D. R. Lewis

The dimensions of complemented hilbertian subspaces of uniformly convex Banach lattices

<http://www.numdam.org/item?id=CM_1983__50_1_83_0>
THE DIMENSIONS OF COMPLEMENTED HILBERTIAN
SUBSPACES OF UNIFORMLY CONVEX BANACH LATTICES

D.R. Lewis *

For X a given Banach space Dvoretzky's Theorem [1] implies that every finite dimensional $E \subset X$ contains a Hilbertian subspace F. In this paper we are interested in spaces X for which the F's can always be chosen to be uniformly complemented in X, and especially in obtaining estimates for $\dim F$ in terms of $\dim E$. It is clearly necessary to suppose that X doesn't contain ℓ^p_n's uniformly. For Banach lattices X Johnson and Tzafriri [8] have shown that the last condition is also sufficient. The novelty of the results presented here is the estimates for $\dim F$ in terms of $\dim E$, which are quite sharp. The main technique used in the proofs is the version of Dvoretzky's Theorem proven by Figiel, Lindenstrauss and Milman in [2]; for properly chosen ellipsoids the Levy means involved there can be estimated using the properties of p-summing operators defined on the space X.

This paper was submitted in another place in 1978, and so has been delayed in appearing. Since that time the results presented here have been considerably strengthened: Figiel and Tomczak-Jaegermann [21] extend these results to uniformly convex and k-convex spaces; Benyamini and Gordon [20] consider random factorizations of maps more general than the identity on ℓ^p_2: Pisier's theorem [22] a space not containing ℓ^p_n's must be k-convex shows all the results mentioned carry over to B-convex spaces.

The notation and terminology used here is for the most part standard. We only recall the definitions used in the statements of theorems. A Banach lattice L is q-concave if there is a constant $A > 0$ with

$$\left(\sum_{i \leq n} \|x_i\|^q \right)^{1/q} \leq A \left(\sum_{i \leq n} |x_i|^q \right)^{1/q}$$

for all $x_1, x_2, \ldots, x_n \in L$. Similarly L is p-convex if there is a constant

* Research partially supported by NSF Research Grant MCS 77-04174. Received April 14, 1980.
$B > 0$ with
\[
\left\| \left[\sum_{i=1}^{n} |x_i|^p \right]^{1/p} \right\| \leq B \left(\sum_{i=1}^{n} \|x_i\|^p \right)^{1/p}
\]
for all $x_1, x_2, \ldots, x_n \in L$. In each case we write $K_q(L)$ and $K_p(L)$ for the best constants A and B appearing in the inequalities. The basic facts about q-concave and p-convex lattices may be found in [9], [13] and [12].

For $2 \leq s < \infty$ and E a given space we take the s-cotype constant of E, $\alpha_s(E)$, to be the smallest $\alpha > 0$ such that
\[
\left[\sum_{i=1}^{m} \|x_i\|^s \right]^{1/s} \leq \alpha \left[\sum_{i=1}^{m} r_i(t) x_i^s \right]^{1/s}
\]
for any $x_1, x_2, \ldots, x_n \in E$. Here $r_1, r_2, \ldots, r_n, \ldots$ are the Rademacher functions on $[0, 1]$. It is obvious that $\alpha_s(P^N) = 1$, $2 \leq s < \infty$.

The Banach-Mazur distance between isomorphic spaces E and F is
\[
d(E, F) = \inf \{ \|u\| \|u^{-1}\| : u : E \to F \text{ an isomorphism} \}.
\]

Let X be a fixed space and $\lambda \geq 1$. For $E \subset X$ a finite dimensional subspace we define $c_\lambda(E)$ to be the maximum of the dimensions of those $F \subset E$ for which
\begin{enumerate}
 \item[(i)] $d(F, \ell_2^{\dim F}) \leq 2$, and
 \item[(ii)] there is a projection of X onto F of norm at most λ.
\end{enumerate}
In the terminology of Pelczynski and Rosenthal [16] X is called locally π-Euclidean if there is a constant $\lambda \geq 1$ and a function f on the natural numbers such that $c_\lambda(E) \geq n$ whenever $\dim E \geq f(n)$.

Finally for $1 < p < \infty$, p' is the conjugate of p ($1/p + 1/p' = 1$).

Theorem 1: Let X be a space which is a subspace of quotient of a p-convex and q-concave Banach lattice L, $1 < p \leq 2 \leq q < \infty$. There is a $\lambda \geq 1$ so that, for $E \subset X$ any n dimensional subspace and $s \in [2, q]$,
\[
c_\lambda(E) \geq \lambda^{-1} \min \{ n^{2/p'}, \alpha_s(E)^{-2} n^{2/s} \}.
\]

Before giving the proof we point out some instances of the theorem.

(a) The hypothesis of the theorem implies that X is cotype q [13], and so for some constant $a > 0$ and $\alpha = \min(2/p', 2/q)$,
\[
c_\lambda(E) \geq a (\dim E)^\alpha
\]
whenever $X \subset E$ is finite dimensional. In particular X is locally π-Euclidean. This result is also stated in [8], though no estimate for $c_\lambda(E)$ is given.
(b) The lattice \(L = L_p(\mu) \) is both \(p \)-convex and \(p \)-concave, \(1 < p < \infty \), and consequently (\(* \)) holds with \(\alpha = \min(2/p', 2/p) \). For \(2 \leq p < \infty \) this is well-known, and follows from the results of [2] and [14]. Taking \(E = \ell_p^n \) and using the results of [2] shows that this lower bound for \(c_\lambda(E) \) is best possible for \(L \) an \(L_p \)-space.

(c) In case \(2 \leq s \leq q \) and \(d(E, \ell_s^n) \leq n^{1/s - 1/p'} \)

\[\alpha_s(E)^{-2} n^{2/s} \geq d(E, \ell_s^n)^{-2} n^{2/s} \geq n^{2/p'}, \]

and hence (\(* \)) is true with \(\alpha = 2/p' \). For \(E \) a 2-isomorph of \(\ell_s^n, 2 \leq s \leq \min(p', q) \), this gives a lower bound for \(c_\lambda(E) \) depending only on the convexity of \(L \). For Hilbertian subspaces of \(L_p(\mu) \)-spaces \(1 < p < 2 \) this lower estimate cannot be improved; by [2] \(\ell_p^n, 1 < p < 2 \), contains a Hilbert subspace of dimension \(c_1 n \), but no complemented Hilbert subspaces of dimension greater than \(c_2 n^{2/p'} \). For \(L \) a \(p \)-convex lattice \((1 < p \leq 2) \) with some non-trivial concavity, every \(n \) dimensional Hilbert subspace is \(c_3 n^{1/p - 1/2} \)-complemented [11].

Below \(X, L, p \) and \(q \) have the same meaning as in the statement of Theorem 1. The proof is preceded by three short lemmas, the first mentioned by Pisier in [18].

The lattice structure enters into the proof only through Lemma 1.

Lemma 1: If \(u : X \to G \) is \(q' \)-integral then \(u' \) is \(p' \)-summing and

\[\pi_{p'}(u') \leq K_p(L)K_q(L)i_q(u). \]

Proof: It is enough to show that for \(u : L \to G \) \(q' \)-summing,

\[i_{p'}(u') \leq K_p(L)K_q(L)i_q(u). \]

By Proposition 3.1 of [11] \(u' \) maps the closed unit ball of \(G' \) into an order bounded set and

\[\| \sup_{\|x\| \leq 1} |u'(x')| \| \leq K_q(L)\pi_q(u). \]

Since \(L' \) is \(p' \)-concave with \(K_p'(L') = K_p(L) \) [9], the same proposition gives

\[i_{p'}(u') \leq K_p(L)\| \sup_{\|x\| \leq 1} |u'(x')| \|. \]

Lemma 2: If \(2 \leq s < \infty \), \(H \) is an \(n \) dimensional Hilbert space and \(u : H \to G \) any map, there is a subspace \(A \subset H \) with \(\dim A \geq n/2 \) and

\[\|u|A\| \leq (2/n)^{1/s} \pi_{(2,s)}(u). \]
PROOF: If the conclusion fails inductively choose \(m \) vectors \(x_1, x_2, \ldots, x_m \) \(\in H \) to satisfy

\[
\|x_i\| = 1, \quad \|u(x_i)\| > (2/n)^{1/s} \pi_{(2,s)}(u)
\]

and

\[
x_k \in [x_1, x_2, \ldots, x_{k-1}]^\perp, \quad 1 \leq k \leq m.
\]

It is clearly possible to choose \(m = \lceil n/2 + 1 \rceil \geq n/2 \) such vectors. But since the \(x_i \)'s are orthonormal

\[
\pi_{(2,s)}(u) \geq \left[\sum_{i=1}^m \|u(x_i)\|^s \right]^{1/s} > m^{1/s}(2/n)^{1/s} \pi_{(2,s)}(u),
\]

a contradiction.

For \(G \) a finite dimensional space and \(\| \|_2 \) a Hilbertian norm on \(G \), \(G_2 \) denotes \(G \) under \(\| \|_2 \).

Lemma 3: Let \(E \subset X \) be any \(n \) dimensional subspace. There is a Hilbertian norm \(\| \|_2 \) on \(E \) and an operator \(v: X \to E_2 \) such that, if \(u: E_2 \to X \) is the formal inclusion, then \(vu = 1_E \) and \(\pi_q(u) = i'_q(v) = n^{1/2} \).

Proof: By Theorem 1.1 of [10] there is an isomorphism \(w: L_2^n \to E \) so that \(\pi_q(w) = 1 \) and \(i'_q(w^{-1}) = n \). Define \(\| \|_2 \) on \(E \) by \(\|x\|_2 = n^{-1/2} \|w^{-1}(x)\| \). Clearly \(\pi_q(u) = i'_q(u^{-1}) = n^{1/2} \). For \(v \) take any map \(v: X \to E_2 \) with \(v|E = u^{-1} \) and \(i'_q(v) = i'_q(u^{-1}) \) (such an extension exists by the defining factorization of \(q' \)-integral maps).

Proof of Theorem 1: Given \(E \subset X \) of dimension \(n \), choose \(\| \|_2, u \) and \(v \) as in Lemma 3. We claim there is a constant \(a > 0 \) (depending only on \(q \) and \(L \)) and a subspace \(B \subset E \) with \(\dim B \geq n/4 \) such that, if \(u_1 = u \upharpoonright B_2 \) and \(v_1 \) is \(v \) followed by the orthogonal projection of \(E_2 \) onto \(B_2 \), then

\[
v_1u_1 = 1_B,
\]

\[
\pi_q(u_1) \leq n^{1/2},
\]

\[
\pi_q'(v_1) \leq an^{1/2},
\]

\[
\|u_1\| \leq a\alpha_q(E)n^{1/2-1/s},
\]

and

\[
\|v_1\| \leq an^{1/p-1/2}.
\]
Trivially, $\pi_{(2,q)}(u) \leq \pi_q(u)$. For $2 \leq s < q$ the proof of a result of Maurey ([15], Proposition 74, p. 90) implies

$$\pi_{(2,s)}(u) \leq c(q) \alpha_s(E) \pi_q(u) \leq c(q) \alpha_s(E) n^{1/2},$$

where $c(q)$ is Khintchin’s constant. By Lemma 2 there is an $A \subset E$ with $\dim A \geq n/2$ and

$$||u||_{A_2} \leq (2/n)^{1/4} \pi_{(2,s)}(u) \leq c_2 \alpha_s(E) n^{1/2 - 1/2}.$$

By Lemma 1

$$\pi_{(2,p')} (v') \leq \pi_{p'}(v') \leq c_{L,p'} (v) = C_L n^{1/2}$$

and thus, again by Lemma 2, there is a $B \subset E$ with $\dim B \geq (\dim A)/2 \geq n/4$ and

$$||v'||_{B_2} \leq (4/n)^{1/p'} \pi_{(2,p')} (v') \leq c_4 n^{1/p' - 1/2}.$$ Properties (1), (2) and (3) follow immediately from the corresponding properties of u and v (and Lemma 1).

The remainder of the proof now follows using the results and techniques of [2]. Let $S \subset B_2$ be the unit sphere $||x|| = 1$ and dm be the normalized, rotational invariant measure on S. Recall that the Levy mean of a continuous real valued function f on S is the number M_f such that

$$m \{ x \in S : f(x) \geq M_f \} = m \{ x \in S : f(x) \leq M_f \}.$$ Let M be the Levy mean of $x \mapsto ||u_1(x)|| = ||x||$ on S and $M^#$ be the Levy mean of $x \mapsto ||v'_1(x)||$ on S (of course $B'_2 = B_2$ naturally). Equality (1) implies that for $x \in S$,

$$1 = \langle u_1(x), v'_1(x) \rangle \leq ||u_1(x)|| ||v'_1(x)||,$$

and consequently

$$1 \leq MM^#.$$ (6)

We now claim that there is a constant $b > 0$, depending only on p, q and L, such that

$$M \leq b \quad \text{and} \quad M^# \leq b.$$ (7)

To prove the first let $a(q)$ be the constant satisfying

$$||z||_2 = a(q) \left[\int |(x,z)|^q m(dx) \right]^{1/q}, \quad z \in B_2;$$
\(a(q)\) is the \(q\)-summing norm of the identity on \(B_2\) and \(n/4 \leq \text{dim } B\), so \(a(q) \geq c_5 n^{1/2}\) for some constant \(c_5\) depending only on \(q\) (cf. [4]). By Pietsch’s integral representation theorem [17] there is a probability measure \(\mu\) on \(S\) with

\[
\|u_1(x)\| \leq \pi_q(u_1) \left[\int \|x, z\|^q \mu(\mathrm{d}z) \right]^{1/q}, \quad x \in B_2.
\]

Thus

\[
M^q \leq 2 \int \|u_1(x)\|^q m(\mathrm{d}x)
\]

\[
\leq 2\pi_q(u_1)^q \int \|x, z\|^q m(\mathrm{d}x) \mu(\mathrm{d}z)
\]

\[
= 2\pi_q(u_1)^q a(q)^{-q}
\]

\[
\leq 2n^{q/2}c_5^{-q}n^{-q/2},
\]

the last by (2). The inequality \(M^\# \leq b\) follows similarly from (3).

By Theorem 2.6 of [2] (and the remarks following) there is an absolute constant \(c > 0\) and an \(F \subset E\) with

\[
\|\|2\text{-equivalent to } M\|\|_2 \text{ on } F,
\]

the norm \(x \mapsto \|v_1(x)\|\) 2-equivalent to \(M^\#\|\|_2 \text{ on } F\), and

\[
\dim F \geq cn \min\{\|u_1\|^{-1}M, \|v_1\|^{-1}M^\#\}^2.
\]

By (6) and (7) \(M\) and \(M^\#\) are at least \(b^{-1}\) so, using (4) and (5),

\[
\dim F \geq c_6 \min\{\alpha_s(E)^{-2}n^{2/s}, n^{2/p'}\}.
\]

Finally, let \(w: B_2 \to F_2\) be the orthogonal projection. Since \(\|v'(x)\| \leq 2b\|x\|_2\) for \(x \in F\), the projection \(wv_1\) has norm at most \(2b\) as an operator from \(X\) into \(F_2\). But \(\|y\| \leq 2b\|y\|_2\) for \(y \in F\), so \(\|wv_1\| \leq 4b^2\) as an operator from \(X\) into \(F\). This concludes the proof. \(\Box\)

A review of the proof of Theorem 1 shows that, once the Hilbert norm \(\|\|_2\) and the operators \(u, v\) have been chosen, the key inequalities are the upper estimates for \(M\) and \(M^\#\) given in terms of \(\pi_q(u)\) and \(\pi_{p'}(v')\). Such estimates are available in several other instances.

Given \(1 \leq p \leq \infty\) a space \(X\) contains \(\mathcal{L}_p^n\)'s uniformly if there is a sequence \((E_n)_{n \geq 1}\) of finite dimensional subspaces of \(X\) with \(\sup_n d(E_n, \mathcal{L}_p^n) < \infty\). If in addition there are projections \(u_n: X \to E_n\) with \(\sup_n \|u_n\| < \infty\), then \(X\) contains uniformly complemented \(\mathcal{L}_p^n\)'s.
THEOREM 2: Let L be a Banach lattice not containing ℓ_∞^n's uniformly, and let $X \subset L$. Then either

(a) X contains uniformly complemented ℓ_1^n's,

or

(b) X is locally π-Euclidean.

In the second case there are positive constants λ and α such that

$$c_\lambda(E) \geq \lambda^{-1}(\dim E)\alpha$$

for all finite dimensional $E \subset X$.

THEOREM 3: There is an absolute constant $c > 0$ with the following property. If E is an n dimensional space with a monotone symmetric basis, there is an m dimensional $F \subset E$ and a projection $w: E \rightarrow F$ with

(a) $d(F, \ell_2^m) \leq 2$,

(b) $m \geq c^{-1}d(E, \ell_2^n)^{-2}n$,

and

(c) $\|w\| \leq c \log n$.

Again the first part of Theorem 2 is stated without proof in [8]. The conclusion of Theorem 3 is of interest only in case $d(E, \ell_2^n)^{-2}n$ is substantially larger than $(\log n)^2$; by John’s Theorem [7] $d(E, \ell_2^n) \leq n^{1/2}$ for every n dimensional space, and every m dimensional $F \subset E$ is at least $M^{1/2}$-complemented (of [3]).

PROOF OF THEOREM 2: Assume that X' doesn't contain ℓ_∞^n's uniformly. The arguments of Pisier in [18] show that there is a constant $c > 0$ and indices p and q, $1 < p \leq 2 \leq q < \infty$, so that $\pi_{p'}(v') \leq c\ell_q'(v)$ for every q'-integral map on X. Once this is established as a substitute for Lemma 1, the proof can proceed exactly as before.

PROOF OF THEOREM 3: Let $(e_i)_{i \leq n}$ be a monotone symmetric basis for E, set

$$\|x\|_2 = \left[\sum_{i \leq n} |x_i|^2\right]^{1/2} \quad \text{for} \quad x = \sum_{i \leq n} x_i e_i$$

and write $u: E_2 \rightarrow E$, $v: E \rightarrow E_2$ for the formal identities. Every map g of
the form \(g(e_i) = \varepsilon_i e_{\pi(i)} \), with \(|\varepsilon_i| = 1\) for each \(i \) and \(\pi \) a permutation of \(\{1, 2, \ldots, n\} \), is an isometry of both \(E \) and \(E_2 \); further the only maps \(E_2 \to E \) which commute with all such \(g \) are scalar multiples of \(u \). By an averaging argument (cf. [5], Lemma 5.2) \(a(u)\alpha^*(v) = n \) for every Banach ideal norm \(\alpha \). Thus we may assume, normalizing \(\|\cdot\|_2 \) if necessary, that

\[
i_\infty(u) = n^{1/2} \quad \text{and} \quad \pi_1(v) = n^{1/2}.
\]

Let \(a \) and \(b \) be the best constants satisfying

\[
a^{-1}\|x\|_2 \leq \|x\| \leq b\|x\|_2, \quad x \in E.
\]

Another averaging argument shows

\[
ab = d(E, \mathcal{L}_2^n).
\]

\(M \) and \(M^* \) are defined as in the proof of Theorem 1. By that proof, for any \(q \geq 2 \),

\[
M \leq 2^{1/q} \pi_q(\mathcal{L}_2^n)^{-1} \pi_q(u) \quad \text{and} \quad M^* \leq 2^{1/q} \pi_q(\mathcal{L}_2^n)^{-1} \pi_q(v'),
\]

where \(\pi_q(\mathcal{L}_2^n) \) denotes the \(q \)-summing norm of the identity on \(\mathcal{L}_2^n \). Using the expression given in [4] for \(\pi_q(\mathcal{L}_2^n) \) and Stirling’s formula there is an absolute constant \(a > 0 \) such that \(\pi_q(\mathcal{L}_2^n)^{-1} \leq a(q/n)^{1/2} \) for all \(q \geq 2 \).

Any map \(w \) into an \(n \) dimensional space satisfies \(\pi_q(w) \leq n^{1/q}i_\infty(w) \) (cf. [11], Corollary 1.7). Consequently, combining inequalities yields

\[
M \leq 2^{1/q} a(q/n)^{1/2} \pi_q(u)
\]

\[
\leq 2an^{1/q}q^{1/2}n^{-1/2}i_\infty(u)
\]

\[
= 2an^{1/q}q^{1/2}
\]

and similarly

\[
M^* \leq 2an^{1/q}q^{1/2}i_\infty(v')n^{-1/2}
\]

\[
= 2an^{1/q}q^{1/2} \gamma_1(v)n^{-1/2}
\]

\[
\leq 2an^{1/q}q^{1/2} \pi_1(v)n^{-1/2}
\]

\[
= 2an^{1/q}q^{1/2},
\]

the last inequality by [6], Lemma 3.3, since \(E \) has a monotone uncondi-
tional basis. Now taking \(q = \log n \),

\[
MM^* \leq c_1 \log n
\]

for some absolute constant \(c_1 \). Trivially, \(M \geq a^{-1} \) and \(M^* \geq b^{-1} \). Using the method of Figiel-Lindenstrauss-Milman as in the proof of Theorem 1 produces an \(m \) dimensional \(F \subset E \), which is 2-isomorphic to \(\ell_2^m \), \(c_2 \log n \) complemented in \(E \) with

\[
m \geq c_2 n \min\{b^{-1}M, a^{-1}M^*\}^2 \geq c_2 n d(E, \ell_2^n)^{-2}.
\]

There are a number of natural questions about complemented Hilbert subspaces. Let \(X \) be a space with some Rademacher type. Is there a constant \(\lambda > 1 \), depending on \(X \), with

\[
c_\lambda(E) \geq \lambda^{-1}d(E, \ell_2^n)^{-2}
\]

for all \(n \) dimensional \(E \subset X \)? For \(X \) a \(p \)-convex and \(q \)-concave lattice it is known \([11]\) that \(d(E, \ell_2^n) \leq n^{1/p-q/q} \) for \(E \subset X \) having dimension \(n \). For such lattices Theorem 1 gives an apparently stronger result, although in this case it is likely that the correct distance estimate is

\[
d(E, \ell_2^n) \leq c_L \max\{n^{1/p-1/2}, n^{1/2-1/q}\}.
\]

The lattice structure enters into the proofs of our results only through the inequality

\[
\sigma_s(v') \leq c_i(v)
\]

for operators on \(X \). For \(X \) the Schatten \(p \)-trace class of operators on \(\ell_2 \), Pisier \([18]\) has shown that \((\#) \) fails for every non-trivial pair \(1 < r \leq s < \infty \). We know of no non-trivial lower estimates for \(c_i(E) \) if \(E \subset C_p \), \(1 < p < 2 \), although sharp upper estimates for \(d(E, \ell_2^n) \) are available \([19]\). Finally, we know of no space \(X \) on which \((\#) \) is true which is not a subspace of a quotient of a Banach lattice having some Rademacher type.

References

(Oblatum 14-IV-1980)

Texas A&M University
Department of Mathematics
College Station, TX 77843-3368
U.S.A.