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In the paper [8] 1 enumerated the différent types of net (linear
system of freedom 2) of quadrics in (complex, projective) 3-space.
The present paper grew out of an appendix to that one in which 1
listed, for each type, the way the 8 base points coincide in groups.
This result was needed for a forthcoming study of affine cubic

functions in C3. The results came out in a particularly neat and
satisfactory form, which suggested the existence of a general
mechanism.

Some hints at such a mechanism are given in this paper. In Chapter
1 we first show that for a general linear system of quadrics, the
singularities of the variety V defined by the family are ’essentially’
the same as those of the intersection B of the quadrics of the system.
Thus study of the base locus B is reduced to the (easier) study of V.
Singularities of V occur only on singular quadrics, so we project to
the discriminant variety à of the family. Our main theme is the

relationship between singularities of 0394 and of V; particularly in the
case of nets, and isolated singularities.
The results are somewhat complicated, but exhibit some striking

numerical relationships (see particularly (3.4), (3.5)) which again sug-
gest deeper mechanisms at work.
The plan of the paper is as follows:

0010-437X/81/02187-26$00.20/0
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Chapter 1 Singularities of linear systems

1.1 The singularity sets

We consider the general linear system of quadrics given by the
vanishing of

where the matrices Ai = (aijk) are symmetric. Define the total variety

the variety of base points

and the discriminant
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Write also for any À, QA for the quadric f x : F(1, x) = 0}, and Qi for
the quadric xtAix = 0.

For any variety X, we write S(X) for the variety of its singular
points: we first consider this as a point set. Thus S(Q03BB) is the vertex
of the quadric QA. We are mainly concerned with the interrelations
between S(0394), S(V) and S(B).

LEMMA 1.1: (À, x) E S(V) if and only if x E S(Q03BB) ~ B.

Note that S( QA ) is non-empty only for À ~ 0394.

PROOF: If (À, x) E S(V), then since each ~F/~03BBi vanishes at (À, x), x
belongs to each Qi, i.e. x E B. Since each aflaxi vanishes, 03A3(03BBiAi)x
vanishes identically, i.e. x is in the vertex S( QA). These arguments are
reversible.

LEMMA 1.2: x E S(B) if and only if there exists 1 E ¿1 with x E

S(QA).

PROOF: B is defined by equations x’Aix = 0 for 0  i  r i.e. as the

intersection of the Qi. We have a singular point if and only if the

tangent planes x’Aiy = 0 do not neet transversely, i.e. satisfy some
linear relation

But this is equivalent to having x E S(QA), where A = 03A3 Àiei.
Combining these lemmas, we see that the image of S(V) under the

projection on Cn+1 defined by x is precisely S(B). This projection
often gives a bijection S(V) ~ S(B) (at least when we regard 1 as
belonging to projective space P. = P(Cr+1)). Indeed given x e B, we
again consider the tangent planes xaiy = 0. In general these are

independent, spanning an (r + 1)-dimensional vector space. We have
x ~ S(B) when they are dependent: call x tame if they span an
r-dimensional space. In this case there is a unique linear relation (up to
scalar multiples), hence a unique 1 E P, with x E S(QA) and so

(1, x) E S(V).
From now on we consider x, Jl as points in projective spaces Pn, P,.

Then S(V) ~ S(B) is bijective if all points in S(B) are tame.

1.2 The relation of S(V) to S(B)

We now study the types of singularity presented. Say that two
isolated hypersurface singularities are of the same type if either they
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are analytically equivalent or they can be reduced by analytic
equivalence to hypersurfaces defined by two functions

Here of course, 1 z2k+i could be replaced by any nonsingular quadratic
form.

PROPOSITION 1.3: Let (À, x) E S(V) where x is tame in S(B). Then
the two singular points have the same type.

Although B is not a hypersurf ace in Pn, we have seen that it is

contained in the (locally) transverse intersection of r quadrics: a

manifold in which it has codimension 1.

PROOF: Choose coordinates such that the given point has À = eo (in
C’+I), x - eo (in Cn+1) and Q; (for 0  1 % r) has tangent plane x; = 0 at
eo. Then in affine coordinates (xo = 1)

where each fi(x) (0  i  r) has order at least 2-this is the only
property used in the sequel. In this situation one can apply Thom’s
splitting lemma, but we will proceed directly.
We write Ào = 1 in affine coordinates, and take new local coor-

dinates

and write f0(x) = ~(x’). Then

Recall that B is the hypersurface in the manifold 0 = x’1 = ··· = x’r
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defined by 0 = f0(x) =~x’). Setting

we see that B is given by t/1 = 0. On the other hand, V is given by the
vanishing of

The further coordinate change 03BB’i = À, + ~i(x’) (1 ~ i ~ r) reduces this to
the standard form

showing that the singularities are indeed of the same type.

1.3 The relation of S( V) to S(0394): simple case

We now turn to the study of the other projection, S(V) ~ 0394. The
results here are more complex, and will occupy us for the rest of the
paper. We introduce them with the simplest general result that seems
to hold.

THEOREM 1.4: Suppose 03BB0 E S(L1), and Q4 has corank 1 with vertex

vo. Then the singular points 10 of L1, (Ào, vo) of V have the same type.

PROOF: Again choose coordinates with 03BB0 at eo and Qo as 03A3n1 x2i, so
that vo = (1, 0, ..., 0) also. Near (10, vo) we use affine coordinates,
setting Ào = xo = 1. Then

as by Proposition 3, x E B so ak = 0.

As function of z = (xi, ..., xn), this is the sum of a quadratic form with
matrix C, say, where
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and a linear form corresponding to the vector b, where

For small 03BB, b is small and C is approximately the identity. For each
A, move the origin to the centre of QA, which is given by

Setting y = z + C-’b is clearly a local coordinate change, and we find
after reduction

Again this suggests the splitting theorem. As C is close to I we can
find a symmetric square root R which depends analytically on 03BB ; the
further coordinate change w = Ry reduces F to wtw = btC-lb.
On the other hand, à is defined by the vanishing of a determinant

which is, in the above notation,

as we see on postmultiplying the matrix by

Since det C ~ 0 for À near 0, we could have used instead the equation
0 = - btC-1b. Hence the singular points are indeed of the same type.

Chapter 2 Reduction of the problem

2.1 Preliminary remarks

If 03BB ~ S(0394) and the corank of QA exceeds 1, there is still a

relationship between the types of corresponding singularities, but
other considerations also play a role.
We shall be interested only in the case when (À, x) is an isolated

singularity of V. Indeed, since the relationship is between 1 ~ S(0394)
and set of all the (1, x) E S(V), we want each of these to be isolated.
Thus À must give an isolated singularity of à and S( V) ~ B must be
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finite; conversely, these conditions clearly suffice (and hence imply
that the corresponding points x E S(B) are all tame).
The nature of the singular point Jl of à does not suffice by itself to

determine the types of all the corresponding singular points of V. In
our paper [8] we saw that, at least in the case of nets, the essential
further ’singularity-theoretic’ information was given by what we there
called the base points of the adjugate system. We now recall and
re-analyse this notion.
Our linear system is given by

Thus the tangential equation of Q is given in dual coordinates by

We reinterpret this equation, fixing X, as a hypersurface in Pr(C). As
X varies, we have a system of hypersurfaces which cuts a system of
divisors on 0394. This is the ’adjugate system’. It is not linear; its linear
span is spanned by the system of functions which are the entries in
the adjugate matrix. This defines a rational map from Pp(C) to the
projective space of the space of symmetric matrices, which is defined
at all Jl except those for which rank (03A3ri=0 03BBiAi) ~ n - 1. The resulting
blow-up àB of à is also defined by blowing up the ideal generated by
the entries in adj (2f=oÀ,A,). The general principle (at least for nets) is
that the interesting structure is determined by the equisingularity type
of the pair (a, 0394B).

2.2 Reduction of the number of variables

We now show how the methods of Theorem 1.4 can be used to

reduce the number of variables involved in the equations.
Take coordinates such that the point À under investigation is at

A0 = (1,0,...,0) and Qo (of corank (k + 1)) has equation

We can take affine coordinates by setting 03BB0= 1, but for now we
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retain all the ~i. We partition all the matrices into blocks, separating
the first (k + 1) rows and columns from the remaining (n - k); thus

Here A, B and C - I are homogeneous linear in the 03BBi;. So C is

invertible at, and hence near Ao. We use the identity

to compute the determinant and the adjugate of M. We find

so the equation of à can be written 0 = det (A - U), where U = BtC-IB.
Likewise,

Since det C is invertible, the ideal generated (in the ring of germs at 0
of holomorphic functions in À 1, ..., Ar) by the entries in adj M coin-
cides with the ideal of entries in adj (A - U).
To study V, we partition the coordinate vector x = (Yt, zt) cor-

respondingly. Then

for fixed y (and small À) this is a nonsingular quadratic in z, with

centre x = - C-’By. Setting z = z’ - C-’By, we have

and the singularity of this has the same type as that of yt(A - U)y.
We collect these observations as

PROPOSITION 2.1: With the notations introduced above, the sin-

gularity of à is given by
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those of V have the same type as those of

and àB is defined by blowing up the ideal of entries in

Thus for all three purposes the (n + 1) x (n + 1) matrix M has been

replaced by the (k + 1) x (k + 1) matrix (A - U). This is most useful
when k is small; the case k = 0 gives Theorem 1.4 immediately and
the case k = 1 will be explored in Chapter 3.
We conclude this section by observing that while A is homo-

geneous linear in À 1, ..., 03BBr, all the terms in U have order ~ 2. Indeed,
the terms of degree 2 in U are given by BtB. The tangent cone of ,¿1 at
Ao is given by the terms of lowest degree in det(A - U), i.e. by det A
(provided this does not vanish identically). Note that A is the matrix
of the linear system of quadrics cut by the given systems on the
vertex z = 0 of Qo. This is spanned by r quadrics in Ck+’ (or PkC): if
the base points are to be isolated in Pk (C), we must have r~k. If
r = k, S(Qo) n B is always non-empty, but if r &#x3E; k, this need not be
the case and there may be no singular point of V projecting to Ao.

2.3 Recognition principles

In the examples to be discussed below, the singular points will all
be simple in the sense of Arnol’d [1], and indeed will belong to one of
the classes typified by the normal forms

The problem arises, for a function not in simple form, of recognising
when a local analytic coordinate transformation will exist to reduce it
to one of the above forms.

Some progress is easily made by inspection of the lowest degree
terms in the power series expansion: suppose f(z1,...,zn) has a

singular point at 0, and f (0) = 0. Then the lowest degree terms have
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degree 2, and yield a quadratic form in z1, ..., zn. If (the matrix of) this
has corank k (i.e. rank n - k), then:

for k = 0 we have a point of type A1.
for k = 1 we have a point of type Am (some m - 2).
for k = 2; suppose Zt, ,z2 do not occur in the form. Then we

look at the cubic terms in z, and Z2: a binary cubic. If this has distinct
factors, we have a point of type D4; if a repeated factor (but not a perfect
cube), of type Dm for some m - 5. Otherwise we have a higher
singularity..

It is less easy to determine the number m. The basic method is

Arnol’d’s normal form theorem [2] in a somewhat simplified special
case. Observe that the normal forms above are weighted homo-
geneous, if we assign weights by

For any weighted homogeneous polynomial (with positive weights)
the recognition problem is much simpler (particularly if few variables
are involved).

THEOREM 2.2: [2] Suppose f (z ..., zn) a holomorphic function with
a critical point at 0. Suppose there are weights wt(zi) = wi, 0  Wi  1,
such that the terms a03C9z03C911 ... znn occurring in the Taylor expansion of f
(with a03C9 ~ 0) have weights 03A303C9iwi ~ 1, and the sum fo of the terms of
weight 1 is equivalent to one of the normal forms above, by local
analytic coordinate change. Then f is equivalent to fo.

2.4 The case of pencils

For pencils (r = 1) it follows that for isolated singularities, k :5 1.
Since à is a set of points on a line, its ’singularities’ are the points
occurring with multiplicity m + 1 ~ 2: such a point being of type Am.
If k = 0, the corresponding singularity of V also has type Am, by
Theorem 4. We now investigate the case k = 1.

It is natural here to refer to the classification of pencils described
by Segre [6]. As à has isolated singularities, we can choose ~ 0394, i.e.
A nonsingular. The eigenvalues À of A0A1-1 then given the values of
03BB = - At/Ao at the points PA of à (with multiplicities). Moreover, if we
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put AoA.1 in Jordan canonical form, and the eigenvalue À is asso-

ciated to blocks of sizes m1 ~ m2 ~ ...~ mt &#x3E; 0, we say (m1,
m2,..., mt) is the corresponding term in the Segre characteristic of
the pencil. Here, m =03A3t1 mi. Also, by inspection t = k + 1.

LEMMA 2.3:

(i) The multiplicity of PA as adjugate base point is 03A3t2 mi = m’.
(ii) PA corresponds to isolated singularities of V if and only if m’ ~ 1.

PROOF: For a single Jordan block of size m one has the canonical
form

The dual équation has 03BBn-10 as coefficient of Y2n and À î-1 as coefficient
of YoYn, thus has no base-points.
Now for any matrices P and Q,

If P is a block of the above type, the h.c.f. of the corresponding
entries in the adjugate matrix is thus det Q = det M/det P. The lowest
power of 03BB03BB0 + 03BB1 dividing this is when det P has the highest such
power, m1.

(ii) We have t = k + 1 s 2. Now m’ = 0 0 t = 1, and the singularity
is then certainly isolated.

For the single block above, the vertex Yn of Qo is contained in Qi
unless n = 0. Thus if MI M2 2, QI contains a line in S(Qo) and we
have a non-isolated singularity, whereas if t = 2 and m2 = 1 (which is
equivalent by (i) to m’ = 1), S(Qo) is a line not wholly contained in QI,
so the intersection is finite.

Part (ii) of the above lemma is due to Knôrrer [4] as is the next
result.

PROPOSITION 2.4: If Px corresponds to (m, 1) in the Segre charac-
teristic (so has type Am on 0394), then the singular points of V on S(QA) are
as follows :

m = 1 : two points, each of type AI,

m = 2: one point of type A3,

m * 3: one point of type Dm+1.
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Observe that in the sequence of Dynkin diagrams Dm+i, it is natural
to interpret D3 as A3 and D2 as AÎ. The same identification holds for
the corresponding Lie algebras.

PROOF: Although the result is found in [4] and [9] we show here
how it follows from the methods just developed. We use the notations
of (2.2).

Case m = 1 The matrix A has rank 2, and we may take

with u, v, w of order - 2. Thus det U has order 2 (confirming m = 1).
The equation of V is (equivalent to)

with singular points at x = 0 and at y = 0. Taking (for example) x = 0,
use inhomogeneous coordinates y = 1

the terms of degree 2 are 203BB~ + a03BB2 (for some a) giving a nonsingular
quatratic form, hence of type Ai.

Case m &#x3E; 1 Here A has rank 1 and we take

again with u, v, w of order ~ 2. We take À + u as new coordinate in
place of À, and so reduce u to 0. By hypothesis, 03BBw - v2 = det U has
order (m + 1) in À.
V has a unique corresponding singular point, at x = 0, and we have

the local equation

Here, take e = x + (03BD/03BB) as new coordinate in place of x. Now assign-
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ing weights

we see the only terms of weight 1 are

If m ~ 3, this is the normal form for Dm+,; if m = 2 we rewrite it as

to recognise a singularity of type A3.

Chapter 3 Singularities of nets

3.1 General discussion

For the rest of this paper we restrict to the case of nets of quadrics
(r = 2 above), which is the case where the relation between the

system and the discriminant curve 0394 seems to be closest. If Ao is an
isolated singularity of à, the corank (k + 1) of Qo must satisfy
k s r = 2. The results for k = 0 are already contained in Theorem 1.4;
we shall concentrate mainly on the case k = 1.
The linear system cut on the vertex S(Qo) (a projective line) is

spanned by two forms, so can be reduced to one of the normal forms

with respective discriminants

The corresponding singularities of V (or B ) are the base points of this
system. For case (v) we get the whole line as a non-isolated sin-

gularity : this we will not discuss further. In cases (ii), (iv) we get one
point Y (x = 0); in case (iii) two points X (y = 0) and Y, and in case
(i) no singularities.

Since the above discriminant is the tangent cone to à at Ao, we
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have a singularity of type A 1 in case (i), a higher double point An in
cases (ii) and (iii) and a triple (or higher) point in the remaining cases.
Using a similar discussion for the case k = 2 (to be given below) we
see that every singular point of à, with the sole exception of those of
type A11 (with k = 1), corresponds to singularities of V and B. This
result is due to Beauville [3], and was a major stimulus to the author
in f ormulating the results of this paper in a general framework.

PROPOSITION 3.1: In the above situation, Ao has multiplicity 1 as

adjugate base point on 0394 ~ we have case (i) or case (ii) above.

PROOF: By Proposition 2.1, the adjugate system is equivalent to the
system of curves

The multiplicity of 0 as adjugate base point exceeds 1 if and only if
these have a common tangent at Ao. But they have the same tangents
as the curves X adj AX = 0 where A = ÀAo + JLAI is the matrix of the
above pencil. But the matrices adj A (as À, JL vary) are multiples of a
common matrix only in cases (iii), (iv) and (v) above.

3.2 Case (ü)

We have just seen that this case is characterised by having adjugate
base point multiplicity 1. The corresponding singular points are

related by

THEOREM 3.2: In case (ii), for some integer m ? 2, llo is a singular
point of type Am on à and Y is a singular point of type Am-, on V.

PROOF: As above, we can normalise

we also write

By Proposition 2, 1 , à is given (locally) by
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and we may consider V as given (near Y) by

in affine coordinates (y = 1).
Moreover, u, v and w are functions of À and 03BC, of order ~ 2. We

may thus take 03BB - v and g - u as new local coordinates in the

(À, 03BC)-plane at 110. This has the effect of replacing the above by
equations of the same form, but with u and v set equal to 0.
The equation of à is now 03BB2 = - 03BCw. By the preparation theorem

where U does not vanish at Ao. Making the further substitution

03BB’=03BB + a(03BC) (which reintroduces v as -a(IL» brings this to the

form

Let m + 1 be the order of c(03BC), so we can write

Then the above can be written as

where the small o in the remainder signifies that the monomials

occurring in the power series expansion are divisible by at least one
of those listed, with a quotient zero at Ao (without this final clause, we
would use a capital 0). Thus if we set

we find

But now V is given by the vanishing of
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The term in braces here equals

by the above.
Now take e = x - iwl(g) 2 as new coordinate in place of x, and assign

weights to coordinates by

The first term above is

and the second and third terms here have weights &#x3E; 1 since

Thus modulo terms of weight &#x3E; 1, the function reduces to

So by the recognition theorem we have a singularity of type Am-1.

3.3 C ase (üi)

This is the most delicate, and most interesting case that 1 am able to
treat fully.

THEOREM 3.3: If Ao is a singular point of type Am on Li, with

multiplicity s :t-- 2 as adjugate base point, then V has two singular
points on S(Qo), of respective types AS-1 and Am-s.

PROOF: It follows from Proposition 3.1 and other remarks in §3.1
that the hypothesis places us in Case (iii) above. We have
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and by Proposition 2.1 we have equations

and the ideal to blow up is (u, v - A, w&#x3E;.
We first choose À - v as new coordinate, to reduce v to zero. If

now u(0, 03BC), w(0, IL) have re spective orders s, t with s ~ t, then the

ideal equals (A, 03BCs&#x3E;: one adjoins Ag-s to blow it up, so the

multiplicity as adjugate base point is s.

This can be checked by observing that a typical singular point
03BB2 = 03BCm+1 of type Am becomes, under the blow-up 03C1 = 03BB03BC,-s, a sin-
gularity p2 = IL m+I-2s, of type Am-2s (if m &#x3E; 2s : for m = 2s or 2s - 1,
the curve becomes nonsingular), conforming to the conventions of
[8].
Next, we apply the preparation theorem as before. Thus we can

make a change of coordinates

(reinstating v ) so that

for some c ~ 0. Note that the coefficient of À in the original uw was
divisible by 03BCs+1, so 03BD(03BC) = O(03BCs+1) and thus u0(03BC) = u(0, 03BC) con-
tinues to have order s. Note also that we have chosen m 2:: 2 (in fact

~3) so that à has a singularity of type Am at Ao.
In fact, let us set

then

and

To analyse the local structure of V at X, we set x = 1 giving
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Hère we assign weights Ils to 03BC, E to y and (1-~) to À for some E
with 0  E 12. Then modulo terms of weight &#x3E; 1 we can ignore terms
strictly divisible by JL 

s 
or Jly or divisible by 03BB2, thus leaving

but v has order s + 1, uo order s and wo order ~s, so wt v &#x3E; 1,
wt w0 ~ 1 and wt(uo - d03BCs) &#x3E; 1 for some d~ 0. This leaves

and as ui has order at least 1, we can choose E = 112s and eliminate
the last term. By the recognition theorem, we now have a singularity
of type As-1.
The analysis of the singularity at Y is more delicate. Here we set

y = 1 and x = e - v/ uo giving

Here we assign weights

for E &#x3E; 0 to be determined. The weights of the above terms are then

and wt( Cs) = 1. If we now choose


