Benedict H. Gross
Minimal models for elliptic curves with complex multiplication

Compositio Mathematica, tome 45, n° 2 (1982), p. 155-164
<http://www.numdam.org/item?id=CM_1982__45_2_155_0>
Let R be the ring of integers in an algebraic number field F. An abelian variety A of dimension g over F determines an element c_A in the ideal class group R in the following manner. Let N denote the Néron model of A over R [4]; the space $\varphi_{N/R}$ of invariant differentials on N is a projective R-module of rank g. We may define c_A to be the class of $\Lambda_{\varphi_{N/R}}$ in $\text{Pic}(R)$.

When $\dim A = 1$ Tate has given an alternate description of the class c_A in terms of minimal Weierstrass models [5]. We use this formulation, and some classical results of Deuring [1] and Hasse, to calculate c_A for some elliptic curves with complex multiplication.

§ 1. Minimal models of elliptic curves

Let A be an elliptic curve over F, a number field with ring of integers R. The space $\varphi_{A/F} = H^0(A, \Omega^1/F)$ of invariant differentials is an F-vector space of dimension 1. Associated to any non-zero differential ω we have its discriminant $\Delta_\omega \in F^*$ [5]. If $\omega' = u^{-1}\omega$ then $\Delta_{\omega'} = u^{12}\Delta_\omega$; hence A determines a coset $\Delta_A \in F^*/F^{*12}$.

For any discrete valuation v of F, let ω_v and $\Delta_v = \Delta_{\omega_v}$ be the differential and discriminant of a minimal Weierstrass equation for A at v [5]. We define the discriminant ideal \mathcal{D}_A by the formula:

\[(1.1) \quad \mathcal{D}_A = \prod_v \mathcal{P}_v^{\nu(\mathcal{D}_v)}, \]

where \mathcal{P}_v is a prime ideal at the place v. For any non-zero differential
ω on A over F we define the ideal δω by the formula:

\[
\delta_\omega = \prod_v \mathcal{O}_v^{\omega(v)}.
\]

One then has the equality of ideals in R:

\[
(\Delta_\omega)\delta_\omega^{12} = \mathcal{D}_A.
\]

The class of the ideal δω in Pic(R) is independent of the choice of ω. We denote this class by δA; then A has a global differential ω with \((\Delta_\omega) = \mathcal{D}_A\) if and only if \(\delta_A \sim 1\) in Pic(R). In this case one can find a global minimal model for A: i.e., an equation for A over R which is simultaneously minimal at all places \(v\).

By (1.3) one has:

\[
\delta_A^{12} \sim \mathcal{D}_A \quad \text{in Pic}(R).
\]

Hence a necessary condition for the existence of a global minimal model is that the ideal \(\mathcal{D}_A\) be principal. By (1.4) this is also sufficient when the group Pic(R) has no 12-torsion.

It is not difficult to compare \(\delta_A\) with the class \(c_A\) of Néron differentials defined in the introduction. Let X be the minimal regular model for A over \(R_v\); \(X\) is a regular projective scheme over \(R_v\) which can be obtained by resolving the possible singularity on a minimal Weierstrass equation for A over \(R_v\) [4, pp. 94–101]. The Néron minimal model N is a smooth group scheme over \(R_v\); it is obtained by removing all fibres of multiplicity greater than one on \(X\) and all singular points in the remaining fibres. The pull-back of a minimal Weierstrass differential \(\omega_v\) on \(A/R_v\) is everywhere non-zero on N. Hence we find:

\[
\omega_{N/R_v} = \omega_v R_v \subset \omega_{A/F_v},
\]

so globally we have the identity:

\[
\omega_{N/R} = \omega \delta^{-1}_\omega \subset \omega_{A/F}.
\]

To sum up, we have the following
PROPOSITION 1.7:
(1) \(c_A \sim \delta_A^{-1} \) in \(\text{Pic}(R) \).
(2) The following statements are equivalent
(a) \(c_A \sim \delta_A \sim 1 \) in \(\text{Pic}(R) \).
(b) \(A \) has a global minimal Weierstrass model over \(R \).
(c) \(A \) has a non-zero differential \(\omega \) with \((\Delta_\omega) = \mathcal{D}_A \).
(d) \(\omega_{N/R} \) is a free \(R \)-module of rank 1.

§2. Elliptic curves with complex multiplication

We now assume that \(A \) is an elliptic curve with complex multiplication by the ring of integers \(\mathcal{O} \) of an imaginary quadratic field \(K \). We assume further that the field \(F \) of definition for \(A \) is \(H \), the Hilbert class field of \(K \). Then all endomorphisms of \(A \) are defined over \(H \), and the curve \(A \) is determined up to isomorphism by its modular invariant \(j_A \) and the associated Hecke character \(\chi_A \) on the idèles \(I_H \) of \(H \) [2; 9.1.3].

PROPOSITION 2.1: Both the ideal \(\mathcal{D}_A \) and the class \(\delta_A \) depend only on the character \(\chi_A \), and not on the modular invariant \(j_A \).

PROOF: Let \(B \) be another elliptic curve over \(F \) with \(\chi_B = \chi_A \); then \(j_B = j_A^\sigma \) with \(\sigma \in \text{Aut}(H) \). The group \(\text{Hom}_H(B, A) \) is described in [2, 9.4.2]: for any integral ideal \(a \) of \(K \) such that \(\sigma = \sigma_a^{-1} \) in \(\text{Aut}(H) \) we have an isogeny \(\phi_a : B \to A \) with kernel isomorphic to \(\mathcal{O}/a \). More precisely, we may choose an embedding of \(H \) into \(C \) so that the following diagram commutes:

\[
\begin{array}{ccc}
B(C) & \xrightarrow{\phi_a} & A(C) \\
\downarrow \phi_{a*} & & \downarrow \omega \\
C/\Omega a & \xrightarrow{p} & C/\Omega \mathcal{O}
\end{array}
\]

where \(\omega \) is a non-zero differential on \(A, \Omega \in C^* \) is a fixed integral period of \(\omega \), and \(p \) is the natural projection.

Now let \(v \) be a fixed place of \(H \) and choose \(a \) with \(\sigma_a^{-1} = \sigma \) and \(Na \) prime to \(v \) (this is always possible). Then the induced map \(\phi_a^* : \omega_{B/R_v} \to \omega_{A/R_v} \) on the spaces of local Néron differentials is an isomorphism. Hence to show that \(\mathcal{D}_A = \mathcal{D}_B \) it suffices to show that \(v(\Delta_\omega) = v(\Delta_{\phi_a^* \omega}) \). But by (2.2), if we compute over \(C \),

\[
\Delta_\omega = \frac{\Delta(\mathcal{O})}{\Delta(a)} \Delta_{\phi_a^* \omega}.
\]
It is well-known that $\Delta(\mathfrak{C})/\Delta(a)$ is an algebraic integer in H which generates the ideal a^{12} [1, p. 33], [3, p. 165]. Since this is prime to ν, the minimal discriminants have the same valuation.

Now let ω be any non-zero differential on A over H and put $\nu = \phi_{\frac{\omega}{\Delta}}(\omega)$. Then by (1.3) and the above paragraph:

$$\left(\Delta_{\omega}\right)^{12} = \mathfrak{D}_A = \mathfrak{D}_B = \left(\Delta_{\nu}\right)^{12}. $$

Since $\Delta_{\omega}/\Delta_{\nu} = \Delta(\mathfrak{C})/\Delta(a)$ by (2.3), we have

$$\left(\delta_{\nu}/\delta_{\omega}\right)^{12} = \left(\Delta(\mathfrak{C})/\Delta(a)\right) = a^{12}. $$

Hence $\delta_{\nu} = \delta_{\omega} \cdot a$ as ideals of H. But the ideal a of K capitulates in H; hence $\delta_A \sim \delta_B$ in $\text{Pic}(R)$.

Note: If we assume that the Hecke character $\chi_A: I_H \to K^*$ is $\text{Gal}(H/K)$-equivariant, then by Proposition 2.1 the ideal \mathfrak{D}_A is fixed by $\text{Gal}(H/K)$. Since H is unramified over K, any fixed ideal is represented by an ideal of K. But all ideals of K capitulate in H, so $\mathfrak{D}_A \sim 1$ in $\text{Pic}(R)$. Is $\delta_A \sim 1$ in $\text{Pic}(R)$? We will show this is the case when K has prime discriminant.

§3. A global minimal model for $A(p)$

We now specialize to the case where the multiplication field $K = \mathbb{Q}(\sqrt{-p})$ has prime discriminant.

Lemma 3.1: For any fractional ideal a of K, the ratio $\Delta(\mathfrak{C})/\Delta(a)$ is a 12^{th} power in H^*.

Proof: By Deuring [1, p. 14, 41] the ratio $\Delta(\mathfrak{C})/\Delta(b^2)$ is a 24^{th} power in H^* when $(6, b) = 1$. When K has prime discriminant, its class group has odd order. Hence we may find an ideal b prime to 6 such that $(\alpha)a = b^2$. Then

$$\Delta(\mathfrak{C})/\Delta(a) = a^{12} \cdot \Delta(\mathfrak{C})/\Delta(b^2) \equiv 1 \pmod{H^{12}}. $$

We can now answer affirmatively a question posed by D. Zagier. Assume that $p > 3$ and let $A(p)$ denote \mathbb{Q}-curve over the field $F = \mathbb{Q}(j_{A(p)})$ studied in chapter 5 of [2]. Recall that $A(p)$ has good reduction outside p and has minimal discriminant ideal $\mathfrak{D}_{A(p)} = (-p^3)$. The
fact that this ideal is principal raises the possibility of a global minimal model.

Proposition 3.2: The curve $A(p)$ has a global minimal model over the field $F = \mathbb{Q}(j_{A(p)})$ with discriminant $\Delta = -p^3$. The associated differential $\omega(p)$ is determined up to sign.

Proof: In §23 of [2] we constructed a pair (A, ω) over F with $j_A = j_{A(p)}$, $\Delta_\omega = -p^3$, and sign $c_6 = \left(\frac{2}{p}\right)$. Recall that A is given by the equation

$$y^2 = x^3 + \frac{mp}{2^4 \cdot 3} x - \frac{np^2}{2^4 \cdot 3^3}$$

where

$$m^3 = j_{A(p)}$$

$$n^2 = (j_{A(p)} - 1728)/ -p, \quad \text{sign } n = \left(\frac{2}{p}\right),$$

The differential $\omega = dx/2y$ on A has $\Delta_\omega = -p^3$. To prove Proposition 3.2 we will show that A is isomorphic to $A(p)$ over F. We will then have a global minimal model by Proposition 1.7, as $(\Delta_\omega) = D_{A(p)}$. The differential $\omega = \omega(p)$ with $\Delta_\omega = -p^3$ is determined up to sign, as $\mu(F^*) = \langle \pm 1 \rangle$.

In summary, we are reduced to proving:

Proposition 3.5: The elliptic curve A defined by equations (3.3–3.4) is a \mathbb{Q}-curve which is isomorphic over F to the curve $A(p)$.

Proof: Consider the map

$$f_A: \text{Gal}(H/\mathbb{Q}) \to \text{Hom}(I_H, K^*)$$

$$\sigma \mapsto \chi_A^{\sigma^{-1}}$$

where all Homs refer to continuous homomorphisms of topological groups. Then f_A is a 1-cocycle, which takes values in the group $\text{Hom}(I_H, H^*, K^*)$. Since K^* is totally disconnected, this group may be identified with the group $\text{Hom}(\text{Gal}(\overline{H}/H), K^*)$ via the Artin homomorphism of global class field theory. Since $\text{Gal}(\overline{H}/H)$ is compact and K^* is discrete, any continuous homomorphism takes values
in the finite group $\mu(K^*) = \langle \pm 1 \rangle$. Finally, we may identify

$$\text{Hom}(\text{Gal}(\overline{H}/H), \pm 1) = H^*/H^{*2},$$

by Kummer theory, and view f_A as a map

$$(3.5) \quad f_A : \text{Gal}(H/\mathbb{Q}) \to H^*/H^{*2}.$$

To show A is a \mathbb{Q}-curve is equivalent to showing that $f_A(\sigma) \equiv 1$ for all $\sigma \in \text{Gal}(H/\mathbb{Q})$. Since A is defined over F we have $f_A(\tau) \equiv 1$. Hence, it suffices to show $f_A(\sigma) = 1$ for all $\sigma \in \text{Gal}(H/K)$.

For this, we need a concrete description of $f_A(\sigma)$ in H^*/H^{*2}. Embed F in \mathbb{C} via its real place, and let a be an integral ideal of K with $\sigma = \sigma_a^{-1}$. There is an isogeny ϕ_a defined over $\widetilde{\mathbb{Q}}$ which makes the following diagram commutative:

$$
\begin{array}{c}
A^\sigma \\
\downarrow \phi_a \\
C/\Omega a \\
\end{array} \quad \begin{array}{c}
A \\
\downarrow \omega \\
C/\Omega \mathbb{C}.
\end{array}
$$

If we write $\phi_a^*(\omega) = h_a \cdot \omega^\sigma$ with $h_a \in \widetilde{\mathbb{Q}}^*$, then the isogeny ϕ_a is defined over the extension $H(h_a)$. The identities:

$$c_4(\mathcal{O})/c_4(a) = h_a^4 \cdot c_4^{1-\sigma}$$

$$c_6(\mathcal{O})/c_6(a) = h_a^6 \cdot c_6^{1-\sigma}$$

show that $h_a^2 \in H^*$ [3, p. 158]. In fact, we have the formula

$$(3.6) \quad f_A(\sigma) \equiv h_a^2 \pmod{H^{*2}}.$$

On the other hand, we have the identity:

$$\Delta(\mathcal{O})/\Delta(a) = h_a^{12} \cdot \Delta^{1-\sigma} = h_a^{12}$$

as $\Delta = -p^3$ is fixed by $\text{Gal}(H/\mathbb{Q})$. By Lemma 3.1, h_a^{12} is a 12th power in H^*. Since $h_a^2 \in H^*$, we must have $h_a \in H^*\mu_4$ and $f_A(\sigma) \equiv \pm 1 \pmod{H^{*2}}$. But f_A is a cocycle and the order of $\text{Gal}(H/K)$ is odd. Hence $f_A(\sigma) = 1$ and A is a \mathbb{Q}-curve.

Since $v_\mathcal{P}(\Delta_a) = 3$ we see $A = A(p)^d$ with $(p, d) = 1$ [2, 12.3.2]. But $\mathcal{O}_A = \mathcal{B}^{12}(-p^3)$ and $\mathcal{D}_{A(p)^d} = \mathcal{C}^{12}(-p^3d^2)$ where \mathcal{B} and \mathcal{C} are ideals of H.

Hence \((d) = (b/c)^2\) is the square of an ideal of \(H\). Since \(H\) is unramified over \(K\) and \(d\) is a quadratic discriminant, there are only two possibilities: \(d = 1\) and \(d = -4\). But the curve \(A(p)^{-4}\) has the wrong sign of \(c_6\), so \(A = A(p)\).

§4. Global minimal models for \(K\)-curves

Let \(\omega(p)\) be one of the differentials on \(A(p)\) given by Proposition 3.2. For any integral ideal \(a\) of \(K\) we may define \(h_a\) in \(H^*/\pm 1\) by the formula:

\[
\phi_a^*(\omega(p)) = h_a \cdot \omega(p)^{\sigma_a^1}.
\]

The ambiguity in sign is caused by the ambiguity in the choice of isogeny \(\phi_a\); we will discuss a choice of the sign in §5. In \(H^*/\pm 1\) we have the cocycle relations

\[
\begin{align*}
h_{ab} &= h_{a^1}^{-1} \cdot h_b, \\
h_{a^r} &= h_a^r
\end{align*}
\]

We have seen in §3 that when \(F\) is embedded into \(\mathbb{C}\) via its real place we have the complex identity:

\[
h_a^{12} = \Delta(\mathcal{O})/\Delta(a).
\]

Hence \(h_a\) is integral in \(H\) and generates the ideal \(a\). The same is true for \(h_a^\sigma\) for any \(\sigma \in \text{Gal}(H/K)\).

Lemma 4.1: For all \(\sigma \in \text{Gal}(H/K)\), \(h_a^{\sigma^{-1}} \equiv 1 \pmod{H^*/2}\).

Proof: First note that this identity makes sense, independent of the choice of sign for \(h_a\). We have seen, in the proof of Lemma 3.1, that \(\Delta(\mathcal{O})/\Delta(b^2) = h_a^{12}\) is a 24th power in \(H^*\). Hence \(h_a^{12} \equiv \pm 1 \pmod{H^*/2}\). Since we may find \(b\) such that \(a = (\alpha)b^2\), we find from (4.2) that \(h_a \equiv \pm \alpha \pmod{H^*/2}\). Hence \(h_a^{\sigma^{-1}} \equiv (\mod H^*/2)\) for any \(\sigma \in \text{Gal}(H/K)\).

Lemma 4.2: Let \(K'\) be a quadratic extension of \(K\) with conductor \(\alpha\). Then we may choose the sign of \(h_a\) so that \(HK' = H(\sqrt{h_a})\).

Proof: Write \(K' = K(\sqrt{\alpha})\). Since \(\alpha\) is the discriminant ideal of \(K'/K\) and \(\alpha\) is the discriminant of the specific \(K\)-basis \((1, \sqrt{\alpha}/2)\) we
find \((\alpha) b^2 = a\) with \(b\) an ideal of \(K\). Raising this identity to the \(h\)th power and writing \((\beta) = b^h\) we find \((\alpha^h \beta^2) = a^h = (N_{H/K} h_a)\). Since \(h\) is odd and \(\mathcal{O}_K^h = (\pm 1)\), we may choose the sign of \(h_a\) so that \(\alpha = N_{H/K} h_a \pmod{K^*}\). Then \(K' = K(\sqrt{N_{H/K} h_a})\) and \(HK' = H(\sqrt{h_a})\).

By Lemma 4.1, \(h_a = h_a^h \pmod{H^*}\) so multiplying over the entire Galois group we find \(h_a^h = N_{H/K} h_a \pmod{H^*}\). Since \(h\) is odd, \(h_a = h_a^h = N_{H/K} h_a \pmod{H^*}\) and \(HK' = H(\sqrt{h_a})\) as claimed.

Now let \(A\) be an elliptic curve over \(H\) such that \(\chi_A\) is \(\text{Gal}(H/K)\) equivariant. By [2, 12.3.1] we may write \(A = A(p)^\psi\) with

\[\psi \in \text{Hom}(\text{Gal}(\overline{H}/H), \pm 1)_{\text{Gal}(H/K)} = \text{Hom}(\text{Gal}(\overline{K}/K), \pm 1).\]

Let \(a\) be the conductor of \(\psi\) and write the associated quadratic extension \(H' = H(\sqrt{h_a})\) as permitted by Lemma 4.2. For simplicity, assume that \(a\) is prime to \(p\). Let \(\rho\) be a generator of \(\text{Gal}(H'/H)\); we then have the identification

\[\omega_{A/H} = \{\omega \in \psi_{A(p)/H'} : \omega^\rho = -\omega\}.\]

Hence the differential \(\omega_A = (1/\sqrt{h_a}) \cdot \omega(p)\) descends to \(A\) over \(H\).

Proposition 4.3: Either \(\omega_A\) or \(2\omega_A\) is a global minimal differential on \(A/H\).

Proof: We clearly have \(\Delta_{\omega_A} = -p^3 h_a^6\) so \(\Delta_{\omega_A} = (-p^3) a^6\). This is equal to \(D_A\) except in the case when \((2/p) = -1\) and \(8 \mid a\) [2, 14.1.1]. In that case it is equal to \((2^{12}) D_A\).

Corollary 4.4: If \(K\) has prime discriminant and the Hecke character \(\chi_A\) of \(A\) is \(\text{Gal}(H/K)\) equivariant, then \(\delta_A - c_A \sim 1\) in \(\text{Pic}(R)\).

Indeed, the minimal differential given in Proposition 4.3 is determined up to sign.

§5. The sign of \(h_a\)

When the ideal \(a\) of \(K\) is prime to \((p)\), we may normalize the sign of \(h_a\) by insisting that \(N_{H/K} h_a\) is a square \(\pmod{\sqrt{p}}\). Then the following identities hold in \(H^*:\)

\[h_{ab} = h_a^{\sigma_1} h_b^\sigma,\]

(5.1)

\[h_{a^p} = h_a^\sigma,\]

\[h_{(a)} = \alpha \text{ if } \alpha \equiv 1 \pmod{\sqrt{p}}.\]
Hence there is a unique continuous 1-cocycle

\[\phi : I_K \rightarrow H^* \]

which is the identity on principal idèles and satisfies \(\phi(a) = \prod_{v \mid p, \ell} h_{a_v} \) for all idèles which are trivial at \(\infty \) and congruent to 1 (mod \(\sqrt{-p} \)). (The group \(I_K \) acts on \(H^* \) via its quotient \(I_K / K^* \cdot (C^* \times \Pi_{v} \mathcal{O}_v^*) = \text{Gal}(H/K) \), and the cocycle \(\phi \) is \(\tau \)-equivariant.)

Recall the elements \(t_a \) in \(T^*/\pm 1 \) defined in [2, 15.2.5]. Again, when \(a \) is prime to \((p) \) we may normalize the sign of \(t_a \) by insisting that \(t_a \) is a square (mod \(\sqrt{-p} \)). We then have the identities in \(T^* \):

\[
\begin{align*}
t_{ab} &= t_a t_b \\
t_a^* &= t_a^* \\
t_{(a)} &= \alpha \quad \text{if } \alpha \equiv 1 (\sqrt{-p}).
\end{align*}
\]

Since \((t_a) = a \) we find:

Proposition 5.3: The elements \(u_a = t_a / h_{a^*} \) are units in the field \(HT \) which satisfy the identities

\[
\begin{align*}
u_{ab} &= u_a \cdot u_b^* \\
u_{a^*} &= u_a^* \\
u_{(a)} &= 1.
\end{align*}
\]

Since \(u_a \) depends only on the class of \(a \) in \(\text{Pic}(\mathcal{O}) \) it is convenient to write \(u_{a_\xi} \) for the unit \(u_a \). By Proposition 5.3 the assignment

\[
\begin{align*}
\sigma &\rightarrow u_\sigma \\
\tau &\rightarrow 1
\end{align*}
\]

gives a 1-cocycle \(f \) on \(\text{Gal}(HT/T^+) \approx \text{Gal}(H/\mathbb{Q}) \) with values in the units \(U \) of \((HT)^* \).

Question 5.4: Is \(f \sim 1 \) in \(H^1(\text{Gal}(HT/T^+), U) \)?

As a stronger question, one can ask if \(\varepsilon = \sum_\sigma u_\sigma \) is a unit of \(HT \).
REFERENCES

Dept. of Mathematics
Princeton University
Fine Hall – Box 37
Princeton, N.J. 08540
U.S.A.