GIUSEPPE VALLA

On determinantal ideals which are set-theoretic complete intersections

Compositio Mathematica, tome 42, no 1 (1980), p. 3-11

<http://www.numdam.org/item?id=CM_1980__42_1_3_0>
Let A be an $r \times s$ ($r \leq s$) matrix with entries in a commutative noetherian ring R with identity. We shall denote by (A) the ideal generated by its subdeterminants of order r. If (A) is a proper ideal of R, then the height of (A), abbreviated as $h(A)$, is at most $s - r + 1$ (see [1], Theorem 3). In this paper we prove that there exist elements $f_1, \ldots, f_{s-r+1} \in (A)$ such that $\text{rad}(A) = \text{rad}(f_1, \ldots, f_{s-r+1})$ (where $\text{rad}(I)$ means the radical of the ideal I) in each of the following situations:

1. $A = \begin{pmatrix} a_{ii} \end{pmatrix}$ is an $r \times s$ matrix such that $a_{ij} = a_{kl}$ if $i + j = k + l$.
2. A is an $r \times (r+1)$ partly symmetric matrix, where partly symmetric means that the $r \times r$ matrix obtained by omitting the last column is symmetric.
3. $A = \begin{pmatrix} a_{pq} & b_{pq} & c_{pq} \\ b_{pq} & c_{pq} & a_{pq} \\ c_{pq} & a_{pq} & b_{pq} \end{pmatrix}$ where (a, b, c) is an ideal of height 3 and p_i, q_i, r_i are positive integers not necessarily distinct.

It follows that if $h(A)$ is as large as possible, $s - r + 1$, then the above determinantal ideals are set-theoretic complete intersections.

It is interesting to compare these results with the following theorem due to M. Hochster (never published).

Theorem: Let $t < r < s$ be integer, and let k be a field of characteristic 0. Let $A = k[X_{ij}]$ be the ring of polynomials in rs variables, and let $I_t(X)$ be the ideal generated by the $t \times t$ minors of the $r \times s$ matrix (X_{ij}). Then $I_t(X)$ is not set theoretically a complete intersection.

Let $A = \|a_{ij}\|$ be an $r \times s$ given matrix, where $a_{ij} \in R$ and $r \leq s$. In

This work was supported by the C.N.R. (Consiglio Nazionale delle Ricerche).
this section we assume that $a_{ij} = a_{kl}$ if $i + j = k + l$, hence we may write

$$A = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{1r} \\ a_{21} & a_{22} & \cdots & a_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r1} & a_{r2} & \cdots & a_{rr} \end{vmatrix}$$

We shall denote by (A) the ideal generated by the r-rowed minors of A and if $0^r = (0_{\sigma_1}, \ldots, 0_{\sigma_r})$ is a set of r integers such that $1 \leq \sigma_1 < \sigma_2 < \cdots < \sigma_r \leq s$, we put

$$A_\sigma = \begin{vmatrix} a_{\sigma_1} & a_{\sigma_2} & \cdots & a_{\sigma_r} \\ a_{\sigma_1+1} & a_{\sigma_2+1} & \cdots & a_{\sigma_{r+1}} \\ \vdots & \vdots & \ddots & \vdots \\ a_{\sigma_1+r-1} & a_{\sigma_2+r-1} & \cdots & a_{\sigma_{r+r-1}} \end{vmatrix}$$

and $d_\sigma = \det A_\sigma$.

If $i = r, \ldots, s$ let \mathcal{A}_i be the ideal generated by the d_σ with $\sigma \leq i$; then $\mathcal{A}_s = (A)$ and, with a self explanatory notation, $\mathcal{A}_i = (\mathcal{A}_{i-1}, d_\sigma)_{\sigma=i}$ (where $\mathcal{A}_{r-1} = (0)$).

Next for all $i = r, \ldots, s$, let f_i be the determinant of the $i \times i$ matrix

$$M_i = \begin{vmatrix} a_{11} & \cdots & a_{ir} & \cdots & a_{i} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{r1} & \cdots & a_{r} & \cdots & a_{i+r-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{i1} & \cdots & a_{i} & 0 & 0 \end{vmatrix}$$

It is clear that $\mathcal{A}_r = (f_i)$ and $f_i \in \mathcal{A}_i$ for all $i = r, \ldots, s$.

Theorem 1.1: With the above notations, we have:

$$\text{rad}(\mathcal{A}_i) = \text{rad}(\mathcal{A}_{i-1}, f_i)$$

for all $i = r, \ldots, s$.

Proof: Since $(\mathcal{A}_{i-1}, f_i) \subseteq \mathcal{A}_i$ we need only to prove that $\mathcal{A}_i \subseteq \text{rad}(\mathcal{A}_{i-1}, f_i)$. This is true if $i = r$, hence we may assume $i > r$. Now $\mathcal{A}_i = (\mathcal{A}_{i-1}, d_\sigma)_{\sigma=i}$, so it is enough to show that $d_\sigma \in \text{rad}(\mathcal{A}_{i-1}, f_i)$ for all σ such that $\sigma_r = i$. Let $\sigma = (\sigma_1, \ldots, \sigma_r = i)$; then
Hence, by expanding the determinant along the last column, we get
\[d_\sigma = \sum_{k=0}^{r-1} a_{i+k} c_k \] where \(c_k \) is the cofactor of \(a_{i+k} \) in \(A_\sigma \). Denote by \(\lambda_m \) \((m = 1, \ldots, i)\) the \(m \)-th row of \(M_i \) and let \(1 \leq \tau_1 < \tau_2 < \cdots < \tau_{i-r} \leq i-1 \), where \(\{\tau_1, \ldots, \tau_{i-r}\} \) is the complement of \(\{\sigma_1, \ldots, \sigma_r = i\} \) in \(\{1, 2, \ldots, i\} \).

Then if \(j = 1, \ldots, i-r \) we have \(j \leq \tau_j \leq \tau_{i-r} - (i-r-j) \leq i-1 - i + r + j = r + j - 1 \).

Denote by \(N_i \) the matrix obtained from \(M_i \) by replacing, for all \(j = 1, \ldots, i-r \), the row \(\lambda_j \) by \(\sum_{k=0}^{r-1} \lambda_{j+k} c_k \); since, as we have seen, \(j \leq \tau_j \leq r + j - 1 \), in this linear combination \(\lambda_j \) has coefficient \(c_{\tau_j} \). It follows that

\[\det N_i = \left(\prod_{j=1}^{i-r} c_{\tau_j-j} \right) f_i. \]

Denote by \(m_{pq} \) the entries of the matrix \(M_i \) and by \(n_{pq} \) those of \(N_i \); then \(m_{j+k,l} = a_{j+k+l-1} \) (where \(a_t = 0 \) if \(t > i + r - 1 \)), hence \(n_{j,l} = \sum_{k=0}^{r-1} a_{j+k+l-1} c_k \) for all \(j = 1, \ldots, i-r \) and \(l = 1, \ldots, i-j+1 \). It follows that for all \(j = 1, \ldots, i-r \) if \(1 \leq l \leq i-j+1 \), \(n_{\tau_j, l} \) is the determinant of the matrix obtained by replacing the last column of \(A_\sigma \) by the \((j+l-1)\)-th column of \(A \). Therefore we get:

1. \(n_{\tau_j} = 0 \) if \(j + l - 1 \in \{\sigma_1, \ldots, \sigma_{r-1}\} \).
2. \(n_{\tau_j} = d_\sigma \) if \(j + l - 1 = i \), or, which is the same, \(l = i-j+1 \).
3. \(n_{\tau_j} \in \mathbb{A}_{i-1} \) if \(j + l - 1 \in \{\tau_1, \ldots, \tau_{i-r}\} \) and this because \(\tau_{i-r} \leq i-1 \) and \(\sigma_{r-1} \leq i-1 \).

So we get for all \(j = 1, \ldots, i-r \); \(n_{\tau_j} \in \mathbb{A}_{i-1} \) if \(l = 1, \ldots, i-j \) and \(n_{\tau_{i-r}, i-j+1} = d_\sigma \). Then we can write

\[\det N_i = \det \begin{vmatrix} \cdot & \cdot & \cdots & \cdot \\ n_{\tau_{i-r}} & n_{\tau_{i-r-2}} & \cdots & n_{\tau_{i-r}} & \cdots & n_{\tau_{i-r-2}} & \cdots & n_{\tau_{i-r}} & \cdots & \cdot \\ n_{\tau_{i-r-2}} & n_{\tau_{i-r-2}} & \cdots & n_{\tau_{i-r-2}} & \cdots & n_{\tau_{i-r-2}} & \cdots & n_{\tau_{i-r-2}} & \cdots & \cdot \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \cdot \\ a_i & a_{i+1} & \cdots & a_{i+r-1} & \cdots & a_i & \cdots & a_{i+r-1} & \cdots & \cdot \end{vmatrix}. \]
By expanding the determinant along the first r columns we get
\[
\text{det } N_i = \pm \text{det } \begin{vmatrix}
0 & 0 & \cdots & 0 & \cdots & 0 & d_\sigma \\
. & . & \cdots & . & \cdots & . & . \\
0 & 0 & \cdots & 0 & \cdots & d_\sigma & 0 \\
. & . & \cdots & . & \cdots & . & . \\
0 & 0 & \cdots & 0 & d_\sigma & . & . \\
. & . & \cdots & . & \cdots & . & . \\
1_i & 1_{i+1} & \cdots & 1_{i+r-1} & \cdots & . & . \\
\end{vmatrix}
\mod \mathfrak{A}_{i-1}.
\]

By expanding the determinant along the first r columns we get
\[
\text{det } N_i = \pm \text{det } \begin{vmatrix}
a_{\sigma_1} & a_{\sigma_1+1} & \cdots & a_{\sigma_1+r-1} \\
a_{\sigma_2} & a_{\sigma_2+1} & \cdots & a_{\sigma_2+r-1} \\
. & . & \cdots & . \\
1_i & 1_{i+1} & \cdots & 1_{i+r-1} \\
\end{vmatrix}
\text{det } \begin{vmatrix}
0 & 0 & \cdots & d_\sigma \\
0 & 0 & \cdots & d_\sigma \\
. & . & \cdots & . \\
d_\sigma & . & \cdots & . \\
\end{vmatrix}
\mod \mathfrak{A}_{i-1}.
\]

but clearly A_σ is a symmetric matrix, hence $\text{det } N_i = \pm d_\sigma^{r+r+1} \mod \mathfrak{A}_{i-1}$. It follows that $d_\sigma \in \text{rad}(\mathfrak{A}_{i-1}, f_i)$, since, as we have seen, $\text{det } N_i \in (f_i)$; this completes the proof.

Corollary 1.2: With A and f_1, \ldots, f_s as before, we have:

\[
\text{rad}(A) = \text{rad}(f_1, \ldots, f_s).
\]

Proof: By Theorem 1.1,

\[
\text{rad}(A) = \text{rad}(\mathfrak{A}_s) = \text{rad}(\mathfrak{A}_{s-1}, f_s) = \text{rad}(\text{rad}(\mathfrak{A}_{s-1}) + \text{rad}(f_s)) \\
= \text{rad}(\text{rad}(\mathfrak{A}_{s-2}, f_{s-1}) + \text{rad}(f_s)) = \text{rad}(\mathfrak{A}_{s-2}, f_{s-1}, f_s) \\
= \cdots = \text{rad}(\mathfrak{A}_r, f_{r+1}, \ldots, f_s) = \text{rad}(f_r, \ldots, f_s).
\]

Remark 1.3: If the elements of the matrix A are indeterminates over an algebraically closed field k, the ideal (A) is the defining ideal of the locus V of chordal $[r - 2]$'s of the normal rational curve of P^{s+r-2}, where if $p \geq 2$ a chordal $[p - 1]$ of a manifold is one which meets it in p independent points (see [4] pag. 91 and 229). V is a projective variety in P^{s+r-2} of dimension $2r - 3$ and order $\binom{s}{r+1}$; hence the codimension of V is $s + r - 2 - 2r + 3 = s - r + 1$ and the above result proves that V is set-theoretic complete intersection. The case $r = 2$ is the main result in [5].
In this section A is a partly symmetric $r \times (r + 1)$ matrix whose elements belong to R. Therefore we may write

$$A = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1r} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2r} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{r1} & a_{r2} & \cdots & a_{rr} & b_r \end{vmatrix}$$

where the matrix $S = \|a_{ij}\|$ is $r \times r$ symmetric.

Let $B = \begin{vmatrix} A \\ b_1 \ldots b_{r0} \end{vmatrix}$, $f_1 = \det S$ and $f_2 = \det B$; next, for all $i = 1, \ldots, r + 1$, denote by A_i the matrix which results when the i-th column of A is deleted, and put $d_i = \det A_i$. Then $f_1 = d_{r+1}$, $(A) = (d_1, \ldots, d_{r+1})$ and $f_2 \in (A)$.

Theorem 2.1: With the above notations we have:

$$\text{rad}(A) = \text{rad}(f_1, f_2).$$

Proof: Since $(f_1, f_2) \subseteq (A)$ and $d_{r+1} = f_1$, it is enough to prove that $(d_1, \ldots, d_r) \subseteq \text{rad}(f_1, f_2)$. Let i be any integer, $1 \leq i \leq r$; by expanding the determinant of A_i along the last column, we get $d_i = \sum_{k=1}^{r} b_k c_{ki}$ where c_{ki} is the cofactor of b_k in A_i. Denote by B' the matrix obtained by replacing the i-th row of B by the linear combination of the first r rows of B with coefficients c_{1i}, c_{2i}, \ldots, c_{ri}. Then it is clear that $\det B' = c_{ii} \det B$ and the i-th row of B' is:

$$\left(\sum_{k=1}^{r} a_{k1} c_{ki}, \ldots, \sum_{k=1}^{r} a_{kr} c_{ki}, \sum_{k=1}^{r} b_k c_{ki} \right).$$

But $\sum_{k=1}^{r} a_{kj} c_{ki}$ is the determinant of the matrix obtained by replacing the last column of A_i, by the j-th column of A. Hence $\sum_{k=1}^{r} a_{kj} c_{ki} = 0$ if $j \neq i$, while $\sum_{k=1}^{r} a_{ki} c_{ki} = \pm f_1$. Therefore we get:

$$c_{ij} f_2 = \det B' = \det \begin{vmatrix} a_{11} & \cdots & a_{1r} & b_1 \\ \cdot & \cdots & \cdot & \cdot \\ a_{i-1,1} & \cdots & a_{i-1,r} & b_{i-1} \\ 0 & \cdots & 0 & d_i \\ a_{i+1,1} & \cdots & a_{i+1,r} & b_{i+1} \\ \cdot & \cdots & \cdot & \cdot \\ a_{r1} & \cdots & a_{rr} & b_r \\ b_1 & \cdots & b_r & 0 \end{vmatrix} \mod f_1.$$
By expanding this determinant along the first r columns we get:

$$c_{if_2} = \pm d_i \det A_i \mod f_1;$$

But S is symmetric, hence $c_{if_2} = \pm d_i \det A_i = \pm d_i^2 \mod f_1$, and the theorem is proved.

EXAMPLE 2.2: Let V be the rational cubic scroll in \mathbb{P}^4; then it is well known that V is the locus where $rk \begin{bmatrix} X_0 & X_1 & X_3 \\ X_1 & X_2 & X_4 \end{bmatrix} = 1$. Hence the above theorem shows that V is set-theoretic complete intersection.

3

In this last section we will be interested in a particular 2×3 matrix. Suppose a, b and c are elements of the ring R, such that the ideal they generate is of height 3; next let p_i, q_i, r_i ($i = 1, 2$) positive integers not necessarily distinct. Let us consider the 2×3 matrix

$$A = \begin{bmatrix} a^{p_1} & b^{q_1} & c^{r_1} \\ b^{q_2} & c^{r_2} & a^{p_2} \end{bmatrix}$$

and put $p = p_1 + p_2$, $q = q_1 + q_2$, $r = r_1 + r_2$ and $f_1 = b^{q_1} a^{p_2} - c^r$, $f_2 = a^p - b^{q_2} c^{r_1}$, $f_3 = a^{p_1} c^{r_2} - b^q$.

We want to show that if $(A) = (f_1, f_2, f_3)$ then rad(A) is equal to the radical of an ideal generated by 2 elements; but first we shall give some remarks which are useful in the following.

Let k be any integer, $0 \leq k \leq q$; then we can write

(1) \hspace{1cm} kq_1 = tq + s \hspace{1cm} \text{where } 0 \leq s \leq q - 1.

Hence we have $kq = kq_1 + kq_2 = tq + s + kq_2$; it follows that

(2) \hspace{1cm} q_2(q - k) = (q_2 - k + t)q + s \hspace{1cm} \text{for all } k = 0, \ldots, q.$
Now, since \(q^2(q - k) \geq 0 \), we have \((q^2 - k + t)q + s \geq 0 \); but \(s < q \) by (1), hence

\[
q^2 - k + t \geq 0 \quad \text{for all } k = 0, \ldots, q.
\]

Then we have also

\[
0 \leq (q - k)r_1 + r_2(q^2 - k + t) = (q - k)r + tr_2 - q_1r_2 \quad \text{for all } k = 0, \ldots, q.
\]

This allows us to consider the element

\[
g = \sum_{k=0}^{q} (-1)^{q-k} \binom{q}{k} a^{kp_1}b^{k^2(q - k)}c^{r(q-k)+tr_2-q_1r_2}.
\]

Theorem 3.1: With the above notations we have:

\[
\text{rad}(A) = \text{rad}(g, f_3).
\]

Proof: We have

\[
f_1^q = (b^{q_1}a^{p_2} - c^r)^q = \sum_{k=0}^{q} (-1)^{q-k} \binom{q}{k} a^{kp_1}b^{k^2(q - k)}c^{r(q-k)+tr_2-q_1r_2} \quad \text{mod } f_3,
\]

since by (1) \(kq_1 = tq + s \) for all \(k = 0, \ldots, q \) we get

\[
f_1^q = \sum_{k=0}^{q} (-1)^{q-k} \binom{q}{k} a^{kp_1}b^{k^2(q - k)}c^{r(q-k)+tr_2-q_1r_2} \quad \text{mod } f_3,
\]

or \(f_1^q = c^{q_1r_2}g \mod f_3 \). On the other hand

\[
f_2^q = (a^p - b^{q_2}c^r)^q = \sum_{k=0}^{q} (-1)^{q-k} \binom{q}{k} a^{kp_1}b^{q_2(q - k)}c^{r(q-k)},
\]

hence, using (2) and (3) we get

\[
f_2^q = \sum_{k=0}^{q} (-1)^{q-k} \binom{q}{k} a^{kp_1(q_2-k+t)}b^{r(q-k)+tr_2-q_1r_2} \quad \text{mod } f_3.
\]

But \(kp + p_1(q_2 - k + t) = kp_2 + p_1q_2 + tp_1 \), hence, using (4), we get \(f_2^q = a^{p_1q_2}g \mod f_3 \). This proves that \((A) \subseteq \text{rad}(g, f_3) \).

Next we have seen that \(f_1^q = c^{q_1r_2}g \mod f_3 \); hence \(c^{q_1r_2}g \in (A) \). Let \(\exists g \)
be a minimal prime ideal of \((A)\), then \(h(\mathfrak{P}) \leq 2\) by [1, Theorem 3], so \(c \not \in \mathfrak{P}\), because if \(c \in \mathfrak{P}\) then \((a, b, c) \subseteq \mathfrak{P}\) which is a contradiction since we have assumed \(h(a, b, c) = 3\). It follows that \(g \in \text{rad}(A)\); this completes the proof.

Example 3.2: Let \(k\) be an arbitrary field, \(t\) transcendental over \(k\). Let \(n_1, n_2, n_3\) natural numbers with greatest common divisor 1, and let \(C\) be the affine space curve with the parametric equations \(X = t^{n_1}\), \(Y = t^{n_2}\), \(Z = t^{n_3}\). Let \(c_i\) be the smallest positive integer such that there exist integers \(r_{ij} \geq 0\) with \(c_1n_1 = r_{12}n_2 + r_{13}n_3\), \(c_2n_2 = r_{21}n_1 + r_{23}n_3\), \(c_3n_3 = r_{31}n_1 + r_{32}n_2\). In [2] it is proved that if \(C\) is not a complete intersection then \(r_{ij} > 0\) for all \(i, j\) and \(c_1 = r_{21} + r_{31}\), \(c_2 = r_{12} + r_{32}\), \(c_3 = r_{13} + r_{23}\).

Further, if \(f_1 = X^{c_1}Y^{n_2} - Z^{c_2}\), \(f_2 = X^{c_1}Y^{n_3}Z^{n_3}\) and \(f_3 = X^{c_1}Z^{c_3} - Y^{c_2}\), then the vanishing ideal \(I(C) \subseteq k[X, Y, Z]\) of \(C\) is \(I(C) = (f_1, f_2, f_3)\). Then it is easy to see that \(I(C)\) is the ideal generated by the \(2 \times 2\) minors of the matrix

\[
\begin{pmatrix}
X^{c_1} & Y^{n_2} & Z^{n_3} \\
Y^{n_2} & Z^{c_2} & X^{c_3}
\end{pmatrix}
\]

It follows, by Theorem 3.1, that \(C\) is set-theoretic complete intersection. This result has been proved in [3] by completely different methods; see also [6].

Finally we remark that if \(C = \{(t^5, t^7, t^8) \in \mathbb{A}^3(k)\}\) then the matrix is

\[
\begin{pmatrix}
X & Y^2 & Z \\
Y & Z^2 & X^2
\end{pmatrix}
\]

which is not partly symmetric; so the conclusion that \(C\) is set-theoretic complete intersection cannot be drawn from Theorem 2.1.

Example 3.3: Let \(n, p\) be non-negative integers; we have seen (see Example 3.2) that if

\[
C = \{(t^{2n+1}, t^{2n+1+p}, t^{2n+1+2p}) \in \mathbb{A}^3(k)\},
\]

the vanishing ideal \(I(C)\) in \(k[X_1, X_2, X_3]\) is generated by \(X_1^{n+p}X_2 - X_3^{n+p+1}\), \(X_1^{n+p+1} - X_2X_3^n\) and \(X_1X_3 - X_2^n\). Let \(\bar{C}\) be the projective closure of \(C\) in \(\mathbb{P}^3\). Since \(C\) has only one point at the infinity, it is well known that the homogeneous ideal of \(\bar{C}\) in \(k[X_0, X_1, X_2, X_3]\) is generated by the polynomials \(X_1^{n+p}X_2 - X_0^pX_3^{n+1}\), \(X_1^{n+p+1} - X_0^pX_2X_3^n\) and \(X_1X_3 - X_2^n\)· It is immediately seen that this ideal is generated by the \(2 \times 2\) minors of the matrix

\[
\begin{pmatrix}
X_1^{n+p} & X_2 - X_0^pX_3^{n+1} \\
X_2 & X_3^n - X_0^pX_2X_3^n
\end{pmatrix}
\]
Thus, by Theorem 2.1, \(\tilde{C} \) is set-theoretic complete intersection of the
two hypersurfaces \(X_1 X_3 - X_2^2 \) and \(X_2^{p_0} X_2^{n+1} + X_1^{2n+2p+1} - 2X_0^{p} X_1^{n+p} X_2 X_3^n \).

Example 3.4: If \(C = \{(t^3, t^7, t^8) \in \mathbb{A}^3(k)\} \), the vanishing ideal
\(I(\tilde{C}) \subseteq k[X_0, X_1, X_2, X_3] \) of the projective closure \(\tilde{C} \) of \(C \) in \(\mathbb{P}^3 \), needs
five generators and our methods do not apply in order to see if \(\tilde{C} \) is
set-theoretic complete intersection.

REFERENCES

[1] J.A. EAGON and D.G. NORTHCOTT: Ideals defined by matrices and a certain

(Oblatum 28-VI-1979) Università di Genova
Genova
Italia