JONATHAN D. ROGAWSKI

An application of the building to orbital integrals

<http://www.numdam.org/item?id=CM_1980__42_3_417_0>
Let \(G \) denote the set of \(F \)-points of a connected, semi-simple, algebraic group defined over a \(p \)-adic field \(F \). Let \(T \) be a Cartan subgroup of \(G \) and denote the set of regular elements in \(T \) by \(T' \). Let \(T_s \) be the maximal \(F \)-split torus contained in \(T \) and let \(dg \) be a \(G \)-invariant measure on the quotient \(T_s \backslash G \). For \(f \in C_c(G) \), the smooth functions of compact support on \(G \), and \(x \in T' \), the integral converges and is called an orbital integral. Let \(\Omega \) be the set of unipotent conjugacy classes in \(G \) and for each \(u \in \Omega \), let \(d\mu_u \) be a \(G \)-invariant measure on \(u \). The integral \(\Lambda_u(f) = \int f d\mu_u \) converges for \(f \in C_c(G) \). According to a theorem of [6], there are functions \(\Gamma^T(u) \) on \(T' \), one for each \(u \in \Omega \), called germs with the following property: for all \(f \in C_c(G) \), there is a neighborhood \(N(f) \) of \(1 \) in \(G \) such that

\[
\Phi(x, f) = \sum_{u \in \Omega} \Lambda_u(f) \Gamma^T_u(x) \quad \text{for all } x \in N(f) \cap T'.
\]

Denote the germ associated to \(u = \{1\} \) by \(\Gamma^T_1 \) and define \(\Lambda_1(f) = f(1) \).

The theorem which we state below and prove in this paper was conjectured by Harish-Chandra [4] and Shalika [6].

Theorem: Let \(\pi_0 \) denote the special representation of \(G \) and let \(d(\pi_0) \) be its formal degree. Assume that \(T \) is a compact Cartan subgroup.
Then:

$$I^T_1 = \frac{(-1)^r}{d(\pi_0)}$$

where r is the F-rank of G.

In [5], Howe proved, in the case $G = GL(n)$, that I^T_1 is a constant which is independent of the compact Cartan subgroup and Harish-Chandra extended his result to arbitrary G in [4]. Our method is entirely different from the methods of [4] and [5]. The main tool used here is the Bruhat–Tits building associated to G. We assume that the reader is familiar with the theory and terminology of buildings as presented in [3]. The assumption that F is of characteristic zero is essential because the exponential map is needed to prove the main lemmas.

Let X be the Bruhat–Tits building associated to the simply-connected covering group of G and let X' be the set of vertices in X. If $p \in X$, we denote the stabilizer of p in G by G_p and if W is a subset of G, the set of points in X which are fixed by all of the elements in W is denoted by $S(W)$. If M is any set, $\#(M)$ will denote the cardinality of M.

Lemma 1: Let $g \in G$ be an elliptic regular element. Then $S(g)$ is a compact subset of G.

Proof: Let Y be the building of parabolic subgroups associated to G. Theorem 5.4 of [2] asserts that there is a topology on the set $Z = X \sqcup Y$ which extends the topology defined by the metric on X and with respect to which Z is compact and the action of G is continuous. Suppose that $g \in G$ is elliptic and regular. Certainly $S(g)$ is a closed subset of X. If it is not bounded, there is a sequence p_j, $j = 1, 2, \ldots$, of points in $S(g)$ which is contained in no bounded subset of X. But since Z is compact, there is a subsequence of the p_j which converges to a point $z \in Y$. The action of g on Z being continuous, g fixes z and hence lies in a parabolic subgroup of G. This contradicts the assumption that g is elliptic and regular. Therefore $S(g)$ is bounded and hence compact.

Assume from now on that T is a compact Cartan subgroup of G. Let \mathfrak{G} be the Lie algebra of T, let O_F be the ring of integers of F, and choose a prime element τ in O_F. There is an open neighborhood \mathfrak{G}^* of O in \mathfrak{G} such that $O_F \mathfrak{G}^* \subseteq \mathfrak{G}^*$ and such that $\exp: \mathfrak{G}^* \to T$ is defined. Choose $x \in T'$ in the image $\exp(\mathfrak{G}^*)$, say $x = \exp(H)$ for $H \in \mathfrak{G}^*$. For each non-negative integer m, put $U_m = \exp(\tau^m O_F H)$. If $m_1 \geq m_2$, then $U_{m_1} \subseteq U_{m_2}$ and $[U_{m_2}: U_{m_1}] = q^{m_2 - m_1}$ where q is the cardinality of the residue field of F. Furthermore, $\bigcap_{m \geq 0} U_m = 1$. Since U_0 is a compact
For a subgroup of G, it stabilizes a point $p_0 \in X'$.

For p and q in X, let $d(p, q)$ be the geodesic distance from p to q. Restricted to any apartment of X, $d(\cdot, \cdot)$ is a Euclidean metric [3]. For $d \geq 0$, B_d will denote the set $\{p \in X : d(p, p_0) \leq d\}$.

Lemma 2: For each $d \geq 0$, there is a positive integer m such that U_m fixes all points $p \in B_d$.

Proof: Let W be the set of vertices of x which lie in some chamber which intersects B_d. Since $\#(W)$ is finite, $U_0 \cap \left(\bigcap_{p \in W} G_p \right)$ is an open subgroup of U_0, hence contains U_m for some m. So U_m fixes pointwise all chambers which intersect B_d and in particular, all points in B_d.

Lemma 3: Let $x \in U_0$ and assume that $x \neq 1$. Then there is an integer $k \geq 0$ such that $S(xU_k) = S(x)$ and if $xp = p$ for some $p \in X$ and some $y \in U_k$, then $p \in S(x)$.

Proof: Since $x \neq 1$, it is elliptic regular and $S(x)$ is compact by lemma 1. By lemma 2, there is a $d \geq 0$ and an integer $k \geq 0$ such that U_k fixes all points in B_d and such that $S(x)$ is contained in the interior of B_d. For this k, $S(x) \subseteq S(xU_k)$. Now suppose that $p \in X$ is fixed by xy for some $y \in U_k$. We must show that $p \in S(x)$. This is clearly so if $p \in S(U_k)$. If $p \not\in S(U_k)$, let L be the geodesic line joining p and p_0. It is fixed by xy since xy fixes p_0 and lies in an apartment A of X. Furthermore, L passes through a point on the boundary of the Euclidean ball $B_d \cap A$, say q. Then xy and y both fix q, hence x does also -- a contradiction to the assumption on B_d.

Corollary: If a sequence $\{x_j\}$ of elements of U_0 converges to $x \neq 1$, then there is an $N \geq 0$ such that $S(x_j) = S(x)$ for all $j \geq N$.

Proof: If $x_j \to vx$, then the sequence $y_j = x^{-1}x_j$ approaches 1. By the previous lemma, there is a $k \geq 0$ such that $S(x_j) = S(x)$ if $y_j \in U_k$. Choose N so that $y_j \in U_k$ for all $j \geq N$.

Lemma 4: For each positive integer m, there is a $d \geq 0$ such that $G_p \cap U_0 \subseteq U_m$ for all $p \in X$ such that $p \not\in B_d$.

Proof: It suffices to show that for each infinite sequence $\{p_j\}$ of points in X which is not bounded, there is an $N \geq 0$ such that
For each positive integer s, there is a d ≥ 0 such that

\[\#(U_0p) \equiv 0 \mod q^t \] for all p ∈ X such that p ∉ B_d.

Proof: By lemma 4, there is a d ≥ 0 such that \(G_p \cap U_0 \subseteq U_s \) for all \(p \notin B_d \). Hence \(q^t = [U_0 : U_s] \) divides \(\#(U_0p) \) if \(p \notin B_d \).

When \(T \) is compact, \(T_s = \{1\} \) and the orbital integral is defined by giving a normalization of Haar measure on \(G \). The statement of the theorem is independent of this choice because the germs are proportional and the formal degrees are inversely proportional to a change of normalization of \(dg \). Let \(I \) be a fixed Iwahori subgroup of \(G \) and let \(C_I \) be the chamber in \(X \) which is pointwise fixed by \(I \). We choose the Haar measure \(dg \) on \(G \) which assigns measure one to \(I \). Let \(G_0 \) be the largest subgroup of \(G \) which acts on \(X \) by special automorphisms, i.e., which preserve the type of a face. Then \(G_0 \) is normal and of finite index in \(G \) [1]; let \(\#(G/G_0) = n \) and let \(\{g_0 = 1, g_1, \ldots, g_{n-1}\} \) be a set of representatives for \(G/G_0 \). We may assume that the \(g_i \) normalize \(I \) because the Iwahori subgroups of \(G \) are all conjugate under the action of \(G_0 \) [1]. For the rest of the paper, put \(x = \exp(H) \) for some regular \(H \in \mathbb{S}^* \), and put \(x_t = \exp(t^2H) \) for \(t \in O_F \). Let \(f_0 \) be the characteristic function of \(I \).

Lemma 6: Let \(c(t) \) = the number of chambers in \(X \) which are fixed by \(x_t \). Then \(\Phi(x_t, f_0) = nc(t) \).

Proof: First of all, \(I \) is contained in \(G_0 \), so

\[
\int_{G_0} f_0(g^{-1}x_t g) \, dg = \sum_{y \in G_0I, y^{-1}x_t} \gamma = c(t)
\]

since all Iwahori subgroups of \(G \) are conjugate in \(G_0 \) and, in particular, have measure one. Thus

\[
\Phi(x_t, f_0) = \sum_{j=0}^{n-1} \int_{G_0} f_0((gg_j)^{-1}x_t(gg_j)) \, dg = n \int_{G_0} f_0(g^{-1}x_t g) \, dg = nc(t)
\]

because of the assumption that the \(g_i \) normalize \(I \).
Let $d(u)$ be the dimension of u for $u \in \Omega$. We recall from [4] that the Γ_u^T satisfy the following property:

\[(*) \quad \Gamma_u^T(x_t) = |t|_F^{d(u)} \Gamma_u^T(x)\]

for all $t \in O_F$. For $t \in O_F$, $v(t)$ will denote the valuation of t, so that $|t|_F = q^{-v(t)}$. Let $m_j = \sum_{d(u)=j} \Lambda_u(f_0) \Gamma_u^T(x)$. There are only finitely many unipotent conjugacy classes in G. Let $M = \sup_{u \in \Omega} d(u)$. Furthermore, there is only one unipotent conjugacy class of dimension zero, hence $m_0 = \Gamma^T_1(x)$ since $f_0(1) = 1$. By lemma 6, $(*)$, and the germ expansion principle, there exists a $\delta > 0$ such that

\[(**) \quad \Phi(x_t, f_0) = \sum_{j=1}^M m_j q^{j(1)} + m_0 = nc(t) \text{ if } |t|_F < \delta.\]

Lemma 7: Let Q be the rational numbers and let Z^+ be the set of positive integers. Let a_0, \ldots, a_N be complex numbers and suppose that $F(n) = \sum_{j=0}^N a_j q^{jn}$ lies in Q for almost all $n \in Z^+$. Then $a_j \in Q$ for $j = 0, 1, \ldots, n$.

Proof: We use induction on the degree, N, of $F(n)$. The lemma is certainly true if $N = 0$. If $N > 0$, let

\[F'(n) = q^{-n}(F(n) - F(n-1)) = \sum_{j=1}^{N} a_j(1 - q^{-j})q^{(j-1)n}.\]

$F'(n)$ has degree $N - 1$ and $F'(n) \in Q$ for almost all $n \in Z^+$ since this is true for F. By induction, $a_j \in Q$ for $j = 1, \ldots, N$ and this also implies that $a_0 \in Q$.

We apply lemma 7 to $(**)$ to conclude that the $m_j \in Q$: $nc(t)$ is obviously an integer for all $t \in O_F$ and $(**)$ holds if $v(t)$ is sufficiently large. The next lemma follows immediately.

Lemma 8: Let p be the rational prime dividing q. Then the p-adic limit $\lim_{|t|_p \to 0} \Phi(x_t, f_0)$ exists and is equal to m_0.

Let (W, S) be the Coxeter system associated to the Tits system for G_0 [1]. As in [1], let $T = \{t_s\} \subseteq S$ be a family of indeterminates indexed by elements of S and for each $w \in W$, let $t_w = t_{s_1} \ldots t_s$ where (s_1, \ldots, s) is a reduced decomposition for w, $s_i \in S$. The monomial t_w is independent of the reduced decomposition of w. The formal power series $W(T) = \sum_{w \in W} t_w$ is called the Poincaré series of (W, S). For $w \in W$, let
422

Jonathan D. Rogawski

$q_w = \#(I_0wI_0/I_0)$; it is a power of q and the value $t_w(Q)$ is equal to q_w, where Q denotes the substitution $t_s = q_s$.

Lemma 9: 1) $W(T)$ is a rational function of T which is defined at the points Q and Q^{-1}.
2) $W(Q^{-1}) = (-1)^r W(Q)$.
3) $d(\pi_0) = 1/nw(Q^{-1}) = (-1)^rnW(Q)$.

Proof: 1) and 2) are due to Serre [7], and 3) appears in [1].

The series $G = \sum_{w \in W} q_w$ converges in the p-adic topology because q_w is a power of q which tends to infinity as the length $l(w)$ (the number of elements in a reduced decomposition of w) approaches infinity. As a formal power series, $W(T)$ is equal to a rational function which is defined at $T = Q$ by the previous lemma. It is easy to see from this that the series G converges p-adically to the value $W(Q)$.

To complete the proof of the theorem, we shall show that the p-adic limit, as $|t|_p \to 0$, of $c(t)$ is equal to $W(Q)$. This is sufficient, in view of lemma 8 which says that the p-adic limit, as $|t|_p \to 0$, of $nc(t)$ is equal to $I^r_1(x)$.

Let $B(d)$ be the union of all closed chambers in X which are of the form $C = gC_t$ for some $g \in IwI$ with $l(w) \leq d$. Then $B(d) \subseteq B(d')$ if $d \leq d'$ and $\bigcup_{d \geq 0} B(d) = X$. It is clear that for each $d \geq 0$, there is a $d' \geq 0$ such that $B(d) \subseteq B(d')$ and for each $d \geq 0$, there is a $d' \geq 0$ such that $B_d \subseteq B(d')$. Therefore all of the lemmas involving B_d also hold for $B(d) - \text{mutatis mutandis}$. Let $N(d)$ be the number of chambers contained in $B(d)$. Then $N(d)$ is a partial sum of the series G; it is equal to $\sum_{w \in W} q_w$ and hence $\lim_{d \to \infty} N(d) = W(Q)$ in the p-adic topology.

We may assume, without loss of generality, that $U_0 \subseteq I$. Let $Ch(t)$ be the set of chambers in X which are fixed by x_t; $\#(Ch(t)) = c(t)$. Then

$$Ch(t) = (Ch(t) \cap B(d)) \cup (Ch(t) - (Ch(t) \cap B(d)))$$

Since U_0 commutes with x_t, it stabilizes the set $Ch(t)$ and the above assumption on U_0 implies that the action of U_0 on $Ch(t)$ preserves the two sets in the disjoint union of (**). Lemma 5 implies that, given a positive integer s, there is a positive d_s which tends to infinity with s, such that $\#(U_0C)$ is divisible by q^s for all $C \subseteq B(d_s)$. By lemma 2, there is a positive $\epsilon_s \to 0$ as $s \to \infty$, such that x_t fixes all of the
chambers in $B(d_i)$ for $|t|_F \leq \epsilon_i$. Let s tend to infinity and apply (***) to d_i and t_i where $|t_i|_F \leq \epsilon_i$. We have shown that the cardinality of the first term on the right hand side of (***\) approaches $W(Q)$ p-adically while the cardinality of the second term approaches zero p-adically.

QED.

REFERENCES

(Oblatum 24-IV-1980) Department of Mathematics
Princeton University
Princeton NJ 08540
U.S.A.