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Given a compact Lie group G and a closed subgroup H, the

quotient space G/H is a highly symmetric smooth manifold. Fur-
thermore, if K is a closed subgroup strictly between H and G, then
one can fiber G/H over G/K with fiber K/H (compare [46]). Results
due to W. Browder, D. Gottlieb, and several others show that under
suitable conditions a converse is either true or very nearly so [2, 11 ];
namely, all smooth fiberings of G/H look much like those given by
homogeneous spaces from Lie theory. This paper is a further attempt
to discover the extent to which homogeneous fiberings of G/H can be
used to describe all "nice" fiberings (e.g., smooth fiber bundles). We
concentrate on homogeneous spaces G/H where no intermediate

subgroup exists, in which case the aim is to show there are generally
no "nice" fiberings.
One motivation for this study is a result from [2, 12], which states

that even-dimensional projective spaces over the reals, complex
numbers, quaternions, or Cayley numbers cannot be fibered nicely.
This may be viewed as a generalization of the f act that there are no
closed subgroups of the group CL(2n + 1) - where CL denotes 0, U,
or Sp - strictly between this group and CL(2n) x CL( 1 ); the latter

may be derived from the work of Borel and de Siebenthal, for

example [7]. Thus the conjecture that G/H cannot be fibered if there
are no intermediate subgroups suggests itself immediately. The prin-
cipal results of this paper give evidence in favor of this conjecture, at
least after it has been reformulated to exclude counterexamples that
are more or less predictable from Lie theory itself (see Section 2).
Specifically, we prove that the following homogeneous spaces cannot
be fibered nicely:
(i) The quotient of a compact Lie group G by the normalizer of a
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maximal torus, provided the latter is a maximal closed subgroup
(Theorem 3.1).

(ii) Grassmann manifolds of 2-planes in complex or quaternionic
n-space, n ~ 5 (Theorem 4.19).

(iii) Odd-dimensional quaternionic projective spaces except for the
quaternionic projective line (Theorem 5.1).

(iv) Grassmann manifolds of 2-planes in real n-space for all but

possibly a very sparse set of integers n (Theorem 6.13).
There are numerous other examples too, but they will be postponed
to a later paper.
Here is a more specific description of this paper’s contents: The

first section discusses the homotopy-theoretic analog of a smooth
fiber bundle (a compact fibering in Gottlieb’s terminology [23]) and
its relation to several more familiar notions. In the second section we

formulate the conjecture on fibering homogeneous spaces precisely,
and in the third section we determine the fiberability of a compact Lie
group mod the normalizer of its maximal torus. The fourth section
demonstrates the nonfiberability of complex and quaternionic
Grassmannians of 2-planes, while the fifth section discusses odd

dimensional quaternionic projective spaces. Our results on fibering
real Grassmannians of 2-planes appear in Section 6. Finally, Section 7
gives examples of fiberable homogeneous spaces G/H with H maxi-
mal when either G is noncompact (but still semisimple!) or H does
not have maximum rank, with speculations about alternate con-

jectures in such situations.
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1. Compact fiberings

Following Gottlieb [23], we define a compact fibering of a finite
complex X to be a Hurewicz fibration F ~ E - B with E homotopy
equivalent to X and F, B both homotopy equivalent to finite com-
plexes. Of course, the most obvious examples are smooth fiber bundles
with F and B compact smooth manifolds with boundary (if both
boundaries are nonempty, then E has corners). In fact, if E is a

compact finite-dimensional ANR (hence homotopic to a finite com-
plex X by results of J. West [50]), then every fiber bundle with total
space E gives rise to a compact fibering of X:

PROPOSITION 1.1: Let F - E - B be a locally trivial fiber bundle
with (say) B compact T2 (see [38] for remarks about T2). Then F and
B both have the homotopy types of finite complexes, and F - E ~ B is
exact [45] (hence is a compact fibering).

PROOF: It follows from [45, p. 96] that F-E -B is a Serre

fibration, and exactness follows if we know both F and B have the

homotopy types of complexes. Because of this and the result of West,
it suffices to prove that F and B are both compact (already known)
finite-dimensional ANR’s. This is easy for F, which is closed in E and
also is a cartesian factor of some open set in E (the latter automatic-
ally being an ANR). Furthermore, an argument of C.B. de Lyra [38]
yields this also for B ; the only changes needed in de Lyra’s argument
are to replace S2n+1 with E (all he uses is local contractibility) and to
replace the dimension-theoretic assertion with the weak statement
that P, Q compact metrizable and dim P x Q finite imply dim P finite.

a

REMARK: The following result of A. Edmonds [15] sheds still
further light on topological fiber bundles with total space a manifold:
Suppose F - E - B is a fiber bundle with E and F compact mani-

folds, and assume codim F ~ 5. Then there is a fiber bundle F ~
E ~ B’ with B’ a manifold; in fact, the latter is induced by a map
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f: B’ - B and the canonical map E = f*E ~ E is homotopic to the

identity. As noted in [15], there are many examples where B itself is
not a manifold.

While discussing the recognition of compact fiberings, we mention
another basic fact:

THEOREM 1.2: Suppose that E and B are closed CAT manifolds,
CAT = DIFF or TOP, and f : E ~ B is a CAT submersion [41, 44].
Then f is a CAT fiber bundle. ·

This is due to Ehresmann for DIFF [16] and follows from more

general results of Siebenmann for TOP [44, pp. 150-151]. It is of

course commonplace to contrast this with the corresponding results
for submersions with noncompact unbounded domains [41].
There are several other ways in which compact fiberings are

strongly related to the more common notion of a fiber bundle. One is
given by the fiber smoothing theorems of A. Casson [12], which state
that compact fiberings are equivalent to smooth bundles with fibers
that are interiors of compact manifolds with boundary, and one can
get compact manifolds with boundary if one is willing to multiply the
fiber by a suitable torus. A second link is given by a remarkable
formula first recognized by F. Quinn [42]. Following Bredon [9], we
shall use the term Poincaré-Wall complex to denote a finite complex
satisfying Poincaré duality with arbitrary local coefficients as in [49]
(these include all closed manifolds).

THEOREM 1.3: (Quinn’s Formula, Special Case). Let F - E - B be a
fibration with all three spaces homotopy equivalent to finite complexes
F’, E’, B’. Then E’ is a Poincaré-Wall complex if and only if F’ and
B’ are. Furthermore, the formal dimension of E is the sum of the
formal dimensions of B and F.

Several proofs exist; see [24] for one in print (also compare [54]).
Although the dimension formula is not stated explicitly, it follows

immediately from most if not all proofs of Quinn’s Formula. Il

Gottlieb has defined a finite complex X to be prime if the only
compact fiberings of X have either contractible fibers or contractible
bases. For connected complexes he has also considered a weaker
notion we shall call connectedwise prime complexes, for which one
considers only compact fiberings with connected fibers. Given such
definitions, the following question is an obvious one:
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(1.4) Which finite (resp., connected finite) complexes are prime
(resp., connectedwise prime)?

One’s initial intuition is that "almost all" finite complexes are

prime, but - even ignoring the question of formulating it precisely - this
question seems well beyond current skills in general. Our purpose
here is to look at some special cases where primeness can be
compared to basic mathematical patterns in other contexts; we des-
cribe this more clearly in Section 2. We shall close this section with
the simplest possible example of a prime complex:

PROPOSITION 1.5: A one point space is prime.

PROOF: If F - E - B is a compact fibering with E contractible,
then Quinn’s Formula implies B is a zero-dimensional Poincaré-Wall
complex. In addition, B is connected. But Wall has shown that all

such complexes are contractible [49]. (This can also be shown directly
in other ways.) a

This result overlaps (but does not contain) classical theorems on
the nonfiberability of Rn as a fiber bundle with compact fiber (see [47,
pp. 300-301] for a summary of the literature). Although the proof of
Proposition 1.5 is certainly quite trivial, the result does illustrate the
significance of Quinn’s formula and Wall’s result [49] for the study of
compact fiberings of closed manifolds.

2. Homogeneous spaces

We have already stated that the following result is our starting
point:

THEOREM 2.1: Let A denote the reals complex numbers, quater-
nions, or Cayley numbers. Then there are no Hurewicz fibrations
F-E-B with E homotopy equivalent to the equivalent to the

projective space AP 2n (n = 1 only for the Cayley numbers) and B, F
homotopy equivalent to noncontractible finite complexes..

Apparently at least some version of this result was known to A.
Borel many years ago. Partial results first appeared in [2], and the
result in full generality appears in [12].

Since AP 2n is the homogeneous space of a compact Lie group, by
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the remarks in the introduction we know that 2.1 generalizes known
results about CL(2n) x CL(l) being a maximal closed subgroup of
CL(2n + 1) for CL = 0, U, or Sp (see Routine Exercise 7.3). Since
the Cayley projective plane is the homogeneous space F4/Spin9 [5],
this also generalizes the fact that Spin9 is a maximal closed subgroup
of F4. However, it is too much to ask that G/H never fiber if H is a
maximal closed subgroup of G. The easiest counterexamples are the
odd-dimensional projective spaces cp2n+l = IJ(2n + 2)/U(2n + 1) x

U(1) = SU(2n + 2)/pU(2n + 1), where p : U(a) ~ U(a) x U(1) takes A
into (A, det A-’). By [7] we know pU(2n + 1) is a maximal closed

connected subgroup of SU(2n + 2), and routine matrix computations
imply it is its own normalizer (7.3). However, one has the well-known
fiber bundles

arising from the free linear S3 action on s4n+3. There is, however, a
simple group-theoretic explanation for this: The subgroup Sp(n + 1)
acts transitively on cp2n+l, so that Sp(n + 1)/pU(2n + 1) n
Sp(n + 1) = CP2n+1, but pU(2n + 1) n Sp(n + 1) ~ Sp(n) x S’ is not a

maximal closed subgroup of Sp(n + 1) because Sp (n ) x Sp(1) contains
it. One can avoid this by excluding all G/H where some closed proper
subgroup 0393 ~ G acts transitively by translation; in standard ter-

minology, wlshall consider only homogeneous spaces for which G
acts irreducibly transitively on G/H. With this in mind, we may state
the fibering problem as follows:

CONJECTURE 2.3: Let G be a connected compact Lie group, and let
H be a closed subgroup of G such that
(i) H is a maximal closed subgroup,

(ii) G acts irreducibly transitively on G/H,
(iii) H contains a maximal torus of G.
Then G/H is prime.

The third condition is needed to eliminate some counterexamples
given in Section 7, but it also serves (i) to let us use the work of Borel
and de Siebenthal on the classification of subgroups having maximum
rank, (ii) to make the following simple observation a useful tool:

PRODUCT FORMULA 2.4 (compare [2]): If F ~ E ~ B is a compact
fibering, then the Euler characteristics satisfy X(E) = ~(B)~(F). ~
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Rather than discuss other tools that are necessary, we shall proceed
to our verifications of Conjecture 2.3 in special cases. 

3. Reduced flag manifolds

For certain geometrical reasons the homogeneous space U(n)/Tn is
often called a complex flag manifold, and this has carried over to the
name (generalized) flag manifold for arbitrary homogeneous spaces
G/T with G connected compact Lie and T a maximal torus. If we let
N(T) denote the normalizer of T in G, then G/T ~ GIN (T) is a finite
covering obtained from a free action of the Weyl group W(G) =
N(T)/T on GIT, and the base has Euler characteristic one. For these
reasons we call G/N(T) a reduced flag manifold. Such manifolds are
our first test cases here; 1 wish to thank D. Gottlieb for suggesting
them as potentially simple examples.
Without loss of generality we may assume G is simple; otherwise

the splitting of some finite covering as Gl x G2 and the corresponding
splitting for the normalizer implies N(T) is not a maximal closed

subgroup.

THEOREM 3.1: Let G be a simple, connected, compact Lie group.
Then the following are equivalent :
(i) N(T) is a maximal closed subgroup.
(ii) H1(G/N(T); Z) ~ Z2
(iii) G/N(T) is prime.

PROOF: We shall prove the above theorem in the sequence

(ii) ~ (iii), (iii) ~ (i), and (i) ~ (ii). Of course (iii) ~ (i) is trivial by the
observations already made, and therefore we shall not consider it

further.

The proof of (ii) ~ (iii) begins with two basic observations:

(3.2) G/N(T) is rationally acyclic.

(3.3) If F-E-B is a compact fibering with E homotopic to

G/N(T), then the Euler characteristics of F and B are 1.

PROOF oF (3.2): The integral cohomology of G/T is torsion free,
concentrated in even dimensions, and of total rank |N(T)/T| = index
of covering G/T~ G/N(T). Therefore a transfer argument implies
that H*(G/N(T); Q) is a direct summand of H*(G/T; Q) with Euler
characteristic 1. This happens only if G/N(T) is rationally acyclic..
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PROOF oF (3.3): By 2.4 we know that 1 = X(E) = X(F)X(B), and
hence ~(F) = ~(B ) = ± 1. On the other hand, as noted in [2, 12] the
projection map H*(B; Q) ~ H*(G/N/(T); Q) is then a monomor-

phism. Since G/N(T) is rationally acyclic, the same must be true of
B, which implies ~(F) = ~(B) = 1.

These have the following simple consequence:

(3.4) Under the assumptions of 3.3, the fiber F is arcwise con-
nected.

PROOF OF (3.4): Since E = G/N(T) is arcwise connected, the exact
sequence of the fibration ends with - 03C01(B) ~ -rro(F) - 7ro(E) = {pt.}. It
follows that each component of F is homotopy equivalent to the
other, so that X(F) = n~(F0), where Fo is an arbitrary component and
n is the number of components. Since ~(F) = 1, this means n must
also equal 1. ·

We now remark that Quinn’s Formula is a powerful statement that
allows us to handle compact fiberings with the same ease as smooth
fiber bundles. For example, this allows us to form first Stiefel-

Whitney classes and oriented double coverings; specifically, the first
Stiefel-Whitney class arises from the homomorphism 03C01 ~ Z2 = {± 1}
induced by the deck transformation action of oi on a twisted orien-
tation class in the universal covering (see [49]).
With these facts at our disposal, we now prove (ii) ~ (iii). Suppose

that we have a nondegenerate compact fibering F - E - B with E
homotopy equivalent to G/N(T) and HI(GIN(T» = Z2 (Note: The
class of all G where (ii) applies is nonempty because 7Tl(SUn/N(T» is
the symmetric group on n letters and HI is the abelianization of 7FI).
Since G is simple, it is clear that dim E = dim G/N(T) &#x3E; 0. But a
connected Poincaré-Wall complex of f ormal dimension zero is con-

tractible, so in our situation the numbers b = dim B and f = dim F are
both positive (both are connected).

Since B and E are rationally acyclic and have positive dimension,
they are both nonorientable. Furthermore, the Poincaré-Hurewicz
theorem for 7TI and the connectedness of F show that Hl(E) maps
onto Hl(B). Applying the assumption HI(E) ~ Z2, we see that the
projection H1(E) ~ Hl(B) must be an isomorphism. In particular, the
pullback of the oriented double covering  ~ B to E must be the

oriented double covering Ê ~ E. It follows that the fiber inclusion

F - E lifts to Ê and the sequence E ~  ~  is again a compact
fibering.
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Since Ê has a universal covering space homotopy equivalent to
G/T, it follows that H*(Ê, Q) injects into H*(GIT; Q), which is

concentrated in even dimensions. Also, the Euler characteristic of Ê
is 2 because it is a double covering of E = G/N(T). Therefore Ê must
be a rational cohomology sphere of algebraic dimension b + f =
dim G/N(T) (= dim E, etc.).
On the other hand, the fiber space transfer [3, 12] associated to

F-E-B shows that the projection induces a monomorphism
G*(;Q ) ~ H*(E; Q). But Hb( ; Q) = Q by orientability and

Hb(Ê; Q) = 0 by the previous paragraph combine to give us a con-
tradiction. In particular, the hypothetical compact fibering F - E ~ B
cannot exist. a

We now come to the Proof that (i) implies (ii): We shall prove the
contrapositive; namely, if H1(G/N(T))  Z2 then there is a closed

subgroup K strictly between N(T) and G. To do this, we must use
the classification theory for simple compact Lie groups to determine
the possibilities for H,(G/N(T)).

(3.5) Let G be a connected compact Lie group. Then H1(G/N(T)) ~

Z2 if G is of type An, Dn, E6, E7, or Eg, and H1(G/N(T)) ~ Z2 EB Z2 if G
is of type Bn, Cn, F4, or G2.

PROOF: The group HI(GIN(T» is merely the abelianized Weyl
group W"(G), and this may be computed quite easily using the

Coxeter presentation (a very accessible treatment appears in [4]). It

follows from the specifics of the Coxeter presentation that W’(G) is
generated by symbols v,, ..., Vr corresponding to the vertices of the
Dynkin diagram of G, with relations 2vi = 0 and cij(vi + v;) = 0, where
the cij are also expressible via the Dynkin diagram; namely, ci; = 3 if a
single line joins vi to vj and cii is even otherwise. It follows that

Hl = W#(G) = Z2 if the Dynkin diagram of G has only single lines
(the A, D, and E cases), while HI = W#(G) = Z2 ~ Z2 in the remaining
cases (the B, C, F, and G cases). ·

In each of the cases Bn, Cn, F4, and G2 we shall exhibit an explicit
subgroup strictly between N(T) and G. Consider first the Bn case,
where we may take G = S02n+h n 2:: 2. In this case N(T) is isomor-
phic to the wreath product En f 02; the latter is being embedded in
S02n,l ç 02n+l by the map j~ det(j): 1, f O2 ~ 02n X 01 ç 02n+h
where j: 1, f O2 ~ O2n is inclusion and "det" refers to the deter-

minant map. This embedding extends to an embedding
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id ~ det(id): O2n ~ O2n X 01 ç 02n+1 which also factors through S02,+I,
and therefore the subgroup 02n is strictly between N(T) and S02n+l.
Next consider the Cn case, where G = Spn. If N(S’ : S3) denotes the
normalizer of S in S3, then N(T) is isomorphic to the wreath product
In f N(S1: S3). But this group is contained in the larger wreath
product En f S3 C Spn. This disposes of the classical cases.
As one would expect, the exceptional cases must be treated more

specifically. Since the case G2 is easier, we shall do it first. Consider
the transitive linear action of G2 on S6 with isotropy subgroup SU3.
Since G2 acts transitively and linearly on S6, it also acts transitively
on IRP6, and the isotropy group of this action must be a two com-
ponent extension DSU3 of S U3. It follows that ~(G/DSU3) = 1 ; we
claim that DSU3 contains the normalizer of T. To see this, let N’(T)
denote the normalizer of T in DSU3. The maximal torus theorem

implies that ~(G/N(T)) = 1 even if G is disconnected (N(T) meets

every component of G [30]), and from this it follows that the order of
N’(T)/T has order ~(DSU3/T) = ~(G2/T) = order N(T)/T. Since

N’(T)/T is a subgroup of N(T)/T, this implies they are equal, from
which N(T) = N’(T) C DSU3 follows.

For the case of F4, considerably more is required. We use the
standard realization of F4 as the automorphism group of the excep-
tional Jordan algebra M83, whose elements are Hermitian 3 x 3 matrices
over the Cayley numbers [32]. Let H be the subgroup of F4 that
leaves the 3-dimensional subspace of diagonal matrices pointwise
fixed. Then H is of type D4 (compare [32,33]); moreover, the

representation of H on M83 splits as a 3-dimensional trivial represen-
tation plus three mutually inequivalent 8-dimensional irreducible

representations (see [32, p. 144] and [33, p. 18] for the Lie algebra
version of this statement). It follows from this and the work of [31, 34]
that H must be isomorphic to the simply connected group Sping.
Define a group N Sping to be the subgroup of automorphisms that
leave the diagonal matrix subspace setwise fixed, the action of each
element corresponding to a fixed permutation of coordinates on R3.
This group is strictly larger than Sping, for it contains a copy of 13
acting on Mg by permuting the rows and columns. In fact, N Sping is
a semidirect product of Sping with 13. Elementary computations show
that X(F4/Spin8) = 6, and consequently X(F4/N Spin8) = 1. It now fol-
lows as in the case G = G2 that N Sping contains N(T).

(3.6) FINAL REMARKS: The argument for (ii) ~ (iii) actually shows
more: If Mm is a closed manifold that is rationally acyclic,
nonorientable, and has Hl(Mm) = Z2, then Mm is prime. The homo-
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geneous spaces G/K constructed above - with K strictly between
N(T) and G - all have this property. Of course, if G has type Bn, then
G/K = RP2n, while if G has type G2, then G/K = RP6. However, in
the other cases (Cn, F4) this yields new examples of prime homo-
geneous spaces..

4. Manifolds of complex and quaternionic two planes

In many respects, Grassmann manifolds give the dominant exam-
ples of homogeneous spaces G/H with H a maximal subgroup of
maximum rank. For instance, suppose we consider the following
alternate to Problem 2.4.

PROBLEM 4.1: Let G be a connected compact simple Lie group, and
suppose that H is a connected subgroup of maximum rank. Further-
more, assume that no closed CONNECTED subgroup lies strictly
between H and G, and G acts irreducibly transitively on G/H. Is G/H
connectedwise prime ?

REMARKS: If G is only semisimple, then H splits into factors

corresponding to the simple factors of G [7], and thus the question
above has maximum generality. On the other hand if G = SU4 and
H = U2 x U2 ~ SU4, then H is a maximal connected subgroup whose
normalizer is generated by H and the matrix switching the first and
last two coordinates in C4.
The pairs (G, H) satisfying the conditions except irreducible tran-

sitivity are exactly those listed by Borel and de Siebenthal in a table
at the end of [7]. Specifically, their work shows that G/H must be a
Grassmann manifold of quaternionic, complex, or oriented real k-

planes (with not both the dimension and codimension odd in the latter
case), a Hermitian symmetric space of the form SPn/Un, a homo-
geneous space Fn = SO2n/Un, or one of about 15 exceptional cases
such as G2/S04 or F4/Spin9 = Cayp2. It is well known that Fn fibers
over S2n-2 with fiber F2n-h and this fibration corresponds to the fact
that the subgroup SO2n-, 1 acts transitively on Fn by translation. Thus
Grassmann manifolds, the much smaller family Spn/Un, and a finite
list of remaining cases are the only objects that arise in connected
fibering problem 4.1.
Of course, projective spaces are special cases of Grassmann mani-

folds, and accordingly one is led directly to ask if the nonfiberability
results of [2, 12] can be pushed just a little further - say to the




