COMPOSITIO MATHEMATICA

TADAYUKI MATSUZAWA SHUKICHI TANNO Estimates of the first eigenvalue of a big cup domain of a 2-sphere

Compositio Mathematica, tome 47, nº 1 (1982), p. 95-100 <http://www.numdam.org/item?id=CM_1982_47_1_95_0>

© Foundation Compositio Mathematica, 1982, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 47, Fasc. 1, 1982, pag. 95–100 © 1982 Martinus Nijhoff Publishers – The Hague Printed in the Netherlands

ESTIMATES OF THE FIRST EIGENVALUE OF A BIG CUP DOMAIN OF A 2-SPHERE

Tadayuki Matsuzawa and Shukichi Tanno

Let $S^2 = (S^2, g_0)$ be the unit 2-sphere in the Euclidean 3-space E^3 and let D(r) denote a cup domain of S^2 which is the geodesic disk of radius r centered at the south pole Q. Let $\lambda_1(r)$ denote the first eigenvalue of the Dirichlet problem for D(r). For $\pi/2 \le r < \pi$, we have $2 \ge \lambda_1(r) > 0$. However nice estimates of $\lambda_1(r)$ seem to be unknown. For example, the value r for which $\lambda_1(r) = 1$ is related to the study of stability of minimal surfaces in E^4 (see [1], p. 27), and some estimate of r for which $\lambda_1(r) > 1$ was given in [1].

In this note we give estimates of $\lambda_1(r)$ for r which is near π (Theorem 1.1). If we let r tend to π , then

$$\lambda_1(r) \sim [-2\log(\pi-r)]^{-1}$$
.

This agrees with a recent result by S. Ozawa [5] (cf. Remark ii in the section 2).

In the section 3, as an example, we calculate our estimates for $r = \pi - 10^{-50}$;

$$|\lambda_1(\pi - 10^{-50}) - 0.00438| < 0.00007.$$

Contrary to 2-dimensional case, the first eigenvalue of a cup domain of a unit 3-sphere S^3 is explicitly calculatable (see [4], p. 154, [2], p. 201).

We express our thanks to Mr. Muto for some comments.

1. The first eigenvalue of a cup domain

Let (x, y, z) be the canonical coordinates of E^3 . Then $S^2 = \{(x, y, z); x^2 + y^2 + z^2 = 1\}$. Put P = (0, 0, 1) and Q = (0, 0, -1). We denote the

0010-437X/82070095-06\$00.20/0

.

Laplacian on S^2 by Δ . Then it is known that

$$f_C(x, y, z) = f(z) = 2 - z \log \frac{1+z}{1-z} + Cz$$

satisfies $\Delta f + 2f = 0$ on $S^2 - \{P, Q\}$ for any constant C. f(z) = 0 has just two solutions for -1 < z < 1, and solutions depend on C. Let r = r(x, y, z) denote the distance function from Q on S^2 . Then

$$z = -\cos r$$
.

We fix $r_0(0 < r_0 < \pi)$ and consider the corresponding cup domain $D(r_0) = \{(x, y, z) \in S^2; r(x, y, z) \le r_0\}$. Then we have some constant $C = C(r_0)$ such that the solutions $\gamma = \gamma(r_0)$, $\beta = \beta(r_0)$ of $f_C(z) = 0$ satisfy $\gamma < \beta = -\cos r_0$. Namely C is determined by β ;

(1.1)
$$C = \log \frac{1+\beta}{1-\beta} - \frac{2}{\beta}$$

Let $z = \alpha$ be the point where $f_C(z)$ takes its maximum. Then

(1.2)
$$C = \log \frac{1+\alpha}{1-\alpha} + \frac{2\alpha}{1-\alpha^2}$$

and the maximum value is equal to $2/(1 - \alpha^2)$. We define a function F on $D(r_0)$ by

$$F(x, y, z) = ((1 - \alpha^2)/2) f_C(x, y, z) \qquad \alpha \le z \le \beta$$
$$= 1 \qquad -1 \le z \le \alpha$$

F is a piecewise smooth C^1 -function on $D(r_0)$ vanishing on the boundary of $D(r_0)$. Therefore the first eigenvalue $\lambda_1(r_0)$ of $D = D(r_0)$ satisfies

$$\lambda_1(r_0) < \int_D (dF, dF) / \int_D F^2.$$

Since the volume element of $D(r_0)$ is $\sin r \, dr \wedge d\theta$ (where θ denotes the rotation parameter around the z-axis), we get

$$\int_D F^2 = 2\pi \int_{-1}^{\beta} F^2 dz$$
$$= 2\pi (1+\alpha) + 2\pi \int_{\alpha}^{\beta} F^2 dz.$$

96

Let $D = D' \cup D''$, where D' denotes the part of D for $z \le \alpha$ and D'' corresponds to $\alpha \le z \le \beta$. Then

$$\int_{D} (dF, dF) = \int_{D'} (dF, dF) = \int_{D'} (-\Delta F, F)$$
$$= 2 \int_{D'} F^2 = 4\pi \int_{\alpha}^{\beta} F^2 dz,$$

where the second equality follows from the fact that F vanishes on $z = \beta$ and the normal derivative of F vanishes on $z = \alpha$. Therefore we get

(1.3)
$$\lambda_1(r_0) < 2A/(1+\alpha+A).$$

THEOREM 1.1: Let $D(r_0)$ be a cup domain in S^2 . Then the first eigenvalue $\lambda_1(r_0)$ is estimated by

(1.4)
$$1/\log[2/(1+\cos r_0)] < \lambda_1(r_0) < 2A/(1+\alpha+A),$$

where β , C, α and A are determined by the following:

$$\beta = -\cos r_0,$$

(1.6)
$$C = \log \frac{1+\beta}{1-\beta} - \frac{2}{\beta} = \log \frac{1+\alpha}{1-\alpha} + \frac{2\alpha}{1-\alpha^2},$$

(1.7)
$$\mathbf{A} = \frac{(1-\alpha^2)^2}{4} \int_{\alpha}^{\beta} \left\{ 2 - z \log \frac{1+z}{1-z} + Cz \right\}^2 dz$$

PROOF: The first inequality of (1.4) follows from a calculation applying $\Theta(t) = \sin t$ to Theorem 3 in [3]. The second inequality of (1.4) is (1.3). q.e.d.

REMARK i: Our inequalities (1.4) are most effective for $r_0 = \pi$. One merit of (1.4) is that it enables us to calculate approximated values of $\lambda_1(r_0)$, $r_0 = \pi$.

2. Calculation of $A = A(r_0)$

Here we calculate

$$I = \frac{2A}{(1-\alpha^2)^2} = \frac{1}{2} \int_{\alpha}^{\beta} \left\{ 2 - z \log \frac{1+z}{1-z} + Cz \right\}^2 dz.$$

We put u = (1+z)/(1-z), $a = (1+\alpha)/(1-\alpha)$ and $b = (1+\beta)/(1-\beta)$. Then, $dz = 2 du/(u+1)^2$ and

$$I = \left[-\frac{C^2 + 4C + 4}{u + 1} + \frac{2C^2 + 4C}{(u + 1)^2} - \frac{4C^2}{3(u + 1)^3} \right]_a^b$$
$$+ \left[\left(-\frac{1}{u + 1} + \frac{2}{(u + 1)^2} - \frac{4}{3(u + 1)^3} \right) (\log u)^2 \right]_a^b$$
$$+ \int_a^b \left\{ -\frac{2C + 4}{(u + 1)^2} + \frac{8C + 8}{(u + 1)^3} - \frac{8C}{(u + 1)^4} \right\} \log u \, du$$
$$+ \int_a^b \left\{ \frac{1}{u + 1} - \frac{2}{(u + 1)^2} + \frac{4}{3(u + 1)^3} \right\} \frac{2}{u} \log u \, du.$$

Continuing calculations and applying

$$\int_{a}^{b} \frac{\log u}{u+1} du = \frac{1}{2} \left[(\log(1-z))^{2} \right]_{\alpha}^{\beta} - \left[\log(1+z) \log(1-z) \right]_{\alpha}^{\beta} + \int_{\alpha}^{\beta} \frac{\log(1-z)}{1+z} dz,$$

we obtain the following

PROPOSITION 2.1: For $a = (1 + \alpha)/(1 - \alpha)$ and $b = (1 + \beta)/(1 - \beta)$,

$$\frac{2A}{(1-\alpha^2)^2} = \left[-\frac{C^2 + 8C/3 + 4/3}{u+1} + \frac{2C^2 + 8C/3}{(u+1)^2} - \frac{4C^2}{3(u+1)^3} + \left(-\frac{1}{u+1} + \frac{2}{(u+1)^2} - \frac{4}{3(u+1)^3} \right) (\log u)^2 + \left(\frac{2C + 8/3}{u+1} - \frac{4C + 8/3}{(u+1)^2} + \frac{8C}{3(u+1)^3} \right) \log u + \frac{2C}{3} \log \frac{u+1}{u} \right]_a^b + \frac{1}{3} [(\log(1+z))^2]_{\alpha}^{\beta} - \frac{2}{3} \int \frac{\log(1-z)}{1+z} dz.$$

The last term of (2.1) is estimated by the following

PROPOSITION 2.2: For $\alpha > 0$ we have

$$-\int_{\alpha}^{\beta} \frac{\log(1-z)}{1+z} dz < \frac{1}{1+\alpha} \left[(1-z) \log(1-z) \right]_{\alpha}^{\beta} + \frac{\beta-\alpha}{1+\alpha},$$

$$-\int_{\alpha}^{\beta} \frac{\log(1-z)}{1+z} dz > \frac{1}{1+\beta} \left[(1-z) \log(1-z) \right]_{\alpha}^{\beta} + \frac{\beta-\alpha}{1+\beta}.$$

98

Next we study the behavior of $A(r_0)$ as $r_0 \rightarrow \pi$. We put $\delta = 1 - \alpha$ and $\rho = 1 - \beta$. Then we get

$$C = -\log \rho - 2 + \log 2 + \cdots,$$

$$\delta \log \rho = -1 + \delta \log \delta - 3\delta/2 + \cdots$$

etc. By Propositions 2.1 and 2.2 we obtain

$$\lim_{r_0\to\pi}\log(1-\beta) A(r_0)=-1,$$

and hence for $r_0 \rightarrow \pi$,

$$2A/(1 + \alpha + A) \sim [-\log(1 + \cos r_0)]^{-1}$$

Therefore Theorem 1.3 implies

(2.2)
$$\lambda_1(r_0) \sim [-\log(1 + \cos r_0)]^{-1}$$

COROLLARY 2.3: Let $D_{\epsilon}(P)$ be an ϵ -neighborhood of a point P in S^2 . Then the first eigenvalue $\lambda_{1,\epsilon}$ of $S^2 - D_{\epsilon}(P)$ satisfies

(2.3)
$$\lambda_{1,\epsilon} \sim [-2\log\epsilon]^{-1} \quad (\epsilon \downarrow 0).$$

PROOF: We put $\epsilon = \pi - r_0$. Then $1 + \cos r_0 = \epsilon^2/2 + \cdots$, and $\lambda_{1,\epsilon} = \lambda_1(r_0)$. Thus, (2.3) follows from (2.2). q.e.d.

REMARK ii. A result of S. Ozawa [5] is stated as follows; Let (N, g) be a compact 2-dimensional Riemannian manifold and let $D_{\epsilon}(p)$ be an ϵ -neighborhood of a point p of N. Then the first eigenvalue $\lambda_{1,\epsilon}$ of $(N, g) - D_{\epsilon}(p)$ satisfies

$$\lambda_{1,\epsilon} = 2\pi [-\operatorname{Vol}(N,g)\log\epsilon]^{-1} + 0((\log\epsilon)^{-2}),$$

where Vol(N, g) denotes the volume of (N, g). His proof depends on abstract analysis, and it is difficult to get the geometric shape of an eigenfunction corresponding to $\lambda_{1,\epsilon}$. To get an approximated shape of an eigenfunction the following observation is useful. Any 2-dimensional Reimannian manifold (N, g) is locally conformal to (S², g₀). Let U be a neighborhood of p in N and let ϕ be a conformal map from U into $U^* = \phi U$ in S². We put $P = \phi(p)$. If ϵ_0 is sufficiently small, for any $\epsilon < \epsilon_0$ we have some $\mu = \mu(\epsilon)$ such that the boundary of an ϵ -neighborhood $D_{\epsilon}(p)$ of p in N is mapped by ϕ into $D_{\epsilon+\mu}(P) - D_{\epsilon-\mu}(P)$ in S^2 . The converse is also true. In the 2-dimensional case we have another special property that, for conformally related metrics g_0 and $g^* = hg_0$ (h:positive function) the Laplacians Δ and Δ^* corresponding to g_0 and g^* satisfy $\Delta^* f = (1/h) \Delta f$ for each function f. Therefore, in an infinitesimal domain, h looks like a constant, and a function similar to F in the section 1 can be constructed in N.

3. An example; $r_0 = \pi - 10^{-50}$

As an example we calculate our estimate of $\lambda_1(r_0)$ for $r_0 = \pi - 10^{-50}$.

 $229.64480 < C = \log b - 2/\beta < 229.64481$ $0.9955365 < \alpha < 0.9955366$ 0.00444348 < A < 0.00444382 $0.0043169 < \lambda_1(r_0) < 0.0044439$

Estimate in the introduction corresponds to

 $0.00431 < \lambda_1(r_0) < 0.00445.$

REFERENCES

- J. L. BARBOSA and M. DO CARMO: Stability of minimal surfaces and eigenvalues of the Laplacian. Math. Zeit. 173 (1980) 13-28.
- [2] I. CHAVEL and E. A. FELDMAN: Spectra of domains in compact manifolds. Journ. Funct. Anal. 30 (1978) 198-222.
- [3] A. DEBIARD, B. GAVEAU et E. MAZET: Temps de sortie des boules normales et minoration local de λ_1 . Compt. Rend. Acad. Sci. Paris 278 (1974) 795-798.
- [4] S. FRIEDLAND and W. K. HAYMAN: Eigenvalue inequalities for the Dirichlet problem on spheres and the growth of subharmonic functions. Comm. Math. Helv. 51 (1976) 133-161.
- [5] S. OZAWA: The first eigenvalue of the Laplacian of two-dimensional Reimannian manifold (preprint; Department of Mathematics, Tokyo University, Japan).

(Oblatum 9-II-1981 & 29-VI-1981)

Department of Mathematics Tokyo Institute of Technology Ohokayama, Meguro, Tokyo, Japan