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BOUNDED DISCREPANCY SETS*

R. Tijdeman and M. Voorhoeve

Abstract

Let w = {{}721 be a sequence in [0, 1). We define the discrepancy
function D, by D,(w, a) = Z,(w, a) — na, where Z,(w, a) is the num-
ber of elements in [0, o) among the first n terms of w. It is known that
SUP, | Dn(w, @)| =  for every sequence w. In this paper sets S are
characterized for which an o exists such that sup,|D,(w, a)| < for
every « €S. Furthermore we investigate sets S such that
SUPqes, nen|Dn(w, )| < for some w. In particular, we show in Corol-
lary 1 of Theorem 5 that such sets S have relatively large gaps.
Theorems 1-4 are based on Lemma 1, which provides a construction
for sequences with small discrepancy at specific points. Theorems 5
and 6 are applications of Lemma 3 which is proved by a method of
W.M. Schmidt.

1. Introduction

Let U be the unit interval consisting of numbers ¢ with 0= ¢ <1,
and let w ={&, &,...} be a sequence of numbers in this interval.
Given an « in U and a positive integer n, we write Z,(w, a) for the
number of integers i with 1=i<n and 0=§ <a and we put
D,(w, a) = Z,(w, a) — na. For convenience we define D,(w, 1) =0 and
Dy(w, a) =0 for all a, n and w. Put D(w, a) = sup,|D,(v, a)|.

In answering a question of J.G. van der Corput [2], Mrs. T. van
Aardenne-Ehrenfest [1] showed that there is no sequence w in U for
which sup.cv D(w, ) is bounded. P. Erdos [3] wondered whether for

*Key Words & Phrases: Discrepancy, irregularities of distribution, uniform dis-
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376 R. Tijdeman and M. Voorhoeve [2]

every sequence o there exist numbers a such that D(w, a) = «. This
was answered by W.M. Schmidt [4] in the affirmative. Later Schmidt
[7, p. 40] proved that for every sequence w even

. |Dy(w, )| 1
lmnl_)squ log log n > 2000

for almost all a. Schmidt [5] also investigated sets at which D can
remain bounded. He demonstrated that the set S(x) := {a: D(w, a) <
o} is countable for every sequence w. Theorem 1 gives the opposite
result that for every countable subset S of U there exists a sequence
w such that D(w, a) <= for every « in S. In the special case S =Q
Theorem 3 gives a quantitative result which is in a sense the best
possible. We remark that Schmidt [6] generalized his result on the
countability of S(«) in a very remarkable manner. See also L. Shapiro
[8].

We call S a «-discrepancy set if there exists a sequence o such that
D(w, a) <k for every a in S. A bounded discrepancy set (BDS) is a
set which is a k-discrepancy set for some k. Theorem 2 states that
every finite set is a BDS. Recall that a number v is a limit point of a
set S if there is a sequence of distinct elements of S which converges
to v. The derivative SV of S consists of all the limit points of S.
The higher derivatives are defined inductively by S@=(§@D)®
(d=2,3,...). Schmidt [5] proved that S is empty if S is a k-
discrepancy set and if d > 4«. Furthermore he showed that S® need
not be empty if S is a d-discrepancy set. This provides a necessary
condition for being a BDS. The fact that S ={n"'}3., is not a BDS
while S® = @ shows that the condition is not sufficient. The corollary
of Theorem 5 gives a property of a BDS which this set does not
fulfill: if S is a BDS then there is an € >0 such that every interval of
length ¢ contains a subinterval J of length e¢ with J NS = @. It seems
a difficult problem to characterize BDS’s in a simple way, if possible
at all. In Section 4 we argue that the essential problem already occurs
for a monotonic decreasing sequence with limit 0. Theorem 4 gives a
sufficient condition for being a BDS and in Theorem 6 we show that
in a certain case the necessary and sufficient conditions coincide.

2

The basic tool for constructing BDS’s is the following lemma.

LEMMA 1: Let a, B, y be real numbers with 0=a <B <vy=1. Let
V CU. Assume there is a sequence w ={&}n-1 in V such that
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D(w, a) = A and D(w, y) < C. Then there exists a sequence o' = {£,}n-1
in VU{a}U/{B} such that
() én=&if & €[0,a)U[y, 1),
(i) ¢én€E{a, B}if & E[a, y),
(iii) D(w’, x) = D(w, x) for x €[0, a] U [y, 1),

(iv) D(w’, B)sz—:§A+i_’;ZC+%.

Proor: We may assume without loss of generality that &, = o if
& € [a, v), since D(w, x) for x €(a, y) is of no importance for the
lemma. We shall prove by induction on m that we can define
&n € {a, B} in such a way that

(M) ~i=4, <]
where
@ 4=Du@.p)-2=EDrw - L2 Doy

It is obvious that Ao =0 and that (1) holds for m = 0. Suppose that m
is some non-negative integer for which the induction hypothesis
holds. If &,+1 € [0, @) U [y, 1), then we put £+ = &n+1. If follows that

_ Y= By_ N Bma .
Aps1=An+(1-B) y_aa a) y_au ¥) = Am

if £€m+1 € [0, @) and that

Anii=An-p+1=B o B,y
Yo« YT«

m

if &+1€1[y,1). Hence (1) holds in this case. If £,.1=a then put
Enn=a if Ap<(B—-a)/(y—a)—13and &,.; = B otherwise. If &4 =
a, then

Ap1 = An +(1—B)+1_—Ba—u(1_y)=4m+1_ﬁ_‘_‘¥
Yo« Y- a Y- a

and hence, by (1), —3< A1 <3 If £, =B, then

Apo =4, -B=2
‘y—a



378 R. Tijdeman and M. Voorhoeve [4]

and hence, by (1), —3 < A+ =3. Thus (1) is valid with m + 1 in place
of m.

By the above construction a sequence w’ = {£,}n-; is defined which
satisfies (i) and (ii). Further (iii) is an immediate consequence of (i)
and (ii). Finally it follows from (1) and (2) that

' y—B B-a 1
‘Dm(w s B)l = Y —a ‘Dm(wa a)' + y—a |Dm(w’ 'Y)| + )
for m =1, 2,.... This implies (iv).

REMARK: Note that the discrepancy of ' is bounded in both « and
B and y. Hence ' assumes both values in [«, B) and in [B, y). By (i)
and (ii) this implies that both @ and B occur as terms of w’.

3

Schmidt [5] proved that every S(«)-set is countable. The following
theorem shows that every countable set is a S(x)-set.

THEOREM 1: For every countable set S = {a;, a,. ..} in U there exists a
sequence o such that D(w, aj) <o forj=1,2,....

Proor: Without loss of generality we may assume that 0, «a,
ay, ... are distinct numbers. We shall prove by induction on m that
there exists a sequence wpn = {&m 1, &m.2, . . .} in {0, ay, . . ., am} such that

(i) D(wm, &) = D(®m-1, ) forj=1,2,...,m—1,

(ii) D(wm, aj) <> for j=1,2,..., m,

(i) If 1 =j <m and &,-,,, is the first element of wy,—; With £,_1,, =

aj, then &n » = Qj.
For m =1 we apply Lemma 1 with a =0, B=a;, y=1, A=C=0,
V ={0}. Suppose that m is a non-negative integer for which the
induction hypothesis holds. Let o be the largest element of the set
{0,1, @y, ..., an} which is smaller than a,.; and let y be the smallest
element of this set which is larger than a,+1. Apply Lemma 1 with this
a and y and with B = an+. This gives a sequence wpny in
{0, ay, ..., am+1} satisfying (i) and (ii). Let n be the smallest integer
with &, = a. If € n = a, then put Wmi1 = @t If €y, = B, then
we form w,.; by interchanging the first & and the first 8 in w/,;. This
change does only affect the discrepancy in (a, 8], in fact by at most 1
in absolute value. Since wn. is derived from w, by merely replacing
some a’s by B’s, the other q;’s in w, remain unaltered. Thus wm+
satisfies (i)—(iii) and the induction step is complete.
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By (iii) the sequence {&, ,}m=1 is constant from some mg = my(n) on.
Put & = &, n. This induces a sequence w ={§, &,...}. By the con-
struction &, <aq; if §.<a; and & =q; if &,= ¢, for all j and n.
Hence D(w, a;) = D(wj, aj) <o for j=1,2,....

REMARK: The above proof gives in fact that there exists a
sequence o such that D(w, o;) =3j/2 for j=1,2,... . As the referee
suggested this result can be generalized to measurable sets. Defining
the discrepancy function D(w, B) in the natural way, Lemma 1
implies that for any sequence of measurable subsets A;, Ay,... of a
set A of measure 1 there exists a sequence w in A such that
D(w, Aj)<j.2 for j=1,2,.... We intend to develop more ap-
propriate techniques leading to a better upper bound in the near
future.

The next theorem gives an estimate for the case of a finite set in U
which can only be improved by a constant factor in view of Corollary
2. In particular it shows that every finite set of numbers in [0, 1) is a
BDS.

THEOREM 2: For every finite set S = {ay, az, . . ., an} in U there exists a
sequence w such that

\ - log 2m) .
D(w, a,)S————z log 2 forj=1,2,...,m.

Proor: We prove by induction on t that for every finite set
{ai, az, . .., ax_1}in U there exists a sequence w, such that D(wy, a;) < t/2
forj=1,2,...,2'—1. For t =1 we apply Lemma 1 with @ =0, 8 = ay,
v =1, A= C =0. Suppose the induction hypothesis is true for t. Let
{ay, az, . . ., az+11} C U. We may assume without loss of generality that
0<ai<ar<---<ap+-;. Put ap=0. There exists a sequence w; in
{ag, a2, ag, . . ., azt*l—z} such that D(w}, az) =< t/2 fori=0,1,...,2'—1.
On applying Lemma 1 with a = ay;, B = azi+1, ¥ = azis2, A = C =2 for
i=0,1,...,2 — 1 and combining the resulting sequences in an obvious
way, we obtain a sequence w.:; such that D(w+1, a;) =(t +1)/2 for
i=0,1,...,2"""— 1. This proves the induction hypothesis for all values
of t.

Let a set S={ay, as,...,an} be given. Let t be the integer with
2'"1=m < 2'. We have shown that there exists a sequence w = w; with

N1, 1 logm) .
D(w,a,)52t<2<1+ log 2 forj=1,2,...,m.
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The following result gives a quantitative form of Theorem 1 in the
special case S = Q which is best possible in a similar way as Theorem
2 is.

THEOREM 3: There exists a sequence o such that
D(w,%) =1+4logq

for every p/q with p,q € Z and 0<p < q.

Proor: We prove by induction on t that there exists a sequence
w; = {& »}n-11n a finite set V, of at most 2* rational numbers with the
following properties:

(i) Vi.,CV, fort=2,

(i) V; contains all numbers p2™% with p € Z and 0 < p <22,

(iii) V. contains all numbers pq~' with p, g€EZ and 0<p <q <2,

(iv) if @« € V,_; and &y, is the first element of w,—; with &-;, = a,
then & , = a,

(v) D(w, a) <3t -3 for every a in V..

For t=1 we take V,=1{0,13,3} and by a double application of
Lemma 1 there exists a sequence w; in V, such that D(w,;, a) <1 for
a € V. Suppose t is a positive integer for which the induction
hypothesis is true. We construct V.., in three steps:

V= V,u{%:kez,0<k<22'“},
" ' k 2t+2
V,=V,U{W:kEZ,O<k<2 },
Vi = V’,’U{%z P,qEZ,0<p <q£2‘”}.

Observe that at each step any two “new’ points are separated by an
“old” point. Hence we can apply Lemma 1 as we did in the proof of
Theorem 2 and we obtain sequences w}, wf, »'{ with discrepancy at

i, VU V.. at most 5t — 1, 3t — 1, 3t respectively. Clearly (i)—(iii) are
fulfilled with t + 1 in place of t. For every a € V, with the property
that &, ,# a where n is the smallest integer with &, = a we make
an interchange like in the proof of Theorem 1. In such a case &.,, is
a number B € V,.;\V, which is smaller than the smallest element of V,
which is larger than . By interchanging the first « and the first B in
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w'{ the discrepancy function remains unchanged outside the interval
(a, B] and changes by at most 1 in (a, B8] in absolute value. Since
these intervals (a, 8] are disjoint, the sequence w,.; which results
after all interchanges have been made, satisfies (iv) with ¢ + 1 in place
of t and moreover D(w;;, a) <3t + 1 for every a € V,,,. This com-
pletes the induction step.

By (iv) the sequence {& ,}7-1 is constant from some t, = to(n) on.
Put & = &, ». This induces a sequence o = {&, &,...}. By the con-
struction ¢, <a if & ,<a and &, =« if & ,=a for every a,n and ¢
with a € V,. Let p/q € Z with 0 <p < q <2 Let t be the integer with
2""1< q =2'. Then p/q € V.. Hence

5, 3
D(w,%>=D<w,,g—)S§t—§<l+5 logg/2log2<1+4logq.

4

Suppose we want to decide whether a set S is a BDS. If it is,
there exists a sequence w and an integer d such that

3) D(w,a)=d for every a €S.

It follows from a result of Schmidt [5] that S has to be countable and
S@d*h = @ Note that D,(w, a) = lim. 1o D.(w, a + €) for every a and n.
Hence if ay is the limit of an increasing sequence in S and S satisfies
(3) then D(w, ag) = d. If ap> 0 is a limit point of S but not the limit of
an increasing sequence in S, then we can replace every aq in @ by
ao— € for a sufficiently small € >0 without changing D(a) for
a € S U SP\{ag}. For this new sequence w’ we have D,(w’, ao) = lim, ;¢
D.(w, ao+ €) =< d for every n. Since we can do so for all such ap € SP\S
simultaneously, we conclude that S is a BDS if and only if SU SV is a
BDS. We may therefore assume without loss of generality that S is
closed. It further follows that S? (j = 1,2, .. .) as a subsequence of S is
also a BDS. Soitis sufficient to be able to decide whether a set S isa BDS
if it is known that S is a BDS, for then one can apply the argument to
make the transitions S“*P» S ... >80 G

Let S be a set such that SV is a BDS. For a € S let ¢(a) denote an
element in S with |a — ¢(a)| minimal. Let B € S and let ay, as. ..
be all elements of S with ¢(a;) = B and o; > B ordered in such a way
that a;>a;>a3;>... . It is obvious that a), a,,... is a BDS if and
only if oy — B, a2— B, ... is a BDS. For the points « € S with ¢(a) =
and a < B a similar argument applies. So the essential difficulty is to
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decide whether a monotonic sequence ay, ay, ... in U with limit 0 is a
k-discrepancy set or not. If S is a BDS and there exists a constant «
such that for every B € S both the points a €S with ¢(a) =B,
a < B and the points a € S with ¢(a) =B, a > B are k-discrepancy
sets, then S is a BDS itself.

The following result gives a sufficient condition for a monotonic
decreasing sequence with limit 0 to be a BDS. Necessary conditions
for such sequences are given in Theorems 5 and 6.

THEOREM 4: Let {a,};-1 be a monotonic decreasing sequence in U
with a, > 0 as n — o, If there exists a positive integer h and a constant
¢ with ¢ <1 such that a,+p <ca, for n=1,2,..., then there exists a
sequence w such that

1 log 2h

Dlw, ) =535 2 10g 2

forn=1,2,....

Proor: We prove by induction on t that there exists a sequence

o, ={& 1}5-11n {0, am, ap_y, . . ., a1} such that
1 .
4 D(w,, a,'h)Sm forj=1,2,...,t
and
1 log 2h .
s) Dlw, @) =55c ey fori=1.2. . th

For t = 0 the assertion is true. Suppose t is a non-negative integer for
which the induction hypothesis holds. First apply Lemma 1 with
a=0, B=aum y=an (y=1if t=0), A=0, C=(Q2-2c)"".
Hence, there exists a sequence w} in {0, a¢+nns @y Atn—1, Cth-2, - . -5 A1}
such that

D(w}, ap) <35+ 3 =5 forj=12,...t+1
and
1 log 2 .
D(wf,aj)52_20+201g()gg forj=1,2,...,th

Next we apply the argument used in the proof of Theorem 2 to the
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points a(+nk-1, - - ., am+1. The only difference is that everywhere A and
C have to be increased by (2—2¢)™". So we obtain a sequence w,; in
{0, a¢+1n, A@+nh-15 - - -, @1} Which satisfies (4) and (5) with t + 1 instead
of t.

Every sequence {{; .}r-1 is constant from some t, = to(n) on. Let
& = lim.& .. This defines the sequence w ={&,}r-1. As before we
have

1 +log2h
2-2c¢c 2log?2

D(w, o)) = D(wj, aj) = forj=1,2,....

5

To derive further properties of a BDS we use a technique due to
Schmidt [5]. Since we shall work from now on with one sequence w only,
we shall suppress the variable w and write D,(a), etc. Let I and J be real
intervals. We shall use the following notations.

hi(a) = max D,(a) — min D,(a),
nel nel

Dy(a, B) = Dn(B) — Dp(a)= Z(n, ﬁ) —Z(n,a)— n’(B —a),
and
hI,J(Ot, B) =

= max(min D,(a, B) — max D,(«a, B), min D,(a, B8) — max D,(a, B)).
nel neJ nelJ nel

The following lemma involves Schmidt’s basic idea.

LEMMA 2: Suppose a, B € U and suppose that I, K are subintervals
of an interval I. Then

hi(e) + hi(B) = hy k (e, B) +-;—(h;(a) + hy(B) + hx(a) + hg(B)).

Proor: [5, Lemma 5].
We use Lemma 2 to show that the average value of h;(a) in a
sequence of well-spaced points @ cannot be very small.

LEMMA 3: Let A be a real number with 0 <A <3. Let c and t be
positive integers with 3Ac =<4. Put m = (4c)". Let I be a real interval
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[x,y) with x=0 of length at least m/\. Let oy, ay,..., an—1 be real

numbers satisfying 0<a;j—aj-1=<Ac/m for j=1,2,...m—1 and
ajsmp— ;=\ for j=0,1,...,3m — 1. Then, for any sequence o in U,
®) L3 by > o

m £ 77 64c¢”

j=0

ProOF: Let J =[v, w) be any interval of length m/(4cA) with v =0.
Take integers a and b such that v<=a<v+1 and w—1=<b <w.
Suppose

@ Zs(an-1) = Zolam-1) = Zo(ao) + Zu(aw) =g .
Then, for j=0,1,....,4m—1,
Dy(etjsmp) — Da(@tjimpn) — Dy(e) + Da(ej)

< Zp(am-1) = Za(am-1) — Zp(a0) + Zs(o) — (b — a)(ajimpr — aj)

m m =_ﬂ
S%—<m 2))\ 80+2)\.

Hence,
hJ(Otj+m/2) + hl(aj)

= max D, (aj+mp) — min Dy(aj+mp2) + max Dy(a;) — min D,(q;)
neJ neJ nel nelJ

On summing over j we obtain that under the supposition (7)

1% m 1
m 2 (@) =160 73

®)

for any positive interval J of length m/(4c)).
We use induction on t. For t =1 we have D,(a)+na €Z. Let
j€1{0,1,...,3m — 1}. By the conditions of the lemma we have

Wit

Ac =

D=

A=jimp —0j =
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Since min(},37A) =3, we have |aj|=A/3 or |lajmd = A/3, where ||
denotes the distance from o to the nearest integer. We can therefore
choose integers i€ {j,j+m/2} and r,s €I such that D,(a;)-—
Di(a;) = 1/4. Hence h;(a;) = 1/4 and therefore

1 S 1 1
& @)= T =y

This proves the lemma in case t = 1.
We now assume that the assertion of the lemma holds for t — 1 and
we shall deduce it for t. Put

I,-=[x+(i-1)m

Ihc +I/\—] fori=1,2,3,4.

Let z be the number of pairs (u, &) with x+m/(drc)=p <

x+2m(4Ac) and &, —p € [aj-, ¢;) for some integer p. Hence z; is a

non-negative integer We distinguish two cases.

(a) Assume Sni' z;=m/(8c). Then (7) is fulfilled for v = x + m/(4Ac),
= x + m/(2Xc). Hence, by (8),

S m 1
Z S TR T

1
m

Since J, C I, this implies inequality (6).
(b) Assume =%7' z; > m/(8c). For every r € J; and s € J; we have

Dy(aj-1, ) = Daj-1, ) = zi— (s —r)aj—aj-) = zj— =z~

Hence, for j=0,1,...,m—1, in case z; =1,
1
hs,, 1(@j-1, o) = 2%
By Lemma 2, or obviously if z; =0,
1 1
hi(ej-1) + hi(a)) = 3 2+ 5 (b (1) + hy(e) + hy(@j-1) + hy(et)).

Since h;(og) = max(hy (o), hy(e;)) =1hy(e;) +1hi(e;), we have
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2 2 hl(ay) = Z (h.’|(al) + h];(a})) +- Z zi+ hi(ao)

+ hi(am-1) — % hy (o) — % hy(om-1) — % hs(ao) —% hi(am-1) =
m-—1 m-—1 m
= JZ:O h,l(a,-) + ]Zo h;s(a,«) + 32_0

On applying the induction hypothesis to J; and the point sets
{40, }71 4971 we obtain

m-! 4c=1 mi(dc)-1
Z{, hy (o) = go Z:] hs(aacek) >
for j =1 and j = 3. Hence,

1 m-
o 24 M) > 2+ e = e
This proves Lemma 3.

6

As an applicant of Lemma 3 we derive the following theorem.

THEOREM 5: Let y and 8 be real numbers with 0=y <8=<1. Let H
be some positive integer. Let vy = a), az,...,an = & be real numbers
satisfying 0<aiyi—a;<(8—-1vy)/H for i=1,2,...,N—1. Then for
every sequence o

9 1 H
max D(w, ) = 3000 log T

i=1,2,..,

PrOOF: Put ¢ =6—1v. Let t =[log(H/3)/log 16]. So H/48 <16' <
H/3. Split [y, 8) into 3.16' parts of equal lengths and choose in every
third part a point from {aj, as,..., ay}. This is possible, since
¢/3.16' = ¢/H. This gives m = 16' points By, B2, . . ., Bm With B; — Bji-1=
4¢/(3m). Further Bjim2— Bj= €/3. We apply Lemma 3 with A = €3
and ¢ = 4. Hence

1 { _log(HM®)_ 1 | H
m 25 (B> 356> 256 log 16 7000 1°8 45°
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It follows that for any sequence

oD% D B) > 5555108 g

In particular (9) holds.
COROLLARY 1: Let S be a BDS. Then there exists an € >0 such
that every subinterval of U of length ¢ contains a subinterval J of

length at least e€ with J NS =§.

Proor: Let S be any BDS. Let w be a sequence and « a positive
number such that

D(w, a) =k for every a €S.

Let [y, §) be any subinterval of U. Choose H so large that

H
2000 log 75> .
Put e = H™!. Then, by Theorem 5, max;-,.. nD(w, a;) > k for any set
{ai,...,an} in [v,6) with 0<qaj—-a;=<e(d—vy) for j=
1,2,...,N —1. Thus S does not contain such a subset. This proves

the corollary.

The following result shows that Theorems 2 and 3 cannot be
improved by more than a constant factor. (The constant (4000)! can
be improved considerably.)

COROLLARY 2: Let n > 482 Then for every sequence o

i 1
jomax D (“” ) 200010g48 4ooo'°g"

7

It follows from Corollary 1 that S = {#}7-, is not a BDS. This result is
also a consequence of the following theorem which gives a necessary
and sufficient condition for sequences satisfying a certain regularity
condition.

THEOREM 6: Let ay, ay,... be a strictly decreasing sequence with
limit 0. Suppose there exists a constant c¢ such that ap,—;—an, =<



388 R. Tijdeman and M. Voorhoeve [14]

¢(am-1— am) for every n and m with n = m. Then S = {a;, as,...} is a
BDS if and only if for some positive integer h

. a
lim sup—;—”'< 1.

n-x n

PrOOF: Suppose lim sup,-. an.+n a,' < 1. Then there exists a con-
stant ¢ <1 such that a,.s <ca, for n=1,2,.... It follows from
Theorem 4 that S is a BDS. (Here we did not use the regularity
condition.)

Suppose S is a BDS. Then by Corollary 1 there exists a positive
number e such that every interval [0, a,) contains an interval J of
length ea, such that SNJ =@. Let k be such that J C (an+k, Cn+k—1)-
Then

. rll'lln ‘ (an+j—1 - an+j) = c—l(an+k—1 - an+k) = ea,,c_‘.
i=L...

Hence,

-1
Op = Oty — ik = €kapc™'.

Thus k < ce™! is bounded, which implies that for h = [ce™!]

. Q €
lim sup"—”‘sl—z< 1.

n-o Op
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