COMPOSITIO MATHEMATICA

JOSE M. BAYOD J. MARTINEZ MAURICA A characterization of the spherically complete normed spaces with a distinguished basis

Compositio Mathematica, tome 49, nº 1 (1983), p. 143-145 <http://www.numdam.org/item?id=CM_1983_49_1_143_0>

© Foundation Compositio Mathematica, 1983, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Compositio Mathematica 49 (1983) 143–145 © 1983 Martinus Nijhoff Publishers, The Hague. Printed in The Netherlands

A CHARACTERIZATION OF THE SPHERICALLY COMPLETE NORMED SPACES WITH A DISTINGUISHED BASIS

Jose M. Bayod and J. Martinez Maurica

The theory of normed spaces over a trivially valued field (or *valued spaces*) was developed mainly by P. Robert in his series of papers [3]. He introduced the concept of distinguished basis, also called orthogonal bases in the literature, and in order to deal with spaces that posses distinguished bases, he restricted himself to V-spaces ([3], p. 16), that is, complete valued spaces E such that

$$||E|| = \{||x|| : x \in E\} \subset \{0\} \cup \{\rho^n : n \in \mathbb{Z}\}\$$

for some real number $\rho > 1$. K.-W. Yang, [5], has given a different proof of the fact that V-spaces have a distinguished basis. All V-spaces are easily shown to be spherically complete.

In this note we give a characterization of all valued spaces which are spherically complete and have a distinguished basis. These spaces need not be V-spaces. Moreover, we answer a question of Robert ([3], p. 8), by giving examples of valued spaces without a distinguished basis.

For notations, we refer to [3] and [4].

THEOREM: Let E be a complete valued space over a field K (i.e., a nonarchimedean Banach space over a field with the trivial valuation). Then, the following are equivalent:

- (i) E has a distinguished (or orthogonal) basis, and it is spherically complete.
- (ii) Every strictly decreasing sequence in ||E|| converges to zero.

PROOF: Assume (ii). Let $X \subset E$ be a maximal orthogonal subset of E ([3], p. 9). It is very easy to prove that our hypothesis (ii) implies the

closed linear span of X, [X], is spherically complete. Then by Ingleton's Theorem ([4], Ex. 4.H; the proof also works when K is trivially valued), if $[X] \neq \cdot E$, there is a linear projection $P: E \rightarrow [X]$ of norm one, and for any $z \in E \setminus [X]$, z - Pz is orthogonal to [X] and different from zero, contradicting the maximality of X.

Conversely, assume E has a distinguished basis X and is spherically complete, and that there is a sequence in ||E|| strictly decreasing and bounded away from zero. Since for every nonzero element of E there is some basic vector with the same norm, there must exist a sequence (x_n) in X with strictly decreasing norms but not convergent to zero.

Call F the closed vector subspace $[x_n:n \in \mathbb{N}]$. Then F is linearly isometric to the quotient of E by the subspace generated by the other members of X, hence it must be spherically complete (Cf. [4], Th. 4.2). But it is not: consider the sequence of closed balls

$$B(x_1 + \ldots + x_n, ||x_n||), \qquad n \in \mathbb{N}$$

REMARKS: (1) For non-archimedean Banach spaces over a *non-trivially* valued field, the same is true: a proof can be found in [4], Th. 5.16. That proof also works in our setting, but it is much more elaborated than the one given above; our proof is also valid when the valuation is not trivial, with a minor modification: in that case one cannot be sure that the set of norm values of a basis is the same as $||E|| \setminus \{0\}$, and one has to change (x_n) into $(\lambda_n x_n)$ for suitable $\lambda_n \in K$.

(2) It is not difficult to prove that a valued space is spherically complete and has a distinguished basis if and only if it is linearly isometric with a space $c_0(I:s)$ defined as the set

 $\{x: I \to K | | x(i) | s(i) \to 0 \text{ for the Frechet filter on } I\}$

(where I is any nonempty set) endowed with the norm

 $||x||_{s} = \max \{s(i) | x(i) \neq 0\}$

where $s: I \to [0, +\infty)$ is a function whose range does not contain any strictly decreasing sequence with a positive limit.

Consequently, one can give examples of valued spaces with a distinguished basis, apart from V-spaces.

(3) Now we can produce several examples of valued spaces without a distinguished basis:

(a) Over the real field: the fields ${}^{\rho}\mathbf{R}$ introduced by A. Robinson, regarded as valued spaces over **R** (trivially valued), are spherically complete (see [1]), and have $\|{}^{\rho}\mathbf{R}\| = [0, +\infty)$.

144

(b) Over any field K: the field E of formal power series with coefficients in K and rational exponents, with the set of exponents relative to nonzero coefficients well-ordered is spherically complete ([2], p. 38), and has ||E|| dense in $[0, +\infty)$.

REFERENCES

- W.A.J. LUXEMBURG: On a class of valuation fields introduced by A. Robinson. Israel J. Math. 25 (1976) 189-201.
- [2] A.F. MONNA: Analyse non-archimédienne, Springer-Verlag, Berlin, 1970.
- [3] P. ROBERT: On some non-archimedean normed linear spaces, I, II, ..., VI. Comp. Math. 19 (1968) 1-77.
- [4] A.C.M. VAN ROOU: Non-archimedean functional analysis, Marcel Dekker, Inc., New York, 1978.
- [5] K.-W. YANG: On the existence of distinguished bases in a V-space. Comp. Math. 23 (1971) 307-308.

(Oblatum 6-I-1982)

Facultad de Ciencias Av. de los Castros Santander Spain