set consisting
of n2k éléments, and let {bv}v~Ik dénote the natural basis of E;k (each
bv has the form ei1 ~ ei2 Q9... Q9 e;k, where 1 S ij sn). Consider the
random vectors of  of the form Ak =

03A303B1,03B2~Ik-1 g03B1,03B2b03B1 ~ b03B2. By Lemma 5

Since {~2k-1i=1 xi; xi E KEJ is the set of extrême points of the unit ball
of (E2k-1~)’ = (E’)2k-103C0, we have

hence we get the reduction formula

and so
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On the other hand, E(03A303B1,03B2~Ik-1 |g03B1,03B2|) = 2/03C0 n2k, hence

and the inequality of Lemma 4 establishes the Theorem. ~

REMARK: More generally, the same proof can show that if Ei
(i = 1, 2,..., 2k) are ni-dimensional spaces with symmetric bases, and
if Ti:Bi~~ni2 are the natural basis to basis maps, then for F =

E1,

It is not essential that 2k spaces appear in F, however, if the number
is not 2k then the bottom line on the right hand side of the inequality
will be different.

where a &#x3E; 0 is constant, and k, n are chosen in an appropriate relation
to N. If 0  p  1 2, then ~p(EN) ~ Np-1/2~1/2(EN)~aNpe-log N ~ ~
as N ~ ~.

COROLLARY 7: If E is an n-dimensional normed space such that
d(E, ~n2)  (n/03C0)1/2, then ~1/2(Ek~) ~ 00 as k ~ 00.
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PROOF: First observe that if k &#x3E; ~ then E~~ is isometric to a norm
one-complemented subspace of Ek~, therefore the idéal property of
the norm ~1/2 implies that ~1/2(Ek~), k = 1, 2,..., is a nondecreasing
séquence. Clearly d(Ek~, (~n2)k~) ~ (d(E, ~n2))k, hence using the estimates
f or ~1/2((~n2)2k~) we obtain

which tends to 00 with k.

REMARKS: (1) It may be true that ~1/2(Ek~) ~ ~ as k ~ ~ whenever
d(E, (2)  n. It is obviously f alse if d(E, (2) = n, as in the case
E = ~n~.

(2) If 1  q  oo, and c &#x3E; |1 2-1/q|, there exists N such that if n ~ N
and E is any m-dimensional subspace of Lq(03BC), then ~c(Ek~) ~ ~ as
k ~ ~. The reason for this is that d(E, ~n2) ~ nll2-lql by [13], so if c ~ 1 2

which tends to 00 by applying the inequality in the proof of Corollary
7.

THEOREM 8: There exists a reflexive separable Banach space E with
both ~p(E) and ~**p(E) infinite for all values of p &#x3E; 0.

PROOF: Let EN be the space in the Example, and let E =

(ENi)~2 where Ni ~ ~, Ni = (ni)2ki, which the proper relation
maintained between ni and k; with N. Since EN ; is norm one com-

plemented in E, it follows that

In order to estimate 1Tl(T) for general spaces it may be useful to

apply the following proposition.

PROPOSITION 9: For an y 0  p, q, r  ~ there exist constants ar,q,
bp,q &#x3E; 0 such that for any Banach space E and an y operator T : E ~ ~n2

(1) b-1p,q03C0p(T) ~ n(Sn ~T’x~qdm(x))1/q ~ a-r,q03C0r(T’), where Sn =
{x E lr2; ~x~2 = 11 and dm(x) is the rotation invariant normalized
measure on Sn.
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(2) If E’ is a subspace of an L, -space, 1 ~ s  00, and if 0  p ~ s ~

r  00 and 0  q  00, the inequalities of (1) becomes equivalence
relations and the constants of equivalence are independent of n, T and
E.

(3) If dim(E) = n and E has a symmetric basis and T : E ~ ~n2 is the
basis to basis map, then all the values Iq = (Sn ~T’x~qdm(x))1/q (0 
q  ~) are equivalent and the constants of equivalence are in-

dependent of n and E.

PROOF: (1) By [14] there exists a probability measure li on Sn such
that f or all x E ~n2

hence by integrating with respect to dm

since (Sn|~x, x’~|qdm(x))1/q = [5]. Since 03C0q(~n2)~n,
and 7Tq(T’) is a non-increasing function of q, and Iq is a non-

decreasing function of q, the right hand side of (1) readily follows.
Without loss of generality we may assume that T’ is a 1 - 1 map,

and define the probability measure v on the unit ball BE, of E’ by

for f E C(BE’). Taking f = |~03BE, ·~|q where e E E, we obtain

therefore, 7Tq(T):5 03C0q(~n2)(Sn ~T’x~qdm(x))1/q, and as above this proves
the left hand side of (1). 

(2) Let j : E’ ~ Ls be an isometric embedding, then by [12] 7Ts(jT’):5
7Ts(ÜT’)’), that is
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and (2) follows from the inequalities

(3) Set |x|E’ = ~T’x~ for vectors x ~ ~n2 = (Rn,~·~2). Since E is

symmetric, by [10] ~T~~T-1~ = d(E, ~n2), and d(E, ~n2) ~ n, so a~x~2 ~
|x|E’ ~ bIIxII2 for all x E fi, where b/a ~ n. From the remark follow-
ing Lemma 2.7 in [4], the values Iq = (fsn |x|qE’dm(x))1/q (0  q  ~) are
all equivalent to the Levy mean M*, which is by définition the unique
number such that m({x E Sn ; |x|E’ ~ M*})~1 2 and m({x E Sn ;
|x|E’ ~ M*}) ~ 1 2, that is, there exist absolute positive constants aq, bq
such that aqM* ~ Iq ~ bqM*. D

COROLLARY 10: If dim(E) = n, there are absolute constants

a, b &#x3E; 0 such that f or an y T : E ~ ~n2

PROOF: Let yp denote the best factorization through an Lp-space
norm [9]. Interpolation technique as in Theorem 7 [11] shows that
irp(T’):5 n’ipy.(T’). Since 03B3~(T’) = 03B31(T) ~ Xu(E)1TI(T) [7], and

03C0p(~n2) ~ cn/p [5], we obtain

and the estimate follows by taking p = ln n, and from Proposition 9.
~

C OROLLARY 11: Let EN = ~np ~np, N = n 2k, where 1 ~

p ~ 2. There exists b &#x3E; 0, such that ~1/2(EN) ~ bNe-log N for the
proper relation between n, k with N.

PROOF: Factor T : t; 4 t1 --+,e2n, where A, B are the inclusions.
Then 1fT-III = n1/p-1/2, and 03C01(T) ~ ~A~03C01(B) = 2n1-1/p, since 1T1(B) =
V2 is the Khintchine constant. Therefore, ~T-1~03C01(T) ~ 2n. The
proof is concluded as in the Example f ollowing Theorem 6. Il
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REMARK: Since the distance between E’ and (~np)k~ is ~ (d(E, ~np))k,
it follows from the estimates of Corollary 10, Theorem 6 and the

inequality

that if E is any n-dimensional B anach space such that

inf1:5p:52 d(E, ~np)  n/2, then ~1/2(E2k~) ~ ~ as k ~ ~. D

Dénote by r;(t), the i-th Rademacher function on [0,1].

COROLLARY 12: Let 1  p ~ 2 ~ q  ~, 1/p  1/q + 1 2. Assume F is a
Banach space of type p and cotype q. Then, for any c satisfying
c &#x3E; 1/p - 1/q, there exists an integer N such that if n &#x3E; N and if E is
any n-dimensional symmetric subspace of F, then ~c(Ek~) ~ ~ as

k ~ ~.

PROOF: Let a be the type-p constant and 13 be the cotype-q
constant of F respectively. Let {ei}ni=1 dénote the symmetric basis of a
subspace E C F, and {e’i}n1 be the biorthogonal functionals. The in-
equality

implies that ()I 03BEie’i~~03B2~03BE~q’. By Proposition 9

hence 03C01(T) ~ 03B2cqn1/q’, where cq &#x3E; 0 is constant. Select scalars fxij,9=1 1
so that 1 x7 = 1 and 1fT-III = !)I xieill. Then,

therefore ~T-1~03C01(T) ~ 03B103B2cqn1/p-1/q+1/2. Combining this with the in-

equality ~c(E2k~) ~ ~1/2(E2k~)(n2k)c-1/2, and Theorem 6, establishes that
for c &#x3E; 1/p - 1/q and n sufficiently large, ~1/2(E2k~)(n2k)c-1/2~~ as

k~~. D
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