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Introduction

A homomorphically closed class which is closed under subdirect
products must be a variety (Kogalovskii [11]). Thus, in particular,
radical classes which are closed under arbitrary subdirect products
are rare; for associative rings they are precisely the semi-simple
radical classes. Heinicke [9] has shown, however, that all hereditary
radical classes are closed under finite subdirect products. (Associative
rings were considered, but the same argument works in other situa-
tions where radical theory is viable.)

In this paper we investigate the incidence of finite subdirect

product closure, showing that radical classes R with this property
need not be hereditary, but must satisfy the condition

I  A ~ R, IA = 0 = AI ~ I e e,

though this condition is not sufficient. In § 1 we present a method of
generating radical classes which are closed under finite subdirect

products. §2 is devoted to the upper radical class U() defined by a
hereditary, homomorphically closed class 9£. It is shown that when

U(K) consists of idempotent rings, U() is closed under finite sub-
direct products if and only if it consists of rings with zero anni-
hilators. When T is a class of rings satisfying a fixed polynomial
identity, it is shown that U(,T) is closed under finite subdirect

products if and only if it’s hereditary. Other examples and coun-
terexamples are presented in §3.

All rings considered are associative. We shall use the following
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notation: L( ) = lower radical class, U( ) = upper radical class; 
indicates an ideal; ann (A) is the two-sided annihilator of a ring A; Q
Z denote, respectively, the rationals and the integers (rings or ad-
ditive groups), Q°, Z° the zerorings on Q, Z.

1. Examples

A class (9 of ordered pairs of rings will be called a good class if the
following conditions are satisfied.

(gl) If (S, A) E CO, then S is a subring of A and (f (S), ) is in (,9 for
any isomorphism f : A - À.

(g2) If (S, A) EE W, I ~ A and S n i = 0, then ((S +I)/I, A/I ) G W.
(g3) If (S, A) C= (9 and I ~ A, then (S n I,I) E CO.
(g4) If I ~ A, H ~ A, I C S C A and (SII, A/I ) ~ g, then

((S n H)I(i n H)), Ali n H) E W.

1.1 EXAMPLES: Let  be a non-empty hereditary, isomorphism-
closed class of rings. The following are examples of good classes:

In each case it is easy to check that (gl), (g2) and (g3) are satisfied
and that (S fl H)/(I fl H) is the right kind of subring of A/H rl I. Since
 is hereditary and

we also have (S n H)/(1 ~ H) E .
Note that semi-simple classes provide examples of the classes (C

discussed above.

Our first theorem shows how good classes can be a source of
radical classes closed under finite subdirect products.

1.2 THEOREM: Let  be a good class, and let W be the class of rings
A such that every non-zero homomorphic image Ã of A satisfies the
condition

Then  is a radical class and is closed under finite subdirect products.
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PROOF: Clearly  is homomorphically closed. If B ~ A and if B,
A/B ~ , let AII be a homomorphic image of A, (SII, A/I) E . Now
(B+1)/I~A/I and (sli) n[(B+ I)/I] = [(S ~ B) + I]/I, so by (g3),
([(S n B) + I]/I, (B + I)/I) E 19. Since B is in cB, we then have S ~ B C I.
But then (SII ) n[(B + I)/I] = 0, whence by (g2),

i.e. ((S + B + I)I(B + I), A/(B + I)) E . Now AIB is in , so S + B +
I C B + I, whence S c S rl (B + I ) = (S ~ B) + I = I. Thus A is in  so
 is closed under extensions.

Now let A be a ring with an ascending chain {I03BB|03BB E 039B} of ideals
such that each I, is in . If (SIK, U I03BB/K) ~ , then by (g3), we have,
for each À E A,

i.e. ([S fl (lÀ + K)]/K, (ix + K)IK) E g. Since each lÀ is in , this
means that S fl Jx C K for each À and thus that S = (s n JJ C K,
whence S/K = 0 and  I03BB E .

This shows that  is a radical class. We turn now to finite subdirect
products. It clearly suffices that we show that 13 is closed under

subdirect products involving only two rings.
Suppose we have a ring A, with ideals H, K such that H ~ K = 0,

AIH ~  and A/K ~. We wish to show that A is in . If, for some
M ~ A, we have (SIM, A/M) ~ g, then by (g4), ((S fl H)/(M ~ H),
A/(M n H)) G %. Since H fl K = 0, we have

so by (g2),

But A/K is in g, so S ~ H ~ (M ~ H) + K. Thus
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Now (H + M)/M ~ AIM, and (slm) fl [(H + M)/M] =
[S fl (H + M)]/M = [(S n H) + M]/M = 0, so by (g2), we have ((S +
M + H)/(M + H), A/(M + H)) ~ G. But AI H is in ÉÉ, so S C M + H,
and thus

i.e. SI M = 0, and we conclude that A is in , as required.

We note that the proof of 1.2 actually shows that for a class W of
ordered pairs satisfying (gl), (g2) and (g3), G is a radical class.

Moreover, for any radical class R we have R =  where =

{(A, A) |R(A) = 01. Thus something in addition to (gl), (g2), (g3) is

needed to make a radical class closed under finite subdirect products.
The hereditary radical classes are accounted for by 1.2: if 1ft is

hereditary and (9 = {(S, A)| S ~ A and R (S) = 0}, then S% = .
Let éB be a hereditary radical class and let

Then Wgk is a good class (an instance of the class specified in 1. 1(i» so by
1.2, R is a radical class. Now R is the class of rings of which every
homorphic image has no non-zero 1ft-ideals-the class of strongly
Jt-semi-simple rings in the terminology of [1]. Thus we have

1.3 COROLLARY: For every hereditary radical class e, the (radical)
class R of strongly 1,Jk-semi-simple rings is closed under finite sub-
direct products.

When a hereditary radical class R is supernilpotent or subidem-
potent, R is hereditary ([1], Theorems 2, 4 and 8). For hereditary
radical classes in general, this need not be so.

1.4 EXAMPLE: Let J be the hereditary radical class of all rings
with torsion additive groups. Then R is not hereditary. To see this,
consider the ring R whose additive group is Q ~ Q and whose
multiplication is given by

We have I  R with I ~ Qo and R/I ~ Q. The only ideals of R are 0,1
and R, so the non-zero homomorphic images of R are R and Q, both
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of which are J-semi-simple. Thus R E CÕff. But Q0 ~ CÕff, since Q0/Z0 E
ST.

Thus we have an example of a non-hereditary radical class which is
closed under finite subdirect products.
For a radical class e, let

As noted above, when R is hereditary, we have

In general, *R need not be hereditary.

1.5 EXAMPLE: Let D be the (radical) class of rings with divisible
additive groups. Let R be the ring in 1.4. The homomorphic images of
R are 0, Q and R, while the ideals of R are 0, I (~ Q5 and R. Thus
R E *D. However I = Q° £ *D, as Qo has non-zero reduced ideals
(= subrings).
The class resulting from iterations of the *R construction is of

some interest. For a radical class R, let

and in general,

1.6 PROPOSITION: For any radical class rit, we have

and ~ nR is the unique largest hereditary radical subclass of rit.

PROOF: If I ~ A ~ n+1R, then nR(I) ~ A and (I/nR(I), A/nR(I) E
n+1R, so that I/nR(I) = 0. Thus ideals of rings in n+1R 1 are always in
nR. It follows that n nR is hereditary (and it is, of course, a radical
class). 
Now let  be a hereditary radical subclass of rit. If A e X and

I ~ A, then every ideal of A/I is in llf and therefore in rit, so A E 0R
and Y C The same argument shows that  ~ n+1R if ’Je C nR.
Hence  ~ ~ nR.
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We have seen that a radical class which is closed under finite

subdirect products need not be hereditary. One can ask, then,
whether some kinds of ’restricted hereditary properties’ are con-

sequences of finite subdirect product closure.

1.7 PROPOSITION: Let e be a radical class which is closed under

finite subdirect products. If I ~ A F- e and I C ann (A), then I E e.

PROOF: Consider the ring A ~ I. We have

Also A ~+ I/I’ ~ A and A ~ I/J ~ A (via (a,i) ~ a + i), so A ~ I, as a
subdirect product of two copies of A, is in 9L But then I is in e also.

This result will be useful later on. We shall say that a radical class
? is hereditary for annihilator ideals if it satisfies the condition

The next result, with which we end this section, is somewhat analo-
gous to 1.6.

1.8 PROPOSITION: Let e be a radical class, 9£ a hereditary class
such that R = U(). Let

Then éB ~  is the unique largest radical subclass of R which is

hereditary for annihilator ideals.

PROOF: It is clear that éB ~  is in fact a radical class. Let S  A E
R n  with S C ann (A). If Sft. R, then for some I ~ S, we have
0 ~ SII E T. Since I C ann (A), we have K A, and then, since S C
ann (A), (SII, AJI) e G. But A is in , so SII = 0 - a contradiction.
Hence S is in 1ft. If now J ~ S, then J  A and J C ann (A), so as
above J is in 1ft. It follows that R contains every (annihilator) ideal of
every homomorphic image of S, and thus that S is in W. We have
shown that ? ~  is hereditary for annihilator ideals.
Now let A be any radical subclass of éB which is hereditary for

annihilator ideals. If A E si and (SII, AII) E , then since A is here-

ditary for annihilator ideals, SII E A C R. But as SII E , we have
SII = 0. Thus A ~ , so si C .
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2. Upper radical classes defined by homomorphically closed classes

In this section we shall examine some upper radical classes which

are closed under finite subdirect products. Our results are obtained
only for upper radical classes defined by homomorphically closed
(hereditary) classes, and it is not at all clear what happens when this
restriction is removed. Our first theorem is closely related to a

group-theoretic result of Dark and Rhemtulla ([5], Theorem 2).

2.1 THEOREM: Let Y be hereditary and homomorphically closed,
let e = U (ae) and let

Then e ~  is the unique largest radical subclass of e which is closed
under finite subdirect products.

PROOF: If A is a radical subclass of 9t which is closed under finite

subdirect products, then by 1.7, A is hereditary for annihilator ideals
and thus by 1.8, A c e ~ . What we need to show, therefore, is that
R ~  is closed under finite subdirect products.
Let A be a ring with ideals H, K such that A/H and A/K ~ R ~ 

and H fl K = 0. Since  is closed under finite subdirect products, A is
in . If A/M ~  for some M ~ A, then A/(M+H ), A/(M + K ) ~
R fl W = {0}, so M + H = A = M + K. Hence (since HK = 0) A 2 =
(M + H)(M + K) C M, so that (A/M, A/M) E 19. But A E , so M = A.
It follows that A E U() = R, so A ~ R ~  and the latter is closed
under finite subdirect products.

We have not been able to determine whether or not radical classes
in general have largest radical subclasses closed under finite subdirect
products.

2.2 COROLLARY: Let T be hereditary and homorphically closed
and let

Then U() is closed underfinite subdirect products if and only if
U() c .

Szàsz [16] has shown that the class 6 of rings whose homomorphic
images have zero two-sided annihilators is a radical class.
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2.3 COROLLARY: Let e be a radical class such that

(i) R = U() for a hereditary homomorphically closed class Y and
(ii) R consists of idempotent rings.

Then R is closed under finite subdirect products if and only if e C 6.

PROOF: Since e consists of idempotent rings, all zerorings are
R-semi-simple. If we let lÎ0 be the union of Y and the class of

zerorings, then t is hereditary and homomorphically closed, and
9t = U(). Let

Then by 2.2, R is closed under finite subdirect products if and only if
1Jt C . But in this case, =6.

Note that le6 itself is not hereditary, but (equal to CÕ as defined
above) is closed under finite subdirect products.
We conclude this section by showing that for certain types of upper

radical classes the hereditary property and finite subdirect product
closure are equivalent.

2.4 THEOREM: Let T be a hereditary homomorphically closed class
of rings all of which satisfy a fixed polynomial identity. Then U() is
closed under finite subdirect products if and only if it’s hereditary.

PROOF: Of course we only need to prove the ’only if’ assertion. Let
1Jt = U (ae) and let R be closed under finite subdirect products.
Suppose firstly that R(Z0 = 0. Let R denote the Zassenhaus al-

gebra over the rationals. This has a basis {e03B1| a E (0,1)} and multi-
plication given by eae(3 = e03B1+03B2 if a + 03B2  1 and 0 if a + /3 &#x3E; 1. For each
a E (0, 1) we pick out two ideals of R,

If R ~ R, then for each a, RIL E R. But lalIa C ann (R/I03B1), so by 1.7,
EE e. However, 03B1/I03B1 ~ Q’, so, in effect, Z0 ~ ann (RlIa), and
another appeal to 1.7 establishes that Z° is in R - a contradiction.
Thus R ~ R. Now consider the n x n matrix ring Mn(R) over R. we

have
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so as above, Mn(R) ~ R for each n. Hence for every n, Mn(R) has a
non-zero homomorphic image in K.

Let I be an ideal of Mn(R) satisfying the following condition.

(Here and subsequently, linear combinations of basis elements are to
be understood as commencing with the basis element of the smallest
index.) Then multiplying by the scalar matrix

we get, in I, a matrix with an entry

Thus (*) is equivalent to the following condition.

Take any a E (0, 1), and pick 13, y, 8 such that 0 + y + 8 = a. Then I
contains a matrix (vij) with an entry

Let b, c be non-zero rationals and let [x]rs be the matrix whose (r, s)
entry is x and whose others are all zero. Then I contains

Thus for each a E (0, 1), 1 contains a matrix whose (1,1) entry has the
form

Let J be the set of all (1, 1) entries of matrices in I. Then J ~ R and
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for each a E (0, 1) J has an element of the form

From Divinsky’s characterization ([6], p. 683) of the ideals of R, we
can now infer that J = R.

Now let g be any element of R. Since R is idempotent, we can

express g as a sum g = 03A3 uvw. As just established, for each v, I

contains a matrix (Vij) with un = v. Thus l contains

for each i, j. But then, for any (dij) E Mn(R), we have

Le. I = M"(R).
Considering (*) again, we see that if Mn(R)/I is to be non-zero, then

there exists an a E (0, 1) such that every entry of every matrix in I
has the form

i.e. I c Mn(Ia)·
Thus if 0 0 Mn(R)/I E , then for some a we have

Now R/a is a ring like R, but with (0, a), rather than (0, 1), serving
as index set for a basis. We have seen that (if R(Z) = 0) for every n
there is an an E (0,1) such that Mn (Rllan) E . But arguing as in the
proofs of Lemma 1.1 and Theorem 1.2 of [8], we see that no identity
can be satisfied by all these rings, so we again arrive at a contradic-
tion.

We therefore conclude that R(Z0) ~ 0. But then Z0 ~ R, so
contains all prime radical rings. It follows that T consists of

semiprime rings, and hence, being homomorphically closed, of

strongly semiprime, or, equivalently, hereditarily idempotent rings ([1]
or [4]). But Armendariz and Fisher [2] have shown that hereditarily
idempotent rings with polynomial identities are regular.
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Thus T is a class of regular rings satisfying a fixed identity. Let 95
be the class of primitive homomorphic images of rings in 9£. Then

since T is homomorphically closed, we have e = U() = U(9). But
primitive PI rings are simple artinian [10]; in particular they are
simple unital rings. Hence U(9) is hereditary [15].

Since the only artinian simple rings whose subrings are all strongly
semiprime are the finite fields, we have:

2.5 COROLLARY (to proof): The following conditions are equivalent
for a variety T of rings.

(i) U() is hereditary.
(ii) U() is closed under finite subdirect products.

(iii) V is generated by a finite set of finite fields.

3. More examples

In this section we gather together a miscellaneous collection of
examples and counterexamples related to finite subdirect product
closure. Our first result provides another source of radical classes
which are closed under finite subdirect products.

3.1 PROPOSITION: Let  be a hereditary class of prime rings. Then
U() is closed under finite subdirect products.

PROOF: If A/H, A/K E U() and H n K = 0, suppose A/M e
 U {0} for some M  A. Then (H + M)/M. (K + M)/M = 0, so H C
M or K C M and thus A/M E U(X), so M = A. Hence A is in U(X),
so the latter is closed under finite subdirect products.

3.1 calls for two comments. Firstly it is not clear that the non-

hereditary instances of U(3t) arise from constructions like those

described in 1.2. Secondly, the conclusion of 2.4 is not universally
valid in the absence of a polynomial identity. This can be seen from

3.2 COROLLARY: Let  be a class of idempotent simple rings. Then
U(Y) is closed under finite subdirect products.

It is known that some idempotent simple rings don’t define heredi-
tary upper radicals. It is not known precisely which ones do; the most
up-to-date information can be obtained from recent work of Leavitt
[12] and a survey by van Leeuwen [13].
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Our next result utilises the following characterization of finite

subdirect products.

3.3 THEOREM (Fuchs [7]): Let A, B be rings 14 A and J ~ B. If
there is an isomorphism f : A/I ~ B/J let

Then S is a subdirect product of A and B. Conversely, every subdirect
product of A and B arises in this way.

3.4 COROLLARY: If I ~ A, then

is a subdirect product of two copies of A.

PROOF: Let f : AII - AII be the identity. Then f(a + I ) = b + I if

and only if a - b ~ I.

We have mostly been discussing upper radicals. We next present
some lower radical classes which fail to be closed under finite

subdirect products.

3.5 THEOREM: Let A be a non-simple ring with identity ~ 0 such
that

(i) i n J ~ 0 for all non-zero ideals 1 and J and

Then L({A}) is not closed under finite subdirect products.

PROOF: Let M be an ideal of A, 0 ~ M ~ A. Let S =

{(a, b) E A (£) A 1 a - b E M}. Then by 3.4, S is a subdirect product of
two copies of A. Suppose some homomorphism f : A ~ S has ac-
cessible (and therefore, since A is idempotent, ideal) image. Let e
denote the identity of A. Then e - e E M, so (e, e) is the identity of S.
Let (u, v) be a central idempotent of S. Then u and v are idem-

potents. If a E A, then for any m E M, we have (a, a + m ) E S
and thus (ua, v (a + m)) = (u, v)(a, a + m) = (a, a + m)(u, v) = (au,
(a + m)v), so ua = au, i.e. u is a central idempotent of A. Simil-

arly we see that v is a central idempotent. Now by (i) A is
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indecomposable, and hence the only central idempotents of A are e
and 0. But then (0, 0), (e, 0), (0, e) and (e, e) are the only possible
central idempotents of S. Since M ~ A, (e, 0) and (0, e) are not

elements of S. Thus f (e) = (0, 0) or (e, e).
Suppose f(e) = (e, e). Then f is surjective. Let 03C01, 7F2: S ~ A be the

coordinate projections. Then 03C01f, 1T2 are surjective maps from A to A,
so by (ii), nif and 1TJ are injective. Thus A = S. But M ~ 0, 0 ~ M
are non-zero ideals of S and (M (f) 0) ~ (0 ~ M) = 0. This violates (i),
so we conclude that f(e) = (0,0). But then f = 0, so that Se L({A}).

An obvious example of a ring satisfying the conditions of 3.5 is Z.
However, L({Z}) is accounted for by 1.7 (ann (Z/4Z) ~ 0, for exam-
ple). What we really need are hereditarily idempotent rings satisfying
(i) and (ii). Examples of such rings are prime unital regular rings with
finite ideal lattices. These include the full rings of linear trans-

formations of vector spaces of dimension Kn for finite n. (See, e.g.
[3], pp. 197-199). Other examples are given by Raphael ([14], pp. 558
et seqq.). Note that there must be at least three ideals: simple rings
determine lower radical classes which are hereditary and therefore
closed under finite subdirect products.

It is also worth noting that when A is a hereditarily idempotent ring
satisfying (i) and (ii) of 3.5, L({A}) ç 6 (cf. 2.3). In particular, such a
class L({A}) is hereditary for annihilator ideals, so the converse to 1.7
is false.
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