H. Kisilevsky

Some non-semi-simple Iwasawa modules

Compositio Mathematica, tome 49, no 3 (1983), p. 399-404

<http://www.numdam.org/item?id=CM_1983__49_3_399_0>
SOME NON-SEMI-SIMPLE IWASAWA MODULES

H. Kisilevsky

The purpose of this note is to show that the semisimplicity result of [2] may fail to be true in the cases not covered by the theorem in section 2. We base the examples on the idea of J.F. Jaulent [4] although our method in §1 is somewhat different. Theorem 1 of this note gives an alternate proof of Theorem 1 of [2] and Theorem 9 of [4]. We follow the notation in [2].

Let k/\mathbb{Q} be a totally complex abelian extension, and denote by $\Delta = \text{Gal}(k/\mathbb{Q})$. Let $J \in \Delta$ be the automorphism given by complex conjugation (under some fixed embedding of an algebraic closure of k into the complex numbers). Fix a prime p, such that $\delta_{p-1} = 1$ for all $\delta \in \Delta$. Let $\hat{\Delta} = \text{Hom}(\Delta, \mu_{p^{-1}}) = \text{Hom}(\Delta, \mathbb{Z}_{p}^*)$ and denote by V the set of characters χ of Δ which are either odd or trivial, i.e. $V = \{\chi \in \hat{\Delta} | \chi(J) = -1 \text{ or } \chi = \chi_0\}$.

For each $\chi \in V$, there exists a (unique) \mathbb{Z}_p-extension (see [1]) K_χ/k, $\text{Gal}(K_\chi/k) = \Gamma_\chi$ such that K_χ/\mathbb{Q} is normal and $\text{Gal}(K_\chi/\mathbb{Q}) \cong \Gamma_\chi \cdot \Delta$ a semidirect product with

$$\delta \sigma \delta^{-1} = \sigma^{\chi(\delta)} \text{ for all } \sigma \in \Gamma_\chi, \delta \in \Delta.$$

Let L/K_χ be the maximal abelian unramified p-extension of K_χ so that $\text{Gal}(L/K_\chi) = X \cong \lim_{\rightarrow} A_n$ (where A_n is the p-primary subgroup of the ideal class group of $k_n \subseteq K_\chi$, and the limit is taken as usual with respect to the norm maps).

Then, as usual, X is a noetherian torsion Δ-module, so we have

$$X/TX \simeq TX \simeq TX_0 \simeq X_0/TX_0$$

* This research was sponsored by an NSERC Grant.
where $TX = \{x \in X | T x = 0\}$ and $X_0 = \{x \in X | T^k x = 0 \text{ some } k \geq 1\}$ and "\sim" here denotes pseudo-isomorphism.

Since Γ_x acts trivially on X/TX and on τX we have a natural action of Δ on these groups and following [4], we study their Δ-decompositions.

If M is a Δ-module which is also a (pro) p-group then for $\phi \in \Delta$ write

$$M_\phi = \{m \in M | \delta(m) = \phi(\delta) \cdot m \text{ for } \delta \in \Delta\}$$

and call this the ϕ-component of M.

Now $X_0 \sim \Lambda^{a_1} + \ldots + \Lambda^{a_r}$ for integers $a_1, \ldots, a_r \geq 1$. We say X_0 is semi-simple $\iff a_1 = a_2 = \ldots = a_r = 1$ and in this case it is clear that

$$\tau X \sim X_0 \sim X/TX \text{ as } \Delta\text{-modules.}$$

In §1 we compute the Δ-decomposition of X/TX and in §2 we obtain some information of the Λ-decomposition of τX.

\section*{§1. The Δ-structure of X/TX}

Let L_0 be the subfield of L fixed by TX so that L_0 is the largest subfield of L abelian over k, and $\text{Gal}(L_0/k) \simeq X/TX$. Then L_0 is normal over \mathbb{Q}, and $L_0 \supseteq \Pi K_\phi$ (compositum taken over certain ϕ to be determined) where $[L_0 : \Pi K_\phi] < \infty$. (In fact the Galois group $\text{Gal}(L_0/\Pi K_\phi)$ is the torsion subgroup of X/TX and has certain interest c.f. [3].)

To determine the characters ϕ for which $K_\phi \subseteq L_0$, we note $K_\phi \subseteq L_0 \iff K_\phi K_x/K_x$ is unramified at all primes over p and this is a condition which we shall determine locally.

Let p be a prime of k dividing p, and let $F = F_0$ be the completion of k at p. Let F_ϕ be the union of the completions of the finite layers of K_ϕ with respect to some consistent choice of primes over p. (In the notation of [2], $p = p_i$ some i, $F = F_{0,i}$, and $F_\phi = \bigcup_{n \geq 1} F_{n,i}$) Then F_ϕ/F is a \mathbb{Z}_p-extension, infinitely ramified, such that F_ϕ/\mathbb{Q}_p is Galois, and $\text{Gal}(F_\phi/\mathbb{Q}_p) \simeq \mathbb{Z}_p \cdot D$ a semi-direct product where $D \subseteq \Delta$ is the decomposition group of p in $\text{Gal}(k/\mathbb{Q})$ and

$$\delta \sigma \delta^{-1} = \sigma^{\phi(\delta)}$$

for all $\sigma \in \mathbb{Z}_p = \text{Gal}(F_\phi/F)$ and $\delta \in \Lambda$, and $\phi' = \phi|D$.

We state the following two lemmas whose proofs we omit:
Lemma 1: If M is the compositum of all \mathbb{Z}_p-extensions of F, and $G = \text{Gal}(M/F)$, then $G \simeq \mathbb{Z}^{[D]_p+1}$ and we have the D-decomposition of G for all $\phi' \in D$,

$$
G_{\phi'} \simeq \mathbb{Z}_p \quad \text{if} \quad \phi' \neq \chi_0
$$

$$
\simeq \mathbb{Z}_p + \mathbb{Z}_p \quad \text{if} \quad \phi' = \chi_0.
$$

Lemma 2: $F^p_{\phi}F_X/F_X$ is unramified if and only if either (a) $F^p_{\phi} = F_X$ or (b) $F^\nr \subseteq F^p_{\phi}F_X$, where F^\nr is the unique non-ramified \mathbb{Z}_p-extension of F and is equal to $F \cdot \mathbb{Q}^\nr_p$, the compositum of F with the non-ramified \mathbb{Z}_p-extension of \mathbb{Q}_p.

Theorem 1: $K_{\phi}K_X/K_X$ is unramified if and only if

$$
\phi \in V \quad \text{and} \quad \phi|D = \chi|D.
$$

Proof: Suppose $K_{\phi}K_X/K_X$ is unramified so that for each p over p, we have $F^p_{\phi}F_X/F_X$ is unramified. Hence by Lemma 2, either (a) $F^p_{\phi} = F_X$ so that $\phi|D = \chi|D$ or (b) $F^\nr \subseteq F^p_{\phi}F_X$. In this case, (b), we must have $\text{Gal}(F^p_{\phi}F_X/F_X)_{\chi_0}$ is non-trivial since $\text{Gal}(F^\nr/F)_{\chi_0} \simeq \mathbb{Z}_p$. Since both F^p_{ϕ}/F and F_X/F are infinitely ramified it follows that only the χ_0 component of $\text{Gal}(F^p_{\phi}F_X/F)$ is non-zero and so $\phi|D = \chi_0|D = \chi|D$. Hence in either case, $\phi \in V$ and $\phi|D = \chi|D$.

Conversely, suppose $\phi \in V$, and $\phi|D = \chi|D$. If $\chi|D \neq \chi_0|D$ then $F^p_{\phi} = F_X$ by Lemma 1, and so $K_{\phi}K_X/K_X$ is unramified at primes over p.

If $\phi|D = \chi|D = \chi_0|D$ then again by Lemma 1 either $F^p_{\phi} = F_X$; or $F^\nr \subseteq F^p_{\phi}F_X$, so again $K_{\phi}K_X/K_X$ is unramified at primes over p. Since K_{ϕ}/k in unramified outside of primes over p, the conclusion of the theorem follows.

Corollary: $(X/TX)_\phi \sim \mathbb{Z}_p$ for $\phi \in V$, $\phi|D = \chi|D$, $\phi \neq \chi$, and

$$
\sim 0 \quad \text{otherwise}.
$$

Remark: This corollary furnishes another proof of Theorem 1 in [2] and Theorem 9 of [4].

We also note if for any ϕ we have $F^p_{\phi} = F_X$, then it follows that $K_{\phi}K_X \subseteq L$ in the notation of [2] and for each ϕ, $(X'/TX')_\phi$ has non-zero \mathbb{Z}_p-rank. This gives many examples of \mathbb{Z}_p-extensions where X'/TX' and TX' are infinite.
§2. Δ-structure of τX

Let $\Gamma = \Gamma_x = \text{Gal}(K_x/k)$, and so $\tau X = \lim A_n$. Since the limit is taken with respect to the norm maps $N_{m,n}$ and since $\delta N_{m,n} = N_{m,n}\delta$ for all $\delta \in \Delta$, it follows that

$$(\tau X)_{\phi} = \lim (A_n^\phi)_{\phi} \text{ for } \phi \in \hat{\Delta}.$$

We consider the usual exact sequences

$$1 \to P_n \to I_n \to C_n \to 1$$
$$1 \to E_n \to k_n^* \to P_n \to 1$$

where I_n, C_n, P_n, E_n are the ideal group, class group, group of principal ideals, and unit group of the nth layer k_n of K_x respectively.

We obtain the exact sequence

$$1 \to P_n^\Gamma \to I_n^\Gamma \to C_n^\Gamma \xrightarrow{f} NP_n/P_n^\gamma \sim E_0 \cap Nk_n^*/NE_n \to 1$$

where the map f is given below. Choose a fixed generator γ of Γ_x. Then for $x \in C_n^\Gamma$, $\gamma x = x$ and so $\frac{\gamma A}{A} = (\alpha) \in P_n$ for an ideal $A \in x$, define $f(x) = (\alpha) \mod P_n^\gamma$. This is a group homomorphism which is not a Δ-map, (c.f. [4]), but satisfies

$$f: (A_n^\phi)_{\phi} \to (NP_n/P_n^{\gamma-1})_{\phi x}.$$

Also the isomorphism is given by:

$$NP_n/P_n^{\gamma-1} \sim E_0 \cap N(k_n^*)/NE_n$$
$$\frac{\gamma A}{A} = (\alpha) \mod P_n^{\gamma-1} \to N(\alpha) \mod N(E_n)$$

where N denotes the norm map $N_{n,0}$ from k_n to $k = k_0$. Hence we obtain the exact sequence

$$1 \to \frac{P_n \cap I_0}{I_0} \to \frac{P_n^\Gamma}{P_0} \to \frac{I_n^\Gamma}{I_0} \to \frac{C_n^\Gamma}{j(C_0)} \to \frac{E_0 \cap N(k_n^*)}{N(E_n)} \to 1$$

(*)

where $j(C_0) \subseteq C_n^\Gamma$ is the subgroup generated by the ideals of $k = k_0$. We shall compute the ϕ-components of the groups $E_0 \cap N(k_n^*)/E_0^\phi$ and I_n^Γ/I_0. Since the groups on either side of $C_n^\Gamma/j(C_0)$ are (at worst) quotients
of these, this will describe the set of φ-components of $A_n^T \sim C_n^T/j(C_0)$ which are possibly non-trivial. (As in [2], we use the notation $A_n \sim B_n$ for sequences of groups $\{A_n\}$ and $\{B_n\}$ to mean there are homomorphisms $\phi_n: A_n \to B_n$ whose kernels and cokernels have orders bounded independently of n.)

For each prime p of k dividing p, let $p = A(p)^* \in I_n$ where $e_p \sim p^n$ is the ramification index of p for k_n/k. Since A permutes the primes of k over (p) transitively it follows that

$$I_n^T/I_0 \simeq \bigoplus_{p \mid (p)} \langle A(p) \rangle / \langle p \rangle \simeq \mathbf{Z}/p^n\mathbf{Z}[A/D]$$

where $\langle A(p) \rangle$, $\langle p \rangle$ are the multiplicative subgroups of I_n^T generated by $A(p)$ and p respectively.

Hence it follows that $(I_n^T/I_0)_\phi \simeq \mathbf{Z}/p^n\mathbf{Z}$ if $\phi|D = \chi_0|D$

~ 0 otherwise.

On the other hand by [2, Lemma 1] we have

$$(E_0 \cap N(k_n^*)/E_0p^n)_{\phi_1} \simeq \mathbf{Z}/p^n\mathbf{Z}$$

if $\phi_1 \neq \chi_0$ and $\phi_1|D \neq \chi|D$

~ 0 otherwise.

Since $(A_n)_\phi \to (E_0 \cap N(k_n^*)/NE_n)_{\phi X}$, the possible φ-components of A_n^T which have non-trivial image in this group are among those φ,

$$\phi(J) = \chi(J), \phi \neq \chi^{-1}$$

and $\phi|D \neq \chi_0|D$.

Hence the non-trivial φ-components of A_n^T are among

$$\{\phi|\phi|D = \chi_0|D\} \cup \{\phi|\phi(J) = \chi(J), \phi \neq \chi^{-1}, \phi|D \neq \chi_0|D\}.$$

This provides no restriction in the case that $D \subseteq \ker \chi$ when in fact X_0 is semisimple [2].

If $\chi|D \neq \chi_0|D$, then we see that the χ^{-1} component of A_n^T and that of τX must be pseudo-null.

§3. Examples

We now describe a set of characters χ so that for the \mathbf{Z}_p-extensions K_χ/k the groups $X/\tau X$ and τX have different Δ-decompositions. This implies that the corresponding X_0 is not semi-simple.

By Corollary of §1, we see that $(X/\tau X)_{\chi^{-1}} \simeq \mathbf{Z}_p$ if $\chi^{-1} \neq \chi$ and $\chi^{-1}|D = \chi|D$, i.e. if $\chi^2 \neq \chi_0$ and $\chi^2|D = \chi_0|D$. On the other hand §2 implies that $(\tau X)_{\chi^{-1}} \sim 0$ if $\chi|D \neq \chi_0|D$ so we have:
For any character χ, such that $\chi^2 \neq \chi_0$, $\chi|D \neq \chi_0|D$ and $\chi^2|D = \chi_0|D$
we have $(TX)_{X^{-1}} \sim 0$ and $(X/TX)_{X^{-1}} \sim \mathbb{Z}_p$.

The examples of Jaulent [4] are of this type.

I would like to acknowledge several helpful discussions with D. Dummit.

REFERENCES

(Oblatum 22-II-1982)

Department of Mathematics
Concordia University
Sir George Williams Campus
1455 De Maisonneuve Blvd. West
Montreal
Quebec H3G 1M8
Canada