J. H. M. Steenbrink

Cohomologically insignificant degenerations

Compositio Mathematica, tome 42, no 3 (1980), p. 315-320

<http://www.numdam.org/item?id=CM_1980__42_3_315_0>
COHOMOLOGICALLY INSIGNIFICANT DEGENERATIONS

J.H.M. Steenbrink

Introduction

The following two problems in singularity theory appear to be closely related. On the one hand, given a complete singular variety X over \mathbb{C}, to construct a filtered complex of sheaves (Ω_X, F) on X, which computes the Hodge filtration on the cohomology of X (see the next section for a more precise statement). This problem has been treated by Philippe du Bois [1]. On the other hand one can ask, for which flat map germs $f: (\mathcal{X}, X) \rightarrow (x, 0)$ with $f^{-1}(0) = X$, the Hodge numbers h_{pq}^n of $H^*(X)$ and the limit Hodge structure on $H^*(\mathcal{X}_x)$ (cf. [5, 7]) are equal for all $p, q, n, \geq 0$ with $pq = 0$. If this is the case, such a degeneration is called cohomologically insignificant. The preceding paper [4] of Igor Dolgachev contains many results on these.

We prove the following local criterion:

Theorem 2: Suppose X is a complete algebraic variety over \mathbb{C} such that $\mathcal{O}_X \cong \Omega_X^0$. Then every proper and flat degeneration f over the unit disk S with $f^{-1}(0) = X$ is cohomologically insignificant.

Example: If in a degeneration of curves, X is a multiple elliptic fibre, then X is cohomologically insignificant, but $\mathcal{O}_X \not\cong \Omega_X^0$. See [4], Theorem (3.10).

In [4], Igor Dolgachev conjectures, that every family over the disk, whose singular fibre is reduced and has only insignificant limit singularities in the sense of Mumford and Shah (cf. [6]), is cohomologically insignificant.
QUESTION: Suppose X is an algebraic variety over \mathbb{C} which has only insignificant limit singularities. Is it true that $\mathcal{O}_X \cong \Omega^0_X$?

Using Theorem 3 one checks easily that this the case for those from the list of J. Shah [6].

The filtered De Rham complex of a singular variety

According to Du Bois [1], for every algebraic variety X over \mathbb{C} there exists a complex Ω^*_X of analytic sheaves on S, whose differentials are first order differential operators, together with a decreasing filtration F on it, such that the following properties are satisfied:

(i) the complex Ω^*_X is a resolution of the constant sheaf \mathbb{C} on X;
(ii) the differential in the graded complex $\text{Gr}_p\Omega^*_X$ is \mathcal{O}_X linear;
(iii) the pair (Ω^*_X, F) is functorial in X (in a suitable derived category);
(iv) there exists a natural morphism of filtered complexes

$$
\lambda : (\Omega^*_X, \sigma) \to (\Omega^*_X, F)
$$

where Ω^*_X is the holomorphic De Rham complex and σ its "filtration bête" (cf. [2], Definition (1.4.7)); if X is smooth then λ is a filtered quasi-isomorphism.

(v) if X is complete, then the spectral sequence

$$
E_1^{pq} = H^{p+q}(X, \text{Gr}_p^q\Omega^*_X) \Rightarrow H^{p+q}(X, \mathbb{C})
$$

degenerates at E_1 and abuts to the Hodge filtration of $H^*(X, \mathbb{C})$, which carries Deligne’s mixed Hodge structure (cf. [3]).

Let Ω^*_X denote the complex $\text{Gr}_p^0\Omega^*_X$.

Theorem 1: Let $f : X \to S$ be a proper and flat morphism of complex algebraic varieties. For $s \in S$, let X_s denote the fibre $f^{-1}(s)$ over s. If for all $s \in S$ the map

$$
\text{Gr}_p^0(\lambda) : \mathcal{O}_{X_s} \to \Omega^*_X
$$

is a quasi-isomorphism, then for all $i \geq 0$ the sheaf $R^i(f)_*\mathcal{O}_X$ is locally free on S and for all $s \in S$ the natural map
is an isomorphism.
Cf. [1], Théorème 4.6.

If X is a complete algebraic variety, let us denote the numbers $h_{p,q}^n$ are the Hodge numbers of $H^n(X, \mathbb{C})$.

Then one clearly has

$$
\sum_{q \geq 0} h_{p,q}^n(X) = \dim_c \text{Gr}_p^n H^n(X, \mathbb{C})
$$

for all $p, n \geq 0$. Hence if X is complete and $\mathcal{O}_X \cong \mathcal{O}_X^0$, then in view of property (v) one obtains

$$
\dim_c H^n(X, \mathcal{O}_X) = \sum_{q \geq 0} h_{p,q}^n(X) = \sum_{q \geq 0} h_{p,q}^0(X).
$$

In the next theorem we consider degenerations with singular fibre X, that is flat projective mappings $f : \mathcal{X} \to S$ where \mathcal{X} is a complex space, S is the unit disk in the complex plane and f is smooth over the punctured disk $S^* = S \setminus \{0\}$, and $X = f^{-1}(0)$.

Let H denote the universal covering of S^*, i.e. the upper half plane, and let X_∞ denote the family $\mathcal{X}_\infty H$ over H. We endow $H^*(X_\infty)$ with the limit Hodge structure (cf. [5], [7]). One has a natural map

$$
s_p : H^*(X) \to H^*(X_\infty)
$$

which is a morphism of mixed Hodge structures.

Theorem 2: Let $f : \mathcal{X} \to S$ be a degeneration with singular fibre X, satisfying $\mathcal{O}_X \cong \mathcal{O}_X^0$. Then for all $n \geq 0$:

$$
\text{Gr}_p^0 (s_p) : \text{Gr}_p^0 H^n(X) \to \text{Gr}_p^0 H^n(X_\infty).
$$

In other words: f is a cohomologically insignificant degeneration.

Proof: As X is a deformation retract of \mathcal{X}, the map

$$(R^n f_* C_\mathcal{X})_0 \to H^*(X, \mathbb{C})$$
is an isomorphism for all \(n \geq 0 \). Because \(\mathcal{O}_X \cong \Omega^0_X \) and \(X \) is complete, the map

\[H^n(X, \mathbb{C}) \to H^n(X, \mathcal{O}_X) \]

is surjective. Hence there exist sections \(\sigma_1, \ldots, \sigma_h \) of \(R^nf_*\mathcal{O}_X \) over \(S \) such that their images in \(H^n(X, \mathcal{O}_X) \) form a basis. Let \(\tilde{\sigma}_i \) denote the image of \(\sigma_i \) under the natural map

\[R^nf_*\mathcal{O}_X \to R^nf_*\mathcal{O}_S. \]

Because \(R^nf_*\mathcal{O}_X \) is locally free, the sections \(\tilde{\sigma}_1, \ldots, \tilde{\sigma}_h \) give a basis on some small neighborhood of 0 in \(S \). This means, that the map

\[Gr^0_\mathcal{T}H^n(X, \mathbb{C}) \to Gr^0_\mathcal{T}H^n(X, \mathbb{C}) \]

is an isomorphism for \(|t|\) sufficiently small. In particular the images of \(\sigma_1, \ldots, \sigma_h \) in \(H^n(X_\infty, \mathbb{C}) \) are linearly independent; because morphisms of mixed Hodge structures are strictly compatible with the Hodge filtrations, the images of \(\sigma_1, \ldots, \sigma_h \) in \(Gr^0_\mathcal{T}H^n(X_\infty, \mathbb{C}) \) are also linearly independent. Moreover the fact that \(R^nf_*\mathcal{O}_X \) is locally free implies that for \(t \neq 0 \):

\[
\dim_{\mathbb{C}} Gr^0_\mathcal{T}H^n(X, \mathbb{C}) = \dim_{\mathbb{C}} H^n(X, \mathcal{O}_X) \\
= \dim_{\mathbb{C}} H^n(X, \mathcal{O}_X) = \dim_{\mathbb{C}} Gr^0_\mathcal{T}H^n(X_\infty, \mathbb{C}) \\
= \dim_{\mathbb{C}} Gr^0_\mathcal{T}H^n(X_\infty, \mathbb{C}).
\]

Hence \(Gr^0_\mathcal{T}(sp) \) is an isomorphism.

Examples where \(\mathcal{O}_X \equiv \Omega^0_X \).

(a) If \(X \) is a reduced curve, then \(\mathcal{O}_X \equiv \Omega^0_X \) if and only if at every singular point of \(X \) the branches are smooth and their tangent directions are independent. If \(X \) lies on a smooth surface, it can only have ordinary double points; more generally, if \(X \) has embedding dimension \(n \) at \(x \in X \), then

\[\mathcal{O}_{X,x} \equiv \mathbb{C}[[z_1, \ldots, z_n]]/(z_i z_j : i \neq j). \]

See [1], Proposition 4.9.

(b) Suppose \(X \) is a normal surface, \(\pi: \tilde{X} \to X \) a resolution of its
singularities, \(E_x = \pi^{-1}(x)_{\text{red.}} \) for \(x \in X \). Then \(\mathcal{O}_X \cong \Omega^0_X \) if and only if
\((\text{R}^1\pi_*\mathcal{O}_X)_x \cong H^1(E_x, \mathcal{O}_{E_x}) \) for all \(x \in \text{Sing}(X) \). See [1], Proposition 4.13 and its proof.

Hence if \(X \) has embedding dimension three, its singularities can only be rational double points, simple-elliptic or cusp singularities. See [4], Corollary 4.11.

(c) If \(X \) has only quotient singularities, then \(\mathcal{O}_X \cong \Omega^0_X \). See [1], Théorème (5.3).

(d) Suppose \(X \) is a complex variety, \(p : \tilde{X} \to X \) its normalisation,
\(\mathcal{E} = \text{Ann}_{\mathcal{O}_X}(p_*\mathcal{O}_{\tilde{X}}/\mathcal{O}_X) \) the conductor ideal sheaf.
Let \(\Delta = V(\mathcal{E}) \) be the subscheme of \(X \) defined by \(\mathcal{E} \) and let \(\tilde{\Delta} = p^{-1}(\Delta) \).
Let \(q = P|_{\tilde{\Delta}} \).

Theorem 3: With the above notations, suppose that \(\mathcal{O}_X \cong \Omega^0_X \),
\(\mathcal{O}_\Delta \cong \Omega^0_\Delta \) and \(\mathcal{O}_{\tilde{\Delta}} \cong \Omega^0_{\tilde{\Delta}} \). Then

\[
\mathcal{O}_X \cong \Omega^0_X.
\]

Proof: One has a commutative diagram

\[
\begin{array}{ccc}
0 \to \mathcal{O}_X & \xrightarrow{u} & \mathcal{O}_\Delta \bigoplus p_*\mathcal{O}_{\tilde{X}} & \xrightarrow{v} & q_*\mathcal{O}_{\tilde{\Delta}} & \to 0 \\
 & \downarrow{\lambda_X} & (\lambda_\Delta, \lambda_{\tilde{\Delta}}) & & \downarrow{\lambda_{\tilde{\Delta}}} \\
0 \to \Omega^0_X & \xrightarrow{u} & \Omega^0_\Delta \bigoplus p_*\Omega^0_{\tilde{X}} & \xrightarrow{v} & q_*\Omega^0_{\tilde{\Delta}} & \to 0
\end{array}
\]

where \(u(f) = (f|_{\tilde{\Delta}}, p^*f) \) and \(v(g, h) = q^*(g) - h|_{\tilde{\Delta}} \).

Exactness of the top row is a general fact, while exactness of the bottom row follows from [1], Proposition (4.11) and the remark that \(p \) and \(q \) are finite morphisms. The assumptions of the theorem mean that \((\lambda_\Delta, \lambda_{\tilde{\Delta}}) \) and \(\lambda_{\tilde{\Delta}} \) are quasi-isomorphisms. Hence \(\lambda_X \) is a quasi-isomorphism.

Corollary: If \(X \) is a general projection surface (see [4], Definition (4.16)) then \(\mathcal{O}_X \cong \Omega^0_X \). For in that case, \(\tilde{X} \) is smooth and \(\Delta \) and \(\tilde{\Delta} \) are curves with only singularities of the type mentioned in (a).

Remark: Application of Theorem 2 in the cases (a), (b) and (d) generalizes some of the theorems from [4] to the case of degenerations whose total space is not necessarily smooth.
REFERENCES

Wassenaarseweg 80
2333 AL LEIDEN, The Netherlands